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The configuration space of a rigid body. A rigid body is a Borel-mesure m
on the euklidean R3 with compact connected support assigning to any Borel-set
in R3 its mass. Its configuration space Q is the affine group of its rotations and
translations

Q := {q(g, b) : x 7→ gx + b, x ∈ R3 | g ∈ SO(R3), b ∈ R3} ∼= SO(3) o R3

equipped with the invariant metric 〈., .〉 induced by kinetic energy

L : TQ → R : L(q, q̇) = 1
2

∫
|q̇(x)|2dm(x) =: 1

2 < q̇, q̇ > .

So Q, viewed as SO(3)-bundle, carries a natural connection given by the orthogonal
complement to the vertical distribution. It consists of states of vanishing angular
momentum µ := I−1α, where α denotes the corresponding connection form and
I :=Q∗ 〈., .〉 the inertia as in appendix .

More explicite we may identify the Liealgebra of SO(3) with (R3,×) via the
Hodge-isomorphism ? which maps an ω ∈ R3 to the generator of a rotation around
ω of angle |ω|. Then by (7) and (6) µ becomes the usual expression

(1) ωt.µ(q, q̇) = 〈ωQ(q), q̇〉 =
∫

ω × q.q̇ dm = ωt.

∫
q × q̇ dm.

Note that two rigid bodies m1,m1 produce the same metric and hence connection
on Q if their masses mi(R3), their center of masses ci :=

∫
xdmi(x) and their basic

inertias Ii(id) ∈ (R3 ⊗ R3)∗ coincide. Indeed, in the identification Θ : TSO(3) ∼=
SO(3)× R3 via left translation ġ 7→ ?ġg−1 L decomposes as

2L(ġ, ḃ) = I(id)(⊗2g−1Θ(ġ)) + |ḃ|2m(R3) + 2ḃt.ġc.

In this case we call the bodies equivalent m1 ∼ m2.

The configuration space of the falling cat. We now model the falling cat by
decomposing it into two rigid bodies m1,m2 (c. figure above), the front and the
back half, which are mirror symetric up to equivalence

m1 ∼ m2 ◦ σ

with respect to a mirror σ ∈ W . Here W denotes the manifold of mirrors, i.e.
orthogonal transformations W ⊂ O(3) having eigenvalues (−1, 1, 1), canonically
diffeomorphic to the projetive space of mirror axes P 2R by

∨ : W → P 2R : σ∨ = ker(σ + idR3).

The cat’s configuration space C is then defined as the cartesian product Q×Q
of the body half’s configurations spaces restricted by the following conditions:
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(1) The total center of mass is fixed q1(c1) + q2(c2) = 0. This assumption is
justified since any closed system in a homogenous exterior gravitation field
splits into the dynamics of the center of mass and kinetic energy in the
fixed center of mass system, and we are only interested in the latter.

(2) The bodies are joined, i.e. q1(0) = q2(0) for all qi ∈ Q.
(3) The body half’s configurations are mirror symmetric with respect to any

mirror σ(q1, q2) ∈ W , i.e. q1 = σ(q1, q2)q2. This condition avoids anatomi-
cally impossible twists of the cat.

The first two conditions determine the translational parts once the positions gi ∈
SO(3) are given, more explicite

i : SO(3)2 → Q×Q : i(g1, g2) = (g1, b; g2,−b), b = 1
2 (g2c2 − g1c1)

definines an imbedding whose image im i is Q2 restricted by conditions 1 and 2.
The embedding i is equivariant with respect to the diagonal action of SO(3) repre-
senting rigid rotations of the cat. Since this action is free and proper, im i becomes
a principial SO(3)-bundle whose orbits SO(3)(g1, g2) = SO(3)(e, g−1

1 g2) can be
represented by the ”configuration difference” g−1

1 g2 corresponding to the positions
of the second half in the reference system of the first.

We now take care of the remaining no twist condition which we may write as

C = { i(g, σgσ) ∈ Q | g ∈ SO(3), σ ∈ W ⊂ O(3)} .

The condition is well defined in the sense that it forbids twists but not rigid ro-
tations: Indeed, SO(3) continues to act freely and properly on C, but the base is
reduced to the projective plane of mirror axes:

π(C) = {g−1σgσ|g ∈ SO(3), σ ∈ W} = Wσ = W.

The configurations with fixed mirror σ(q1, q2) = σ for all (q1, q2) ∈ C form a
subbundle

Cσ := {i(g, σgσ)|g ∈ SO(3)}

of C whose structure group is the normalizer N(Tσ) of rotations around the mirror
axis Tσ := exp ker(σ + id). So we may regard the base as the homogenous space
SO(3)/SO(3)σ = SO(3)/N(Tσ) = R2P . This is just the Hopf fibration SO(3) 7→
SO(3)/T = S2 followed by an identification of the antipodals since the Weyl group
N(Tσ)/Tσ acts as reflection along the mirror axis. Thereby we have proved:

Lemma 1. The mirror fixed configurations Cσ form a reduced O(2)-bundle of C
isomorphic to the Z2 quotient of the Hopf bundle S3 → S2, where O(2) is the
restriction of the normalizer N(Tσ) of rigid rotations around the mirror axis T :=
expσ∨ to the mirror plane, and the Weyl group N(T )/T acts as permutation of the
alcoves.

S3 /S1

−−−−→ S2

/Z2

y /Z2

y
SO(3)

/N(T )−−−−→ P 2R
�
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Reorientation of the cat. The induced metric on C (corresponding to total
kinetic energy) remains invariant under rigid rotations. The corresponding natural
connection hTQ = kerTπ⊥ consists of states of vanishing total angular momentum

hTQ = kerµ, µ := µ1 + µ2.

Since by isotropy of the system J and hence µ is Noether conserved, the connection
contains the possible states of the cat in free fall without initial angular momentum.
We are intersted in the holonomy of the connection, i.e. loops in the base leading
to a global rotation of the initial configuration.

Now any tangent vector TpC for p ∈ Cσ may decomposed into one respecting
the initial mirror and a rigid rotation not respecting it, i.e.

TpC = TpCσ + (ker σ − 1)C(p).

The latter are clearly forbidden by the horizontal condition m = 0, wheras restricted
to TCσ the connection form α becomes

α = α1 + σ∗α1 = (1− σ)α.

Indeed, we have σ∗µ1 = −σµ2 by (1) since σ is an anti-automorphism of the
Liealgebra (R3,×) and the body halfs are mirror symetric up to equivalence m1 ∼
m2 ◦ σ. But 1

2 (1 − σ) is the orthogonal projector on the mirror axix σ∨, so the
curvature only takes values in σ∨, i.e. the holonomy bundle lies in Cσ and the
connection is reducible to Cσ.

Theorem 1. The mirror fixed bundle Cσ forms the no twist configurations acces-
sible by the free falling cat without initial angular momentum.

Proof: It remains to show that every holonomy can be realized. The induced
connection on Cσ lifts to a connection on the universal covering Hopf bundle, and
here we have:

Lemma 2. The Hopf bundle S3 7→ S2 is geodesical complete in the subRiemann
sense with respect to any connection, i.e. any two points in S3 can be joint by a
horizontal curve with minimal energy.

By the lifting property it is enough to show that every holonomy can be realized
by a sub-Riemannian geodesic. The Hopf bundle is simply connected but not trivial
(the 2-dim homology of a section idS2 : S2 s→ S3 π→ S2 yields the contradiction

idZ : Z H2(s)→ 0
H2(π)→ Z) so it does not admit a flat connection, i.e. Ω 6= 0. This

implies a non trivial holonomy group by the Gauß-Bonnet formula, so hol = S1.
Now by the Arzela Ascoli theorem any sequence of loops realizing a given holonomy
with decreasing length (and so energy) converges. �
Reorientation schemes. A holonomy in the non trivial component of the struc-
ture group O(2) corresponds the non-trivial class of the fundamental group π1(P 2R) =
Z2 of the base. Its holonomy includes a reflection and therefore corresponds to a
selfintersection of the cat, i.e. a penetration of the body halfs. So we have the
following reorientation schemes:
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Reorientation with (left) and without (right) selfintersection
Now for the contractible loops c =∈ [0] ∈ π1(S) the structure group is abelian,
hence we have the Gauß-Bonnet formula (3) for the holonomy = reorientation.

Optimal Reorientation in the spherical case. We now calculate the sub Riemannian
geodesics representing optimal reorientation, i.e. horizontal lifts of loops minimizing
the kinetic energy when the holonomy is fixed, in the following special case: First
note that the connection on Qσ is independent of the initial center of mass positions,
so we set ci = 0. We further suppose that the basic inertias Ii(id) = I are isotropic.
Together, kinetic energy of the Cσ becomes twice the pullback of I by the Cartan
form L = 2Θ∗I coinciding up to scaling with the Killing metric on SO(3), hence
geodesics are 1-parameter subgroups and by invariance of the Killing form the
natural connection will be invariant. So it coincides with the Levi Cevita connection
and the bundle and its projection have constant sectional curvature. It follows that
the sub Riemannia geodesics are horizontal lifts of circles by the following

Theorem 2. Let P be the bundle of orthonormal frames over a Riemannian man-
ifold of constant sectional curvature with respect to the Levi Cevita connection on
P . Then the sub Riemannian geodesics are horizontal lifts of curves with constant
curvatures.

Proof after [Mon90]: The curve’s curvatures are functions depending pointwise
on

〈
x(j), x(i)

〉
, x(j) denoting the j’th (covariant) derivative along x ∈ Ω(S). By

constant sectional curvature K, the Yang Mills equations (9) become x(2) = Ke · ẋ
and ∇ẋe = 0. Since e is skew,

〈
x(j), x(i)

〉
= 0 if j − i ∈ 2Z and ∇ẋ

〈
x(j), x(i)

〉
= 0

otherwise. �
Finally, the horizontal geodesics in Cσ are exactly the self-intersection loops

t 7→ (exp(tω), σ exp(tω)) for a ω ∈ ker(σ−1) showing that the cat can’t reorientate
itself passively.

Appendix

Local geometry of G-bundles with connection. This section collects facts
from [KN64] relevant for the falling cat.

Let G be a Lie group acting freely and properly from the left on a manifold Q

such that the orbitspace S := Q/G is itself a manifold, Q
πS→ S is then called a
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principal G-bundle over S. Local sections si : Ui → π−1(Ui) : πsi = idUi
of π then

define local trivialisations

hi : π−1(Ui) → Ui ×G : h−1
i (x, g) := sig.

Therefore the bundle is trivial iff it admits a global section. Two such local sections
si, sj differ by a gauge-transformation si/sj ∈ Ui ∩Uj → G which we may consider
as Check-1-cocycles in the sheaf GS of local G-valued functions on S, in fact the
isomorphism classes of G-bundles are easily shown to be given by Ȟ1(S, GS).
Definition of a connection. A connection on Q is a smooth G-invariant distribu-
tion hTQ transversal to the vertical = fibertangential one given by kerTπS . It is
equivalently characterised by a connection form defined as Ad-equivariant g-valued
1-form α rightinverse to the infinitesimal action Q : g → Γ(TQ), i.e. g∗α = Adg.α
and α.ξQ = ξ. The correspondence is the given by hTQ = kerα and we may ex-
press the projection h ∈ Γ End(TQ) on the horizontal distribution as h := id − v,
v.X(q) = (α.X)Q(q).
Parallel transport. A fundamental property of the connection is that any curve
c : [0, 1] → S in the base has a unique horizontal lift once a lift of the start point is
given, i.e. the path lifting map

̂ : {qc ∈ Q× Ω(S) | c(0) = π(q)} → {ĉ ∈ Ω(Q) | α(˙̂c) = 0}

is bijektive. Explicitely q̂c is given by c = g · d where d is any lift πd = c starting
in q and g satisfies

(2) ġg−1 = −α.ḋ

with g(0) = 1. The lifting map defines a parallel transport of fibers

|| : (Ω(S, x0, x1), ?) → Iso(Gx0 , Gx1) : ||cq = q̂c(1).

In particular it gives an action of the loop group Ω(S, x) with basepoint x on the
fiber over x commuting with the G-action. One thus gets a homomorphism of
Ω(S, x) in the holonomy groups Holq of the ”‘differences” gc : ||cq = gcq between
start- end endpoint of the lift q̂c. The connectivity of points by horizontal curves in
fact partitions Q in (isomorphic) holnomy-bundles [q] which are principal bundles
over S with reduced structure group Holq.
Local Gauß-Bonnet-formula. Suppose now G is abelian. Then by (2) and Stokes
theorem we get an explicite local holonomy formula as analogon of the local Gauss-
Bonnet-formula:

(3) gc = exp
∫

int(c)

s∗Ω.

Here Ω denotes the curvature defined as covariant derivative dα := h∗d of α, and s
a local section whose domain contains a surface int(c) with border c. Thus we may
interpretate the curvature as infinitesimal holonomy

(4) s∗Ω(∂if |0, ∂jf |0) = lim
ε→0

g∂f([0,ε]2)

ε2
.

if f : R2 → S is an embedding. It immediately follows that holq is the image of Ω
restricted to [q] (theorem of Ambrose und Singer).
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Induced transport in associated bundles. If G operates from the right on any man-
ifold F one defines the associated F -bundle Q ×G F as quotient of Q × F by the
diagonal action g · (q, v) = (gq, vg). Then by

(5) G · (q, v) = G · (q, w) ⇐⇒ ∃g : (q, v) = g · (q, w) ⇐⇒ v = w

any q ∈ Q defines a G-diffeomorphism of F in the fiber over π(q) of the associated
bundle, denoted by v 7→ qv. Local sections of Q thus induce local sections of
Q×G F , and we may identify the latter with equivariant maps Q → F . Moreover,
parallel transport on Q induces one in the associated bundle by ||cv := ĉ1ĉ

−1
0 v. In

particular, if F is a vector space and X ∈ Γ(c∗E) a vector field, one defines its
covariant derivative in direction of ċ(0) as

∇ċ(0)X := lim
t→0

bc0bc−1
t X(ct)−X(c0)

t = ĉ0 lim
t→0

bc−1
t X(ct)−bc−1

0 X(c0)
t = Lḃc0

(ĉ−1X(c)).

In particular, we now may express the curvature Ω, considered as Q ×G g-valued
2-form F on S, in the usual form

F (X, Y ) = [∇X ,∇Y ]−∇[X,Y ].

Riemannian G-bundles.

The natural connection on Riemannian G-bundles. Let Q be a principal G-bundle
over S and J : T ∗Q → g∗ be the associated momentum map defined as the pointwise
dual map of the infinitesimal G-action Q : g 7→ Γ(TQ), i.e.

(6) p.ξQ = J(p).ξ

for all p ∈ Γ(T ∗Q).
Then any G-invariant metric 〈., 〉 on Q induces a natural connection on Q given

by the orthogonal complement to the vertical distribution ker TπS . Its connection
form α ∈ g⊗ Γ(TQ) is given by the composition

(7) TqQ
〈.,.〉 // T ∗q Q J // g∗

I−1(q) // g

where the inertia I ∈ g⊗g⊗C∞(Q) is defined by I(ξ, η) = 〈ξQ, ηQ〉. In particular we
may identify the connection with the coisotropic submanifold kerJ of T ∗Q whose
symplectic reduction kerJ/G is T ∗S.

Geodesics and Reduction. This section simply summarizes [Mon90] The geodesic
flow on T ∗Q is the Hamiltonian flow of the quadratic form H(pq) = 1

2 ||pg||2 (kinetic
energy) associated to <,> . Geodesic orbits t 7→ φXH

t (q, p) in Q with same
projected start conditions in TS, so coinciding projections to S, differ from each
other by multiplication with a 1-parameter subgroup in G

φXH
t (qg, p1) = φXH

t (q, p2)g exp(t(p2 − p1)[)

according to the product rule. However, the projection is geodesic (in the induced
metric so that πQ Riemann submersion) if and only if its horizontal lifts are.

Now decompose kinetic energy in vertical and horizontal components with re-
spect to the natural connection:

Hv(pq) = 1
2 ||v

∗pq||2 = 1
2I−1(J(pq), J(pq))

Hh(pq) = 1
2 ||h

∗pq||2 = 1
2 ||pq − J(pq)α(p)||2 = H −Hv

where h, v ∈ Γ End(TQ) denote the orthogonal projectors on the horizontal resp.
vertical distribution. Since Hv clearly drops out under symplectic reduction, the
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reduced geodesic flow π ◦ φXH is independent of the vertical energy resp. the
vertical fibermetric v∗ <,>. So the projected flows of H and Hh are identical and
its projected orbits c ∈ Ω(S, x0, x1) are equivalently caracterized as follows:

(1) c is projection of a geodesic in Q.
(2) c is projection2 of an orbit of Hh. Hh drops to H(pq, ν) = ||pq||2g/G+||ν||2I/G

in a local trivialisation G·µ×T ∗U of the reduced bundle (G·µ)(π∗T ∗S) with
its magnetic symplectic form given above. The corresponding Hamiltonian
equations are equivalent to

(3) c is the projection of a Hh-Orbit.
(4) ĉ is sub Riemannian geodesic, i.e. has stationary lenth within the hori-

zontal pathes joining given points in the holonomy bundle. This may be
reformulated as variational problem on the path manifold Ω(Q, p, q) with
horizontal path constraint γ∗α = 0, i.e. stationarity of

Sµ∈Ω(g∗) : Ω(Q, p, q) → R : (γ, µ) 7→
∫
||hγ̇||dt +

∫
µ.γ∗α

where µ is the Lagrange multiplier. First decompose a variational vector
field (tangential vector of the path mfd) into vertical and horizontal com-
ponent. The vertical generates the variation γε(t) := γ(t) exp(εξ(t)), ξ ∈
Ω(g, e, e) so using γ∗α = 0 we get by the product rule: d

dε

∣∣
0
S(γε, µ) =∫

µ.ξ̇ = −
∫

µ̇.ξ. Thereforee stationarity yields the conservation law µ =
const that we may interpretate as conservation of charge

(8)
dαe

dt
= 0; e := G · (γ, µ) ∈ Ω(Q×G g∗)

Now we consider horizontal variational fields H ⊂ TΩ(Q, p, q). Then
the variation of the first S-summand is equivalent to that of the usual
geodesic lagrangian X 7→ −

∫
||ċ||−1 < ∇ċċ, X > dt, and the variation of

the Lagrange multiplier term is given by X 7→
∫

LXγ∗α =
∫

γ∗(i(X)dα) =∫
Ω(X, γ̇). So the S-stationarity with respect to H drops entirely to Euler-

Lagrange-Equation on orbitspace: 0 = e.i(ċ)F − ||ċ||−1∇ċċ
[, where F is

the Q ×G g-valued 2-form induced by Ω. This implies ||ċ|| = const, so by
rescaling e 7→ ||ċ||e we get the Lorentz-Yang-Mills force law:

(9) ∇ċċ = e.(i(ċ)F )].

(5) c has stationary length in the subset of pathes with given fixed parallel
translation {γ ∈ Ω(S, x0, x1) | ||γ = const ∈ Aut(π−1(x0), π−1(x1))}.
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