Prof. Dr. Bernd Siebert Dr. Michael Carl

3. Übungsblatt

Aufgabe 1. Sei $f: X \to Y$ eine stetige Surjektion. Zeige, dass $Y \simeq X/R_f$, falls X kompakt und Y Hausdorff ist.

(4 Punkte)

Aufgabe 2. Sei X ein topologischer Raum und $f: X \to Y$ eine Surjektion, die $Y = X/R_f$ mit der Quotiententopologie versehe. Sei $A \subset X$ offen und $f|_A: A \to f(A)$ die Einschränkung. Zeige am Beispiel $[0,1] \to [0,1]/\{0,1\}$, dass im Allgemeinen die Teilraumtopologie auf $f(A) \subset Y$ und die Quotiententopologie auf $f(A) = A/R_{f|_A}$ verschieden sind. Zeige, dass aber beide Topologien übereinstimmen, falls f offen ist.

(4 Punkte)

Aufgabe 3. Zeige den Satz 2.8 der Vorlesung: Ist X kompakter Hausdorffraum und $R \subset X \times X$, so ist X/R genau dann Hausdorff, wenn $R \subset X \times X$ abgeschlossen ist.

(4 Punkte)

Aufgabe 4. Sei $I:=[0,1], S^n:=I^n/\partial(I^n)$ und S die Einhängung. Zeige:

- i) $S^{n+1} \simeq SS^n$
- ii) $S^{n+m} \simeq S^n \wedge S^m$

(4 Punkte)