Prof. Dr. Bernd Siebert Dr. Michael Carl

4. Übungsblatt

Aufgabe 1. Sei G eine topologische Gruppe und $N \subset G$ die Zusammenhangskomponente der Eins. Zeige: N ist ein abgeschlossener Normalteiler.

(2 Punkte)

Aufgabe 2. Zeige folgende Abgeschlossenheitskriterien:

- a) Eine stetige Abbildung $f: X \to Y$ ist genau dann abgeschlossen, wenn für alle $y \in Y$ jede Faser-Umgebung $U(f^{-1}(y))$ das Urbild $f^{-1}(V(y))$ einer y-Umgebung V(y) enthält.
- b) Sei $\Phi: G \times X \to X$ eine stetige Wirkung einer Hausdorffschen topologischen Gruppe G. Ist $A \subset G$ kompakt und $B \subset X$ abgeschlossen, so ist $\Phi(A \times B)$ abgeschlossen.
- c) Sei $f: X \to Y$ eine Abbildung zwischen lokal kompakten Hausdorffräumen. Ist $f^{-1}(K)$ kompakt für alle kompakten $K \subset Y$, so ist f abgeschlossen.

(6 Punkte)

Aufgabe 3. Stelle folgende Räume als Quotient G_1/G_2 von topologischen Gruppen G_1, G_2 bezüglich einer geeigneten G_2 -Wirkung dar:

- a) Die Kleinsche Flasche, d.h. der Quotientenraum von $[0,1] \times [0,1]$ bezüglich der Relation $(0,y) \sim (1,1-y)$ und $(x,0) \sim (x,1) \, \forall x,y \in [0,1]$
- b) Den reell projektiven Raum $\mathbb{RP}^n := S^n / \sim$ bezüglich $x \sim -x$.
- c) S^2 als Quotient von $U(1) \times U(1)$.

(3 Punkte)

Aufgabe 4. Bezeichne $\Phi: GL(2,\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$ die Standardwirkung der linearen Gruppe. Finde bis auf Homöomorphie die (drei) nicht-kompakten zusammenhängenden Untergruppen $G \subset GL(2,\mathbb{R})$ und die (zwei) zusammenhängenden offenen Mengen $U \subset \mathbb{R}^2$, so dass $\Phi|_{G \times U}$ eine eigentliche Wirkung ist.

(5 Punkte)