1 Lösungen

Aufgabe 1 1.1

Sei L/K eine Körpererweiterung vom Grad p und p prim. Dann gilt für $\alpha \in L \setminus K$ die Aussage $K(\alpha) = L$.

Der Körper $L(\alpha)$ ist ein Zwischenkörper der Erweiterung L/K, deshalb gilt nach dem Gradsatz

$$p = [L:K] = [L:K(\alpha)] \cdot [K(\alpha):K].$$

Nun ist $K(\alpha) \neq K$ also $[K(\alpha):K] > 1$. Daraus folgt dann, weil p prim ist, dass $[K(\alpha):K]=p$ gelten muss. Also $[L:K(\alpha)]=1$, woraus sofort $L = K(\alpha)$ folgt.

1.2 Aufgabe 2

Seien $K \subset L \subset M$ Körper, M algebraisch über K und $\alpha \in M$.

Behauptung: $\deg_L(\alpha) \leq \deg_K(\alpha)$

Es ist $\deg_L(\alpha) = \deg Irr(\alpha, L)$ der Grad des Minimalpolynoms von α über L. Dieses Existiert, da auch die Erweiterung M/L algebraisch ist.

Angenommen $\deg_L(\alpha) > \deg_K(\alpha)$. Nun sei $f \in K[X]$ das Minimalpolynom von α über K. Wir fassen f als Polynom über L auf. Das Polynom f hat α als Nullstelle und kleineren Grad als das Minimalpolynom von α über L. Das ist ein Widerspruch.

1.3 Aufgabe 3

Sei α algebraisch über \mathbb{Q} . Wir zeigen, dass $\overline{\alpha}$ ebenfalls algebraisch über \mathbb{Q}

Eine Zahl $\alpha \in \mathbb{C}$ ist genau dann algebraisch über \mathbb{Q} , wenn es ein rationales Polynom f positiven Grades gibt mit $f(\alpha) = 0$.

Nun gilt aber $0 = \overline{0} = f(\alpha) = f(\overline{\alpha})$ also ist auch $\overline{\alpha}$ algebraisch über \mathbb{Q} .

Nach Satz 14.8.2 sind Summen und Produkte von algebraischen Elementen wieder algebraisch, also ist $\frac{1}{2}(\alpha + \overline{\alpha}) = Re(\alpha)$ algebraisch über \mathbb{Q} .

Da $\alpha \cdot \overline{\alpha}$ algebraisch über \mathbb{Q} ist (14.8.2), gibt es ein rationales Polynom

 $g = \sum_{k=0}^{n} c_k X^k \text{ mit } g(\alpha \cdot \overline{\alpha}) = 0.$ Sei $\tilde{g} := \sum_{k=0}^{n} c_k X^{2k}$, dann ist $\tilde{g}(\sqrt{\alpha \cdot \overline{\alpha}}) = 0$, also ist $|\alpha| = \sqrt{\alpha \cdot \overline{\alpha}}$ algebraisch über \mathbb{Q} .

Aufgabe 4 1.4

Seien $K \subset L$ Körper und $\phi: L \to L$ ein Körperautomorphismus, der K fix lässt. Wir zeigen, dass das Minimalpolynom von α über K und das Minimalpolynom $\phi(\alpha)$ über K übereinstimmen.

Sei $f = \sum_{k=0}^{n} c_n X^n$ das Minimalpolynom von α über K, dann gilt

$$0 = \phi(0) = \phi(f(\alpha)) = \phi(\sum_{k=0}^{n} c_n \alpha^n) = \sum_{k=0}^{n} \phi(c_n) \phi(\alpha)^n = \sum_{k=0}^{n} c_n \phi(\alpha)^n = f(\phi(\alpha))$$

und damit teilt f das Minimalpolynom von $\phi(\alpha)$ (Satz 14.5.b). Das Minimalpolynom von $\phi(\alpha)$ ist aber irreduzibel (14.5.a) und damit müssen die beiden normierten Polynome übereinstimmen.

1.5 Aufgabe 5

Wir betrachen $q = X^9 - X \in \mathbb{F}_3[X]$. Es gilt

$$q = X(X^8 - 1) = X(X^4 - 1)(X^4 + 1) = X(X^2 - 1)(X^2 + 1)(X^4 + 1)$$

= $X(X - 1)(X + 1)(X^2 + 1)(X^4 + 1)$

Die Polynome X, X-1 und X+1 sind irreduzibel (das sind Polynome von Grad 1 nämlich immer), die Polynome X^2+1 und X^4+1 haben keine Nullstellen in \mathbb{F}_3 . Damit ist zumindest das erste Polynom irreduzibel (,weil sein Grad kleiner gleich 3 ist). Das Polynom X^4+1 lässt sich, wenn es reduzibel ist nur als Produkt von zwei Polynomen vom Grad 2 schreiben (diese sind dann automatisch irreduzibel, weil X^4+1 sonst eine Nullstelle hätte). Wir wählen den Ansatz $X^4+1=(X^2+aX+b)(X^2+cX+d)$. Man erhält hieraus $X^4+1=(X^2+X-1)(X^2-X-1)$.

Wir betrachten nun zwei Wahlen eines \mathbb{F}_3 -irreduzblen Grad zwei Polynoms p zur Dartellung von $\mathbb{F}_9 \cong \mathbb{F}_3/(p)$,

1. Sei $p = X^2 - X - 1$. Setze $\alpha := \overline{X} \in \mathbb{F}_3[X]/(p)$. Dann ist α ein Erzeuger von \mathbb{F}_9^{\times} :

$$\alpha^{2} = \alpha + 1$$

$$\alpha^{3} = \alpha^{2} + \alpha = 2\alpha + 1 = -\alpha + 1$$

$$\alpha^{4} = -\alpha^{2} + \alpha = -1$$

$$\alpha^{5} = -\alpha$$

$$\alpha^{6} = -\alpha^{2} = -\alpha - 1$$

$$\alpha^{7} = -\alpha^{2} - \alpha = \alpha - 1$$

$$\alpha^{8} = \alpha^{2} - \alpha = 1$$

Damit ist also $\mathbb{F}_3[X]/(p) = \{0, 1, \alpha, \alpha^2, \dots, \alpha^7\}$. Die Bahnen des Frobeniusautomorphimus $F: x \mapsto x^3$ sind (beachte $\alpha^8 = 1$):

$$\{0\},\{1\},\{2\},\{\alpha,\alpha^3\},\{\alpha^2,\alpha^6\},\{\alpha^5,\alpha^7\}$$

Wir rechnen nun

$$(X - \alpha)(X - \alpha^3) = X^2 - (\alpha + \alpha^3)X + \alpha^4 = X^2 + X - 1$$
$$(X - \alpha^2)(X - \alpha^6) = X^2 - (\alpha^2 + \alpha^6)X + \alpha^8 = X^2 + 1$$
$$(X - \alpha^5)(X - \alpha^7) = X^2 - (\alpha^5 + \alpha^7)X + \alpha^{12} = X^2 - X - 1$$

2. Sei $p = X^2 + 1$. Setze $\beta := \overline{X} \in \mathbb{F}_3[X]/(p)$. Dann ist $\beta^2 = -1$, also β kein Erzeuger von \mathbb{F}_9^{\times} , aber $1 + \beta$ ist einer: Die Folge der ersten acht Potenzen von $(1 + \beta)$ ist

$$1 + \beta, -\beta, 1 - \beta, 2, 2 - \beta, \beta, \beta - 1, 1$$

Die Bahnen des Frobeniushoms sind wieder die drei Elemente des Fixkörpers $\{0\}, \{1\}, \{2\}$ zusammen mit den drei Bahnen der Länge zwei, die den Nullstellenmengen der \mathbb{F}_3 -irreduziblen Grad zwei Polynome entsprechen:

$$\{\beta, -\beta\}, \{1+\beta, 1-\beta\}, \{2+\beta, 2-\beta\}.$$