Quantization in the toric case

Quantization of monodromy

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Quantization of Integrable Systems with Monodromy

Michael Carl

Universität Freiburg

Geometry and Quantization 2007

Quantization in the toric case

Quantization of monodromy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Integrable Systems

Quantization in the toric case

Quantization of monodromy

Quantization in the toric case

Quantization of monodromy

Integrable Systems

Quantization in the toric case

Quantization of monodromy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantization of monodromy

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Integrable System

Proper map $X^{2n} \rightarrow B^n$ on a symplectic manifold (X, ω) with

- 1. $\{H_i, H_j\} = 0$
- 2. *H* has only non-degenerate singularities.

Regular connected fibers = tori $H^{-1}(E) \cong \mathbb{R}^n / \mathbb{Z}^n$ labelled locally by *action coordinates* I_i

$$dI_i(E) := \int_{\gamma_i(E)} \omega$$

unique up to $Gl(n,\mathbb{Z}) \rtimes \mathbb{R}^n$.

 \mathbb{Z} -affine structure on regular part of $B := \widehat{H}(X)$

Quantization of monodromy

Integrable System

Proper map $X^{2n} \rightarrow B^n$ on a symplectic manifold (X, ω) with

- 1. $\{H_i, H_j\} = 0$
- 2. *H* has only non-degenerate singularities.

Regular connected fibers = tori $H^{-1}(E) \cong \mathbb{R}^n / \mathbb{Z}^n$ labelled locally by *action coordinates* I_i

$$dI_i(E) := \int_{\gamma_i(E)} \omega$$

∜

unique up to $Gl(n,\mathbb{Z}) \rtimes \mathbb{R}^n$.

 \mathbb{Z} -affine structure on regular part of $B := \widehat{H(X)}$.

 \downarrow

Quantization of monodromy

ъ

Non-degenerate singular fibers

Elliptic Lower dimensional T^n orbits:

Hyperbolic (In)stable manifolds of saddle points:

Focus-focus Instable equilibrium with *S*¹-symmetry:

(日) (日) (日) (日) (日) (日) (日)

Reconstruction (ZUNG, NGOC '01)

Any integrable system can be reconstructed from its base (*B* with \mathbb{Z} -affine structure and singular stratification) up to

- 1. $H^1(B, Z^1_B/\Lambda_B)$ (w.r.t. some reference system)
- 2. Local fiber preserving symplectomorphism type near focus-focus and hyperbolic fibers.

∜

Any contractible *B* "determines" integrable system X(B).

Quantization of monodromy

Examples

- *X*(*B*) toric (compact with only elliptic singularities)
 - \iff *B* Delzant polytope. \mathbb{CP}^2 : *x*

Spherical pendulum:

Quantization in the toric case

Quantization of monodromy

Integrable Systems

Quantization in the toric case

Quantization of monodromy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantization in the toric case $0 \bullet 0$

Quantization of monodromy

(日) (日) (日) (日) (日) (日) (日)

Complex toric manifold

Integral Delzant polytope $B \longleftrightarrow \mathbb{C}$ -projective manifold $\mathfrak{X} = \operatorname{proj} \operatorname{cone}_{\mathbb{Z}} B$ equal to torus compactification

 $(\mathbb{C}^*)^n \hookrightarrow \mathbb{CP}^k : x \mapsto [x^{\alpha_1}, ..., x^{\alpha_k}], \qquad \{\alpha_1, ..., \alpha_k\} = B \cap \mathbb{Z}^n$

Relation to X(B)? \rightsquigarrow T^n -equivariant diffeomorphism

$$\mathfrak{X}(B) \cong X(B)$$
$$\Downarrow$$

• Action coordinates = Legendre transform of polar $(\mathbb{C}^*)^n$ -coordinates $I_i = \frac{\partial f}{\partial \rho_i}, \quad \omega = \partial \overline{\partial} f.$

• Integral points $B \cap \mathbb{Z}^n \longleftrightarrow$ weight space basis of $H^0(\mathcal{O}_{\mathfrak{X}(B)}(1))$.

Quantization in the toric case $\circ \circ \bullet$

Quantization of monodromy

Induced Quantization

 $\Rightarrow H^0(\mathcal{O}_{\mathfrak{X}}(k))$ canonical T^n -representations with classical limit:

Quantization in the toric case $\circ \circ \bullet$

Quantization of monodromy

Induced Quantization

 \Rightarrow $H^0(\mathcal{O}_{\mathfrak{X}}(k))$ canonical T^n -representations with classical limit:

Quantization in the toric case

Quantization of monodromy

Integrable Systems

Quantization in the toric case

Quantization of monodromy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantization of monodromy

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Rational equivalence

Problem: No \mathbb{R}^n -invariant \mathbb{C} structure at focus-focus points.

1. Idea: Rational equivalence preserves representation space → Symplectic analogue given by *two* types of blow up:

Problem: Both blow ups change symplectic volume.

Quantization in the toric case

Quantization of monodromy

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hamilton-Hopf bifurcations

2. Idea: Symplectic volume preserved by cuts and

Hamilton-Hopf bifurcations :

- relates two blow ups
- results are toric

~ need both bifurcations to keep monodromy information.

Quantization of monodromy

・ロン・(型)とくほどくほど

ъ

C-analogue of bifurcations

View base as intersection complex $\{xy = 0\} \subset \mathbb{CP}^3$ and perturb it to toric models (L), (R) or "both" $\mathfrak{X}_t := \{xy + t(zw + z^2) = 0\}.$

The two toric models coincide with the two bifurcations!

\mathbb{C} -analogue of integrable 4-manifolds

GROSS, SIEBERT: Any simple polyhedral decomposition of *B* determines such locally toric smoothings up to $H^1(\check{B}, i_*\Lambda_{\check{B}}\otimes_{\mathbb{Z}} \mathbb{C}^*).$

Lemma

Any compact integral 2-base B admits an integrable realization X(B) and a polyhedral decomposition such that

 $\mathfrak{X}_t(B)\cong_{C^\infty} X(B)$

Moreover, if B is contractible:

Lemma

 \mathfrak{X}_t is the result of Hamilton Hopf bifurcations determined by the polyhedral decomposition to a toric manifold.

Quantization in the toric case

Quantization of monodromy

(ロ) (同) (三) (三) (三) (三) (○) (○)

Induced Quantization

Still bijection $\hbar \mathbb{Z}$ -points in $B \leftrightarrow$ base of $H^0\left(\mathcal{O}_{\mathfrak{X}_t}(\frac{1}{\hbar})\right)$ for all t.

 \rightsquigarrow Quantize cut normalizers via BT and retraction $\mathfrak{X}_t \to \mathfrak{X}_0$.

Outlook:

- How does monodromy translate in these BT-families?
- Meaning of A_∞ structure on the classical limit?