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The first part of the talk will review the Gross-Siebert approach to mirror
symmetry. The second part will then provide an interpretation of this approach
in terms of tropical curve counting. This in turn allows us to construct the
mirror of a Fano manifold and attack the mirror symmetry conjectures.

1 Introduction to the Gross-Siebert approach to
mirror symmetry

The common slogan you have probably heard of is that the mirror of a Fano
manifold X ia a so called Landau-Ginzburg model, i.e. a non-compact manifold
X together with a holomorphic function. Mirror symmetry is then supposed
to exchange the complex and symplectic geometry of the Fano manifold and
its mirror, for instance the derived category of coherent sheaves on should be
equivalent to the derived category of vanishing cycles of W

Db(coh(X̌)) ∼ Db(Lagvc(W ))

In case of surfaces Lagvc(W ) is indeed a honest category whose objects are
vanishing cycles, viewed as Lagrangian submanifolds together with an order-
ing, morphisms are order preserving intersections of these vanishing cycles and
compositions are given by counting holomorphic triangles between three cycles.

Of course, the question arises: What is the mechanism behind such mirror
symmetry relations?

An explanation comes from the well-known SYZ conjecture: Namely, in
complement of anticanonical Divisor D, X̌\D and X should admit dual singular
torus fibrations. So we have two maps

X̌ \D
↘

B
↙

X

with same target B and the fibers over a general point in B are dual Lagrangian
tori.

So it remains to clarify the origin of the LG-potential W . W is supposed
to count pseudoholomorphic Maslov index 2 disks in X̌ with boundary on a
torus fiber. Such disks are precisely the obstruction to the definition of Floer
cohomology, so the set of critical points of the potential should consists of un-
obstructed tori (well-defined Floer cohomology given by counting disks between
two Lagrangians in a torus fiber).

Our aim is now to give an algebro-geometric construction of W by counting
tropical disks.
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We will do that in three steps:

X̌

I

��

(X, W )

B̌
II // B

III

OO

Step I: From complex to singular affine manifolds The essential point
here is that we not only consider a Fano manifold X but a degeneration X→ C
of it, such that the following holds:

1. First, the degenerate fiber X0 is union of toric varieties which intersect
in toric strata. It follows that there is an inclusion preserving one to one
correspondence between toric strata of the degenerate fiber and integral
convex polytopes. Namely, given a polytope σ, we can take its cone, then
we take the monoid ring of its integral points which is graded by the height
of the cone and apply the Proj construction:

Convex integral polytope in B ←→ Toric stratum in X0:
σ ←→ Proj C[cone σ ∩ Zn × N]

So the degenerate fiber determines a polyhedral complex as its intersection
complex and vice versa. For instance, a standard 2-simplex σ ⊂ R2 corre-
sponds to a projective plane P2 = Proj C[x, y, z] (where x, z, y are vertices
of σ × {1}, which generate the integral points in the cone R≤0(σ × {1})).
Hence the intersection complex(es) below

x

correspond to two projective planes intersecting in a projective line.

In particular, the two polytopes here provide two charts of our intersection
complex B, namely the two polytopes, but these do not cover B, as we
don’t have any chart around the interior (horizontal) line. As this is
precisely the singular locus of the degenerate fiber, such charts come from
additional information on the degenerating family. Namely:

2. Locally apart from a codimension 2 set, X → C is affine toric. That
means, that near a vertex v, there is a piecewise linear function such
that the local degeneration is given as follows: Take the cone spanned
by the graph of ϕ, this defines a monoidring such that its last coordi-
nate is identified with the deformation parameter. This is our local toric
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model of the degeneration at a zero stratum corresponding to the vertex v.
PL germ at v ∈ B[0] ←→ Affine toric model of X→ C at v:

ϕ ←→ C[t]→C[spanN{(m,ϕ(m))m∈Zn}], t 7→ z(0,1)

This provides indeed an integral chart at the vertices, hence apart from a
codimension two locus ∆, we have covered B by charts whose transition
maps lie in the integral affine group GL(n, Z)nZn. This is called a singular
integral affine structure.

Now, as integral affine manifold there are precisely two intersection com-
plexes which belong to a (simple) degeneration to two projective planes, namely
the toric one we considered a minute go and the other where one corner has been
smoothed in favor of a smooth boundary here. The price for this smoothing is
the appearance of monodromy.

x

Remember that we have constructed the integral affine manifold as inter-
section complex of (the degenrate fiber of) a degeneration of X, but we can
alternatively view it as the base of a singular torus fibration of the Fano mani-
fold X: Namely, the fibers over regular points are regular tori, while approach-
ing the boundary the tori collpase to lower dimensional tori (a circle and then a
point). The fiber over the singular locus is precisely a selfintersecting sphere, for
dimensional reasons drawn as pinched torus. Now if we degenerate the Fano,
this piched torus will collapse further to a circle such that we recover B as
intersection complex.

[Symplectically, the integral points are the integral periods of the symplectic
form w.r.t. the fibration.]

Step II: Legendre transform Now we come to the easy part of our diagram.
Namely, the central idea of the Gross-Siebert program is that

Mirror dual manifolds admit degenerations with
dual intersection complexes:

Example: Intersection complex of a projective degenerating into a complete
intersection of three projective planes and its dual:
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As cell complex, this is just the Poincare dual, for instance maximal cell σ
maps to a vertex σ̌. But in addition, this is a duality of integral affine

tructures: Remember that we have a PL function ϕ at each vertex which
encoded the local model of the degeneration near the corresponding 0-stratum
af the degenerate fiber. Now this PL function encodes precisely the polytope

of the dual intersection complex by a discrete Legendre Transform:
ϕ(x) = sup 〈σ, x〉 for ϕ ∈ PLB,σ̌

In particular, if the boundary of our intersection complex was an affine
geodesic, the dual unbounded rays will be all parallel, hence the integral affine
structure is obtained by cutting out the grey triangles and identifying the cut
faces along the invariant direction.

Step III: From singular affine to complex manifolds We are now row
ready for our third step, namely: How to reconstruct X→ C from B?

The problem is that the local toric models Spec Rϕ → Spec C[t] of X→C
only glue canonically if the integral affine structure of B has no singular locus
∆, hence there is no monodromy.

[Example: Due to monodromy, have two local models at the right vertex of
the following intersection complex, namely xy = t versus xy = wt:]

x

y

x w

y

x

w

The conjectural solution proposed by physicists is that pseudoholomorphic
disks should define walls such that crossing a wall leads to automorphisms of
the local models. What we will do now is replacing the disks by tropical disks
that emanate from ∆ as indicated in the following picture:

x

x

x

This will then indeed recover the Gross-Siebert algorithm.
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2 Construction of Fano mirror duals by count-
ing tropical disks

Virtual tropical disks Let B be an integral affine manifold with singular
locus ∆.

Definition 1. A virtual tropical disk is an immersed weighted tree h : Γ →
B \∆, one example drawn in red below. From this example you can extract the
following four properties:

1. First, each edge maps onto an integral affine line in B

2. Setting al weights to 1, the primitive tangent vectors at an internal vertex
sum up to zero,

3. The bounded Leaves emanate from ”general small perturbations” of ∆
in the monodromy invariant direction. You should think of this distance
as infinitesimally small, so technecically work in the tangent space, and
”general” means that the perturbations of the singular points here lie in
a certain complement on a nowhere dense subset of codim 1.

4. Finally, unbounded leaves map onto asymptotic rays, and their weighted
nmber is called half the Maslov index.

Example:
x x

x

x

x

The intuition behind these definitions is again given by torus fibrations: If
you consider a cycle in a torus fiber, then in order to contract it and hence to
sweep out a disk, it has to desintegrate into vanishing cycles of the singularities,
so either to a pinched torus (which corresponds to a bounded leaf) or smaller tori
(unbounded leaf), while balancing means that the cycle classes over an interior
vertex match to form a pair of pants. The attribute ”virtual” refers to pulling
apart the bounded leaves in order to distinguish different intersection types with
the singular fiber. The number of ounbounded leaves then corresponds to the
intersection number with the anticanonical divisor, hence half the Maslov index.

x

x

x
x

x
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• The moduli space of such virtual disks has a natural stratification by
type, which is what remains of the disk if you forget about the length
of the immersed edges, so keep only the graph and the local embedding
at each internal vertex, i.e. the tangent vectors for each vertex parallel
transported to the root.

For instance, if an edge contracts, then you change to a lower dimensional
stratum.

• A virtual disk h is general if ”a small deformation of the leaves lifts to a
deformation of h preserving its type”.

For instance, the disks below are not stable, as a 4-valent vertex can be
deformed into two 3-valent ones, or such a 3-valent disk does no longer
exist if we move one of the leaves away from the drawing plane..

∆

The central property of general strata is now that they are of the expected
dimension, namely the dimension of B plus half the Maslov index minus 1.

In particular this implies that if we fix the root we can count (types of)
general virtual disks of Maslov index≤ 2. We will count with virtual multiplicity,
defined e.g. for dim B = 2 by the rational number

mult(h) :=
1

Aut(h)

∏
V ∈Γ[0]

{
(−1)|mV |

|mV |2 V a leaf vertex of weight |mV |
|mV ∧m′

V | V is trivalent

Construction of X Now come to our central definition: Namely, we can
define the counting function in the formal completion of our local toric models
by interpretating the coefficient of a monomial with exponents (m, k, ) as the
number of general virtual Maslov index zero disks with root tangent vector m
and area k, where the area is defined as the total change in the ϕ slope along
the disk

log fx =
∑

(m,k)

#{h ∈Mgeneral
0 | m tangent vector of h at x, k = area(h)}|m|z(m,k)

This function of course depends on the position of the root, so we get a map
B → Rϕ/(tk), x 7→ log fx, As the moduli space of index zero disks with arbirary
root had dimension equal to the dimension of B -1, the counting function is
trivial except on polyhedral subsets of codimension one, wich are our walls.

Theorem 1 (Conjecture for dim B ≥ 3). The theorem is now that these walls
refine the cell decomposition of B. Crossing a wall ρ leads to an automorphism
of (a certian localization of) the local toric model Rϕ/(tk) of our degeneration
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which is given simply by multiplying a monomial with the exponential of the
counting function, but to the power of the exponenent projected to the primitive
conormal vector of the wall:

z(m,k) 7→ z(m,k)f
〈ρ⊥,m〉
ρ,x

The claim now is that these wall crossing automorphisms give rise to consistent
gluings of the local models such that we get a formal scheme over Spec C[t],
and this recovers in fact the Gross-Siebert degeneration X→ Spec C[[t]].

Construction of the LG-potential W Similarily, we can now define the
local LG-potential W ∈ Rϕ by counting virtual general Maslov index 2 disks:

W :=
∑

(m,k)

#{h ∈Mgeneral
2 | m root tangent vector of h, k = area(h)}z(m,k)

As our degenerations were constructed by counting zero disks and zero disks
are just the legs of Maslov index two disks, it is no astonishing that this function
behaves well under wall crossing, i.e. defines a function on our degeneration X:

Theorem 2. W ∈ O(X) (that is, W behaves consistently under wall crossing).

For example, if we take the toric mirror of the projectve plane, the LG-
potential defined by counting Maslov index 2 disk is just the usual Hori-Vafa
mirror: Namely, 2-disks correspond to the generators of the rays of the normal
fan. W = x + y + z ∈ C[x,y,z]/(xyz−t)

The same is still true for the non-toric mirror of the projective plane, but here
the expression holds only on the interior cell corresponding to an open subset of
the total space, and gluing in the other pieces corresponds to a compactification
of the fibers of the potential, i.e. a properification.

x

x

x

Properties of the potential W

1. (LG-CY-correspondence) W is proper
⇐ : ∂B̌ is an affine submanifold
⇐ : ∂B̌ is the intersection complex of a degeneration of a
smooth Calabi-Yau divisor D ⊂ X̌.

Note that this is not the case for the Hori-Vafa mirror, where the boundary
divisor is an intersection of toric varieties and in particular not a smooth
Calabi-Yau.
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2. Moreover, if in addition our Fano manifold is a toric surface and the bound-
ary divisor ample, then the intersection complex is unique, for instance
the proper version of the mirror of the projective plane is precisely the
picture we’ve seen so many times:

P2-degeneration ←→ B =

x

x

x

3. (Mirror symmetry) Last but not least, if X̌ is a Fano surface Db(coh(X)) ∼
Db(Lagvc(W )).

[In fact, parts of this equivalence can be seen directly from our integral
affine manifolds: Namely, we can perform a hyperKähler rotation such
that the torus fibration over B becomes the Lefshetz fibration of the LG-
potential, and simple Maslov index zero disks in the dual base correspond
to Lagrangian vanishing cycles of W , hence we can directly read of inter-
section numbers from the dual intersection complex. Then we get a quiver
which corresponds to the tilting object Oe1 ⊕ T (−1)e2 ⊕ O(1)e3 ⊕i>3

O(pi)ei in Db(P̃2) as in Auroux-Katzarkov-Orlov...]
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