Exercise sheet 1

Submit your solutions in the exercise group on 2011-Apr-11!

Exercise 1: The higher-dimensional Liouville theorem. (8 points)

For $n, m \in \mathbb{N}$, prove that every bounded holomorphic function $f : \mathbb{C}^n \to \mathbb{C}^m$ is constant. (You may use the standard theorem of Liouville, i.e. the case n = m = 1, without proof.)

Exercise 2: Complex projective spaces. (12 points)

- **a.** Prove that \mathbb{CP}^n (with the topology defined in the lecture) is a compact connected second countable Hausdorff space. (*Hint*. There is a continuous surjective map $S^{2n+1} \to \mathbb{CP}^n$.)
- **b.** For $\alpha \in \{0, ..., n\}$, prove that the chart $\varphi_{\alpha} \colon U_{\alpha} \to \mathbb{C}^n$ defined in the lecture is a homeomorphism with inverse given by $(\zeta_1, ..., \zeta_n) \mapsto [\zeta_1, ..., \zeta_\alpha, 1, \zeta_{\alpha+1}, ..., \zeta_n]$.
- **c.** Prove that \mathbb{CP}^1 is diffeomorphic to S^2 .

Exercise 3: Complex Grassmannians. (12 points)

Let $n \in \mathbb{N}$, let $k \in \{0, \ldots, n\}$.

- **a.** Prove that the subset $Mat^{reg}(n, k)$ of rank-k matrices is an open subset of the set Mat(n, k) of complex $n \times k$ matrices.
- **b.** Prove that $\operatorname{Gr}_k(\mathbb{C}^n)$ is a compact connected second countable Hausdorff space.
- **c.** For $\alpha \in \{0, \ldots, n\}$, let $b(\alpha)$ be the basis $(e_{\alpha}, e_0, \ldots, e_{\alpha-1}, e_{\alpha+1}, \ldots, e_n)$ of \mathbb{C}^{n+1} . Consider $\mathbb{CP}^n = \operatorname{Gr}_1(\mathbb{C}^{n+1})$. Prove that the chart φ_{α} from Exercise 2 is equal to the chart $\varphi_{b(\alpha)}$ of $\operatorname{Gr}_1(\mathbb{C}^{n+1})$ defined in the lecture. Deduce that the maximal complex atlas of \mathbb{CP}^n which contains the atlas $\{\varphi_{\alpha} \mid \alpha \in \{0, \ldots, n\}\}$ is equal to the maximal complex atlas of $\operatorname{Gr}_1(\mathbb{C}^{n+1})$ which contains the atlas $\{\varphi_b \mid b \text{ is a basis of } \mathbb{C}^{n+1}\}$.

Exercise 4: The Cauchy-Riemann equations. (8 points)

We identify \mathbb{C}^n with $\mathbb{R}^n \oplus \mathbb{R}^n$ by decomposition into real and imaginary parts: $(x_1 + iy_1, \ldots, x_n + iy_n) \in \mathbb{C}^n$ is identified with $((x_1, \ldots, x_n), (y_1, \ldots, y_n)) \in \mathbb{R}^n \oplus \mathbb{R}^n$.

- **a.** Multiplication by i defines a \mathbb{C} -linear map $\mathbb{C}^n \to \mathbb{C}^n$ and is thus described by a 2×2 block matrix each of whose blocks is a real $n \times n$ matrix. Show that this block matrix is $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- **b.** For $n, m \in \mathbb{N}$, let A, B, C, D be real $m \times n$ matrices. Then the block matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ describes an \mathbb{R} -linear map $\mathbb{C}^n \to \mathbb{C}^m$. Show that this map is \mathbb{C} -linear if and only if A = D and B = -C.
- **c.** Let U be an open subset of \mathbb{C}^n , let $f = (f_1, \ldots, f_m) \colon U \to \mathbb{C}^m$ be differentiable, let $z \in U$. The derivative of f at z is an \mathbb{R} -linear map $D_z f \colon \mathbb{C}^n \to \mathbb{C}^m$. Check that $D_z f$ is \mathbb{C} -linear if and only if the *Cauchy-Riemann equations*

$$\frac{\partial \operatorname{Re} f_k}{\partial x_j} = \frac{\partial \operatorname{Im} f_k}{\partial y_j} \ , \qquad \qquad \frac{\partial \operatorname{Re} f_k}{\partial y_j} = -\frac{\partial \operatorname{Im} f_k}{\partial x_j}$$

hold for all $j \in \{1, \ldots, n\}$ and $k \in \{1, \ldots, m\}$ at the point z.

Universität Hamburg · Tor zur Welt der Wissenschaft