12. Übungsblatt

Aufgabe 1. Berechne mittels der langen exakten Sequenz für Quotientenräume die singulären Homologiegruppen von T^2 und $S^1 \vee S^1 \vee S^2$. Verifiziere so, dass beide Räume isomorphe Homologiegruppen $H_q(T^2) \cong H_q(S^1 \vee S^1 \vee S^2)$ besitzen, obwohl sie nicht homotopieäquivalent sind.

(4 Punkte)

Aufgabe 2. Zeige, dass $H_1(\mathbb{RP}^2) \cong \pi_1(\mathbb{RP}^2) \cong \mathbb{Z}_2$. (Hinweis: Ein singulärer 1-Simplex $\sigma : \Delta_1 \to X$ mit $\partial \sigma = 0$ definiert ein $[\sigma] \in \pi_1(X, \sigma(e_0))$. Nutze dann Aufgabe 1c) aus Blatt 7 um zu zeigen, dass $\sigma - \sigma' \in B_1(\mathbb{RP}^2)$ genau dann, wenn $[\sigma] = [\sigma'] \in \pi_1(\mathbb{RP}^2)$.)

(4 Punkte)

Aufgabe 3. (Kämmen des Igels) Zeige für $n \geq 2$: Die lineare Wirkung von $g \in GL(n,\mathbb{R})$ auf \mathbb{R}^n induziert die Multiplikation mit dem Vorzeichen der Determinante auf der relativen Homologie $H_n(\mathbb{R}^n,\mathbb{R}^n \setminus \{0\})$, d.h. $H_n(g) = \frac{\det g}{|\det g|}$ id $\in \operatorname{End}(H_n(\mathbb{R}^n,\mathbb{R}^n \setminus \{0\}))$. Folgere, dass die antipodale Abbildung $x \mapsto -x$ auf $S^{n-1} \subset \mathbb{R}^n$ nicht homotop zur Identität ist, falls n ungerade ist. (Hinweis: Folgere aus Blatt 2, Aufgabe 2, dass g zu einer Permutation der Koordinaten relativ homotop ist, die eine Multiplikation mit der Signatur auf $H_n(\Delta_n, \partial \Delta_n)$ induziert.)

(4 Punkte)

Aufgabe 4. (Orientierbarkeit von Flächen) Zeige, dass eine geschlossene Fläche X genau dann ein homöomorphes Bild des Möbiusbandes enthält, wenn $H_2(X) = 0$. Nutze dazu ohne Beweis den Satz von Mayer-Vietoris, d.h. die Existenz einer langen exakten Sequenz

$$\cdots \to H_q(A \cap B) \to H_q(A) \oplus H_q(B) \to H_q(X) \to H_{q-1}(A \cap B) \to \cdots$$

für eine offene Überdeckung $\{A^{\circ}, B^{\circ}\}$ eines topologischen Raumes X.

(4 Punkte)