7. Übungsblatt

Aufgabe 1. Sei X ein wegzusammenhängender topologischer Raum und seien $h_1, h_2 : [0, 1] \to X$ Wege von $h_i(0) = x_0$ nach $h_i(1) = x_1$. Zeige:

- a) Die zugehörigen Basispunktwechsel $\beta_{h_i}: \pi_1(X, x_0) \to \pi_1(X, x_1): [\alpha] \mapsto [h_i^- * \alpha * h_i]$ sind konjugiert (d.h. es gibt ein $\gamma \in \pi_1(X, x_1)$, so dass $\beta_{h_1}(\alpha) = \gamma * \beta_{h_2}(\alpha) * \gamma^{-1}$ für alle $\alpha \in \pi_1(X, x_1)$).
- b) $\pi_1(X)$ ist genau dann abelsch, wenn alle Basispunktwechsel β_h nur vom Anfangs- und Endpunkt des Weges h abhängen.
- c) *-Aufgabe. $\pi_1(X)$ ist außerdem genau dann abelsch, wenn die den Basispunkt vergessende Abbildung $\phi: \pi_1(X, x_0) \to [S^1, X]$ injektiv ist.

(4+2 Punkte)

Aufgabe 2. Zeige, dass die Fundamentalgruppe $\pi_1(G, e)$ einer topologischen Gruppe (G, \cdot) abelsch ist. (Hinweis: Wähle zwei Repräsentanten α_1, α_2 von $\pi_1(G, e)$ und betrachte die Einschränkung der Abbildung $H : [0, 1]^2 \to G, (t_1, t_2) \mapsto \alpha_1(t_1) \cdot \alpha_2(t_2)$ auf den Rand $\partial([0, 1]^2)$.)

(4 Punkte)

Aufgabe 3. Sei $A \subset X$ ein Deformationsretrakt eines topologischen Raumes X, d.h. es gibt eine Homotopie der Identität id_X auf eine Retraktion ρ (d.h. eine Abbildung $\rho: X \to A$ mit $\rho|_A = \mathrm{id}_A$). Sei $a \in A$. Zeige, dass $\rho_*: \pi_1(X, a) \to \pi_1(A, a)$ ein Isomorphismus ist.

(4 Punkte)

Aufgabe 4. Berechne mittels Aufgabe 3 die Fundamentalgruppen folgender topologischer Räume:

- a) des Möbiusbandes.
- b) des Kegels CX über einem topologischen Raum X.

(4 Punkte)