Prof. Dr. Bernd Siebert Dr. Michael Carl

11. Übungsblatt

Aufgabe 1. (Homologie der 2-Sphäre) Sei Δ_3 der 3-dimensionale Standardsimplex. Berechne $H_q^{\Delta}(\partial \Delta_3)$ für $0 \leq q \leq 2$ durch Angabe von Isomorphismen zu \mathbb{Z}^{b_q} für geeignete Zahlen $b_q \in \mathbb{N}$.

(4 Punkte)

Aufgabe 2. Sei K = (E, S) ein simplizialer Komplex mit Eckenmenge E und Simplexmenge $S \subset \mathcal{P}(E)$. $K' = (E, S \setminus \{\sigma\})$ enstehe durch Entfernen eines (q+1)-Simplexes σ . Zeige: $H_q^{\Delta}(K) = H_q^{\Delta}(K')/\langle \partial \sigma \rangle$.

(4 Punkte)

Aufgabe 3. Sei $X = \coprod X_i$ eine disjunkte Vereinigung topologischer Räume X_i . Zeige: $C_q(X) = \bigoplus C_q(X_i)$ und ∂ erhält diese Zerlegung, so dass $H_q(X) = \bigoplus H_q(X_i)$.

(4 Punkte)

Aufgabe 4. Finde die Automorphismen des exakten Kettenkomplexes

$$0 \longrightarrow \mathbb{Z} \stackrel{\iota}{\longrightarrow} \mathbb{Z}^2 \stackrel{p}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

mit $\iota(a) := (a,0)$ und p(a,b) := b. Finde weiter zu jedem Kettenautomorphismus eine Homotopie zur Identität, d.h. finde Homomorphismen J,P (im Diagramm durch gepunkteten Pfeile dargestellt) mit $\iota \circ J + P \circ p = f - \mathrm{id}_{\mathbb{Z}^2}$, falls f der mittlere Pfeil des Kettenautomorphismus ist.

(4 Punkte)

Präsenz- und Zusatzaufgaben

- Sei K ein n-dimensionaler simplizialer Komplex. Zeige: $H_q^{\Delta}(K)$ hängt nur von dem Unterkomplex $\bigcup_{i\leq q+1}K^{[i]}\subset K$ ab.
- Sei $p_k: S^1 \to S^1: e^{i\varphi} \mapsto e^{ik\varphi}$ die k-blättige Überlagerung von S^1 . Zeige: $H_1(p) = k \cdot \mathrm{id}_{H_1(S^1)}$.
- (Einhängung und Homologie von Sphären) Sei K = (E, S) ein zusammenhängender simplizialer Komplex und $\Sigma K := (E \coprod \{p, q\}, S \cup \bigcup_{\sigma \in S} \Sigma \sigma)$ der Doppelkegel über K, wobei $\Sigma \{v_0, ..., v_n\} = \{\{v_0, ..., v_n, p\}, \{v_0, ..., v_n, q\}\}$. Definiere entsprechend Σ auf C_n durch Fortsetzung von $\Sigma [v_0, ..., v_n] := [v_0, ..., v_n, p] [v_0, ..., v_n, q]$. Zeige: Ist $c \in Z_q(X)$, so ist $\Sigma c \in Z_{q+1}(X)$ und analog für Ränder. Folgere, dass $H_{q+1}^{\Delta}(SX) = H_q^{\Delta}(X)$ und berechne damit $H_q(S^n)$.
- (Orientierbarkeit) Sei K eine angeordnete Triangulierung einer geschlossenen zusammenhängenden Fläche. Zeige: Ein 2-Zykel $\sum n_i \sigma_i \in C_2K$ hat konstante $|n_i|$. Folgere, dass entweder $H_2^{\Delta}(K) = 0$ oder $H_2^{\Delta}(K) = \mathbb{Z}$.