Elementare Zahlentheorie Übungsaufgaben zur Abgabe am 21.11.2012

Aufgabe 19 (6 Punkte):

- a) Berechnen Šie $N_0(ABC)$ für $A = -1 + 5x^2 10x^4 + 10x^6 5x^8 + x^{10}$, B = -1 und C = A + B.
- b) Gilt Satz 3.5 auch für Polynome $A, B, C \in \mathbb{Q}[x]$? Begründen Sie Ihre Antwort.
- c) Gilt der ABC-Satz von Stothers und Mason (Satz 3.2) auch für Polynome $A,B,C\in\mathbb{Q}[x]$? Begründen Sie Ihre Antwort.

Aufgabe 20 (3 Punkte):

Berechnen Sie die Folgen:

- a) $(5^i \mod 12)_{i \in \mathbb{N}};$
- b) $(10^i \mod 12)_{i \in \mathbb{N}};$
- c) $(7^i \mod 100)_{i \in \mathbb{N}}$.

Aufgabe 21 (5 Punkte):

Bestimmen Sie die letzten 3 Dezimalziffern von folgenden Zahlen:

- a) $5^{4^{3^2}}$;
- b) $2^{3^{4^5}}$;
- c) 7^{123456}

Aufgabe 22 (4 Punkte):

Sei $(R, +, \cdot)$ ein Ring mit Eins und I_1, I_2 Ideale in R. Welche von den folgenden Mengen sind stets Ideale? Geben Sie eine Begründung oder ein Gegenbeispiel.

- a) $I_1 \cup I_2$;
- b) $I_1 \cap I_2$;
- c) $I_1 + I_2 = \{i_1 + i_2 : i_1 \in I_1, i_2 \in I_2\}.$

Aufgabe 23 (5 Bonuspunkte):

Ein Hauptideal in einem Ring $(R, +, \cdot)$ ist ein Ideal der Form $\langle r \rangle := \{a \cdot r : a \in R\} = rR$ für ein $r \in R$. Ein Hauptidealring ist ein Ring in dem jedes Ideal ein Hauptideal ist. Sei $(R, +, \cdot)$ ein Ring mit Eins und I_1, I_2 Ideale in R.

- a) Beweisen Sie, dass wenn $(R, +, \cdot)$ ein Hauptidealring ist, dann ist $I_1 \cdot I_2 = \{i_1 \cdot i_2 : i_1 \in I_1, i_2 \in I_2\}$ ein Ideal in R.
- b) Geben Sie ein Beispiel das zeigt, dass die Aussage ohne der zusätzlichen Forderung, dass $(R, +, \cdot)$ ein Hauptidealring ist, nicht unbedingt gilt.