Aufgabenblatt 5

Aufgabe 1. Sei $n \in \mathbb{N} \setminus \{0\}$ und P_n die Menge der Partitionen von n in aufsteigende Folgen $n_1 \leq n_2 \leq \dots$ mit $\sum_i n_i = n$ und $n_i \geq 1$ wie in Blatt 2, Aufgabe 2. Die Zahl k sei in der Partition p genau $c_k(p)$ mal enthalten (also $c_k(n_1, n_2, ...) := |\{i \mid n_i = k\}|.$) Zeige mit Hilfe der Klassenformel:

$$1 = \sum_{p \in P_n} \frac{1}{\prod_{k=1}^n c_k(p)! \cdot k^{c_k(p)}}.$$

(4 Punkte)

Aufgabe 2. Die Diedergruppe D_n kann als semidirektes Produkt $\mathbb{Z}/2 \ltimes \mathbb{Z}/n$ definiert werden, wobei die Wirkung $\mathbb{Z}/2 \to \operatorname{Aut}(\mathbb{Z}/n)$ durch die Relation $srs = r^{-1}$ auf den Standarderzeugern s:=(1,0) und r:=(0,1) festgelegt ist. (D_n ist gerade die Symmetriegruppe des regelmäßigen n-Ecks, s enspricht einer Spiegelung und reiner Rotation um $2\pi/n$ in $O(2) \cong \mathbb{Z}/2 \ltimes SO(2)$.)

Bestimme die Menge der Konjugationsklassen der Diedergruppe D_n für gerade n. (3 Punkte)

Aufgabe 3. Seien G eine endliche Gruppe, $A \subset B \subset G$ zwei Untergruppen, $N_G(A) := \{g \in G \mid gAg^{-1} = A\}$ der Normalisator von A in G und $Z_G(A) := \{g \in A\}$ $G \mid gag^{-1} = a \ \forall a \in A \}$ der Zentralisator von A in G. Zeige oder finde Gegenbeispiele zu den folgenden Aussagen: (Hinweis: Nur eine der sechs Aussagen ist immer richtig, für die Gegenbeispiele betrachte z.B. $G = S_3$.)

- (a) $N_G(A) \subset N_G(B)$

- (b) $N_G(A) \supset N_G(B)$
- (c) $Z_G(A) \subset Z_G(B)$ (e) $Z(A) \subset Z(B)$ (d) $Z_G(A) \supset Z_G(B)$ (f) $Z(A) \supset Z(B)$.

(4+2 Punkte)

Aufgabe 4. Sei G eine endliche Gruppe und $H \subset G$ eine Untergruppe vom Index n>1. Betrachte die von der Konjugation induzierte Wirkung von G auf der Menge $M := \{gHg^{-1} \mid g \in G\}$ der zu H konjugierten Untergruppen.

Zeige: Die Wirkung definiert eine Einbettung (d.h. einen injektiven Gruppenhomomorphismus) $G \hookrightarrow S_n$, falls G einfach ist, d.h. $\{1\}$ und G die einzigen Normalteiler von G sind.

(3 Punkte)

*Aufgabe. Sei $H \subset G$ vom Index n > 1 wie in Aufgabe 4. Zeige: H ist ein Normalteiler, falls n die kleinste |G| teilende Primzahl ist.

(+3 Punkte)