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Integrable System
Proper map X2n→ Bn on a symplectic manifold (X, ω) with

1. {Hi , Hj} = 0

2. H has only non-degenerate singularities.

⇓

Regular connected fibers = tori H−1(E) ∼= Rn/Zn labelled
locally by action coordinates I i

dIi(E) :=
∫

γi(E)
ω

unique up to Gl(n, Z) o Rn.
⇓

Z-affine structure on regular part of B := Ĥ(X).
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Non-degenerate singular fibers
Elliptic Lower dimensional Tn orbits:

x

Hyperbolic (In)stable manifolds of saddle points:

x

Focus-focus Instable equilibrium with S1-symmetry:

X
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Reconstruction (ZUNG, NGOC ’01)

Any integrable system can be reconstructed from its base
(B with Z-affine structure and singular stratification) up to

1. H1(B, Z1
B/ΛB) (w.r.t. some reference system)

2. Local fiber preserving symplectomorphism type near
focus-focus and hyperbolic fibers.

⇓

Any contractible B “determines" integrable system X(B).
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Examples

• X(B) toric (compact with only elliptic singularities)

⇐⇒ B Delzant polytope. CP2:
J

X

.
J

Ex

• Spherical pendulum:

• K3-surface: Glue 8 to S2.
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Complex toric manifold

Integral Delzant polytope B←→ C-projective manifold
X = proj coneZB equal to torus compactification

(C∗)n ↪→ CPk : x 7→ [xα1, ..., xαk], {α1, ..., αk} = B∩ Zn

Relation to X(B)?  Tn-equivariant diffeomorphism

X(B) ∼= X(B)
⇓

• Action coordinates = Legendre transform of polar
(C∗)n-coordinates I i = ∂f

∂ρi
, ω = ∂∂f .

• Integral points B∩Zn←→ weight space basis of H0(OX(B)(1)).
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Induced Quantization
⇒ H0(OX(k)) canonical Tn-representations with classical limit:

(2π~)n
∑

α∈∆∩~Zn δα

~→0wwnnnnnnnn

��

1
n!J∗ω

n

F

��

expξ|H0(X,OX( 1
~ ))

wwooooooo∫
X exp(iJ.ξ)ωn

n!

= +

ξ
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Induced Quantization
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(2π~)n
∑

α∈∆∩~Zn δα

~→0wwnnnnnnnn

��

(2π~)n
∑

p

∑
α∈conep(J)∩~Zn εpδα

wwnnnnnnn

F

��

1
n!J∗ω

n

F

��

(2π)n
∑

pεpdnα|conep(J)

��

expξ|H0(X,OX( 1
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xxrrrrrrrrr
(2π~)n

∑
p

exp(iJ(p).ξ)Q
j

“
1−exp(i~α

(p)
j .ξ)

”
xxrrrrrr

∫
X exp(iJ.ξ)ωn

n!

∑
p (2πi)n exp(iJ(p).ξ)Q

j α
(p)
j .ξ

= +

ξ
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Rational equivalence

Problem: No Rn-invariant C structure at focus-focus points.

1. Idea: Rational equivalence preserves representation space
 Symplectic analogue given by two types of blow up:

Problem: Both blow ups change symplectic volume.
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Hamilton-Hopf bifurcations

2. Idea: Symplectic volume preserved by cuts and

Hamilton-Hopf bifurcations :

L R

x x

• relates two blow ups

• results are toric

 need both bifurcations to keep monodromy information.
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C-analogue of bifurcations

View base as intersection complex {xy = 0} ⊂ CP3 and
perturb it to toric models (L), (R) or “both"
Xt := {xy+ t(zw+ z2) = 0}.

x

exp

w E

x

exp0

(0,E)

J

(0,0)

(0,1)

(1,−1)

(0,1)

(1,0)

(1,−1)

(0,0) (R)(L) x(1,0)

σ 1

σ 2

x

The two toric models coincide with the two bifurcations!
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C-analogue of integrable 4-manifolds

GROSS, SIEBERT: Any simple polyhedral decomposition of B
determines such locally toric smoothings up to
H1(B̌, i∗ΛB̌⊗Z C∗).

⇓

Lemma

Any compact integral 2-base B admits an integrable realization
X(B) and a polyhedral decomposition such that

Xt(B) ∼=C∞ X(B)

Moreover, if B is contractible:

Lemma

Xt is the result of Hamilton Hopf bifurcations determined by the
polyhedral decomposition to a toric manifold.
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Induced Quantization

Still bijection ~Z-points in B←→ base of H0
(
OXt(

1
~)

)
for all t.

 Quantize cut normalizers via BT and retraction Xt → X0.

Outlook:

• How does monodromy translate in these BT-families?

• Meaning of A∞ structure on the classical limit?
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