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1 Introduction

1.1 Summary and results. In this thesis, we give several results on algebraic aspects
of multiple g-zeta values. We assume that the reader is familiar with multiple zeta values;
an overview is given in Appendix [B] To integers s; > 1, sa,...,5 > 0 and polynomials
Ry € tQ[t], Ra,...,R; € Q[t], associate the generic multiple g-zeta value

Ri(q™) Ri(q™)
SR, R = .
Cq(81 K ' l) n1>~§m>0 (1 - qn1)s1 (1 - qm)sl © @HQH

Generic multiple g-zeta values are g-analogs of multiple zeta values (Proposition [2.2).
Moreover, the product of any two generic multiple g-zeta values is a Q-linear combination
of generic multiple g-zeta values.

Definition 1.1. The algebra of multiple g-zeta values is the subalgebra of Q[[¢]] given by
Zq = span(@{(q(sl, vy Sl;Rl, ...,Rl) | l Z O, S1 Z 1, 89, ..., 8] 2 O,deg(Rj) S Sj},
where we set (;(0;0) = 1.

The additional requirement on the degree of the polynomials is justified by the relation
of Z, and polynomial functions on partitions ([BI22], Proposition [2.8)). In particular, one
obtains nice spanning sets of Z, invariant under some involution.

The space Z, is central to this thesis. H. Bachmann and U. Kiihn proposed several con-
jectures about the algebraic structure of Z, in [BK20], in particular, they conjectured
that Z, is a free polynomial algebra. In this work, we will give an algebraic approach to
these conjectures. A model of multiple g-zeta values is given by a particular assumption
on the polynomials R; (usually these particular polynomials form a basis of Q[t]). Various
well-studied models of multiple g-zeta values are contained in Z,, an overview is given in
[BK20] and [Br21]. The space Z, also occurs in enumerative geometry. More precisely,
A. Okounkov conjectured that certain generating series of Chern characters on Hilbert
schemes of points are always contained in the space Z, (JOk14], [Qi18]).

Traditionally models of multiple g-zeta values focus on a g-analog of the shuffie product
or the stuffle product obtained for multiple zeta values but do not combine them. So
usually, it is difficult to describe a g-analog of the double shuffle relations. In rather recent
articles on multiple q-zeta values by H. Bachmann ([Bal9]) and by K. Ebrahimi-Fard, D.
Manchon, and J. Singer (JEMS16]) the focus changed to obtaining a product formula and
some invariance under an involution, from which one easily derives a g-analog of the dou-
ble shuffle relations. In joint work with H. Bachmann ([BB22]), we constructed the first
model for multiple g-zeta values, which seems to satisfy a weight-graded product formula
and invariance under some weight-homogeneous involution. Finally, the quasi-modular
forms (with rational coefficients) expressed in their g-series expansion are contained in the
algebra Z,, in the following, we will identify the algebra M©(SLs(Z)) of the quasi-modular
forms with rational coefficients with its image in Z,.

We introduce a spanning set of Z, consisting of the balanced multiple g-zeta values
Co(s1,...,81), s1 > 1, s2,...,5 > 0 (Definition . The classical Eisenstein series
and their derivatives are particular examples of balanced multiple g-zeta values. One ad-
vantage of this model is that it gives an explicit description of a conjectural weight-grading
on the algebra Z,, which extends the grading of the algebra M®P(SLy(Z)). Moreover, the
balanced multiple g-zeta values satisfy a product formula, which can be seen as a bal-
anced combination of the shuffle and stuffle product obtained for the multiple zeta values



(cf (4.6.1))), and satisfy linear relations coming from a particular simple involution.

We study the algebraic structure of Z, and its relation to the space Z of multiple zeta
values (see Appendix with the help of the balanced multiple g-zeta values. Their re-
lations can be described in terms of a graded Hopf algebra, this leads to the definition of
the algebra ZCJ; of formal multiple g-zeta values (Definition . In particular, we have a
surjective algebra morphism Zg — 24, which is expected to be an isomorphism. We will
see that the algebra Z({ represents an affine schemeﬂ BM (Theorem , which contains
the affine group scheme DM introduced by G. Racinet in [Rac00] for multiple zeta values
(Theorem . This leads to a surjective algebra morphism Z({ — 2§ (Corollary .

We introduce the corresponding linearized space bmg to BMg, which contains the double
shuffle Lie algebra dmg (Theorem . We will obtain a g-twisted Magnus Lie alge-
bra (mq,{—, —}4) (Theorem [3.20)), which can be seen as a generalization of the twisted
Magnus Lie algebra (mt,{—,—}) ([Rac00, Chapter II, 2.2]). The space mq contains
the linearized space bmg and we conjecture that the g-lhara bracket {—,—}, also pre-
serves the space bmgy. In particular, there should be an injective Lie algebra morphism
(omg, {—, —}) — (bmg,{—, —}4). Moreover, we expect that bmg is dual to the Lie coal-

, where the elements ¢/ (k) for k > 2
RABREA) (k) for k=

even should be seen as a formal analog of the classical Eisenstein series of weight k. In
particular, we expect a decomposition

. =z
ebra of indecomposables of <¢
g p / ( C ({ (2)

2l ~ MU(SLy(2)) @ U(bmg)" .

Finally, since we expect an isomorphism Z{ ~ Z,, this gives evidence for Z, being a free
polynomial algebra. A proof for the similar result for the algebra Z7 of formal multiple
zeta values is one of the main results in the thesis of G. Racinet ([Rac00]) and he attributes
this result to Ecalle.

Particular subsets of the balanced multiple g-zeta values or the bi-brackets should give
much smaller spanning sets of Z,. More precisely, Bachmann and Kiihn ([BK20]) com-
puted some evidence for the following equalities

Z, = spang {(y(k1, ..., ka) | k1,..., ka > 1} = spang {g(k1,..., ka) | kj € {1,2,3}}.

A result towards the first equality is given in Section @ Some speculations that Z, equals
the latter space are given in the outlook.

1.2 The algebraic structure of Z,. The space Z, is an algebra for the usual multi-
plication of power series (Proposition . In contrast to the algebra Z of multiple zeta
values, where the multiple zeta values itself can be used to obtain a nice description of the
homogeneous subspaces and (conjecturally all) relations in Z, there is not such a canonical
choice for a spanning set of Z,. So we obtain different expressions of the product in Z,
for each choice of a spanning set. Typically, these product expressions can be described as
quasi-shuffle products on some non-commutative algebras (as defined by M. Hoffman in
[Hof00]). Moreover, a spanning set of Z, usually satisfies a second set of relations defined
by some involution. More explicitly, let A be a countable alphabet and Q(A) the free
algebra over QQ generated by the alphabet A (possibly with some restrictions for the first
and last letter of each word). Denote by 1 the empty word. Then for any commutative

'nspired by the notation DM for “double mélange” ([Rac00]), we use BM for ”balanced mélange”



and associative product ¢ on Q.A, the corresponding quasi-shuffle product *, on Q(A) is
recursively defined by 1 %, w = w %, 1 = w and

au x bv = a(u *, bv) + blau %, v) + (a o b)(u *, v)

for all u,v,w € Q(A) and a,b € A. An important example in this work is the balanced
quasi-shuffle product #,, which is defined on the non-commutative algebra Q(B) generated
by the alphabet B = {bg, b1, b2, ...} and corresponds to

biv; iti,j>1,
bioqu:{o ! e : (1.1.1)

Modulo words containing the letters b; for ¢ > 2 we obtain the well-known shuffle product
(Definition [B.13)) and restricted to the letters b; for ¢ > 1 the product %, is given by
the usual stuffle product (Definition [B.17)), therefore we call %, the balanced quasi-shuffle
product.

For each spanning set of Z, considered in this work (Definition [2.27] [2.47] 2.55) there
exists a quasi-shuffle product #, and an involution p both defined on some (subspace of
a) non-commutative algebra Q(A), such that there is a p-invariant, surjective algebra
morphism

Denote
pw) —w | w € QLA)).

Generalizing [BK20], the following algebra isomorphisms are expected

(UM ve) = (2,1, (1.1.2)

For the precise formulation in terms of each spanning set, we refer to Conjectures [2.22]

2.35 2.51] and 2.59]

We want to explicate the previously illustrated picture for the different spanning sets of
Z4. First, consider the Schlesinger-Zudilin (SZ) multiple g-zeta values

n1S1 ny s

SZ —_ 451 S1) — q q
Cq (Sla--'75l>_Cq(517-"78l7t yeeest )_n1>.Z>:nl>() (1_qn1)51”'(1_qn1)51a

where s1 > 1, sa,...,5 > 0. Let B = {bp,b1,b2,...} be an alphabet and denote by
Q(B)? the subalgebra of Q(B) generated by all words which do not start in by. Moreover,
define the quasi-shuffle product *gz on Q(B)Y by b; ogz bj = biy; and the involution
7:Q(B) — Q(B)? by 7(1) =1 and

T(Dy DI - ey b) = by 108 by 1168 (1.1.3)

Due to J. Singer and Y. Takeyama (Theorem [2.13]), there is a 7-invariant, surjective algebra
morphism
(Q<B>O7 *S7, 7—) — (ZQ7 ')7
bs, ... bg, > (54(s1,. .., 80).



Moreover, define for a SZ multiple g-zeta value Csz(sl, ..., 8;) the weight as s +---+ s+
|{si | i = 0}| and the depth as [ —|{s; | « = 0}|. This endows the algebra Z, with two
compatible filtrations.

Another well-studied spanning set of Z, is given by the bi-brackets

kla 7kd 1 m -
e . 1 mq, k1— 1 kg—1 wujvi+-tugug
g = E Uy .. Ug Uy - U4 q s
mi,...,Myg (kl _1)!"'(kd_1>!u1>~~->ud>0
V1 4eeeyUq >0

where ki,...,kqg > 1, my,...,mg > 0. Consider the alphabet Y* = {y;.,,, | k > 1, m > 0}
and let Q(Y!) be the free non-commutative algebra generated by Y. Then by the work of
H. Bachmann (Theorem 2.34)), there is a swap invariant, surjective algebra morphism

(Q<ybi>7 *bb, swap) — (Zq7 '),

ki, kg
ykl,ml cee ykd,md =g )

mi,...,Myq

where #p}, is defined in (2.31.1)) and swap invariance is defined in (C.10)).

The product *gz of the SZ multiple g-zeta values as well as the product *p, of the bi-
brackets are filtered by weight. We are interested in a spanning set of Z,, which satisfies
a weight-graded product formula and is invariant under some homogeneous involution. In
joint work with H. Bachmann ([BB22]), we obtained a construction of such a spanning set
for Z,.

Theorem 1.2. There is a swap invariant, surjective algebra morphism
(Q<ybi>a *, SWELp) — (qu ')7

ki,..., kg
— G B
Yk1,m1 Ykg,mq <m1,...,md )

where G( KL, ’I:r‘f) are the combinatorial bi-multiple Eisenstein series given in Definition
[2.47 and * 5 the quasi-shuffle product defined by Yk, my © Yko.ms = Yk -+hka,my+ms -

For k +m even, the combinatorial bi-Eisenstein series G (m) equal the classical Eisenstein
series and their derivatives. The algebra (Q()"1), ) is the associated weight-graded algebra
to (Q(™), *p), so the combinatorial multiple bi-Eisenstein series can be seen as a weight-
graded version of the bi-brackets. In particular, it is expected that the combinatorial bi-
multiple Eisenstein series endow the algebra Z, with a weight-grading (Proposition .

Using the combinatorial multiple bi-Eisenstein series, we can define a spanning set of Z,
which can be seen as a weight-graded version of the SZ multiple g-zeta values.

Theorem 1.3. There is a T-invariant, surjective algebra morphism
(Q<B>Oa *q5 T) — (Zq> ')7
bs, ... bs, = Cy(S15...,51),

where (4(S1,...,51) are the balanced multiple g-zeta values introduced in Definition
and *, is the balanced quasi-shuffle product given in (1.1.1f).

The balanced multiple g-zeta values equip the algebra Z, with the same conjectural weight-
grading as the combinatorial bi-multiple Eisenstein series.



1.3 Formal multiple g-zeta values. Similar to the case of multiple zeta values (Defi-
nition , we want to define a formal version Z({ of the algebra Z,. Since the balanced
multiple g-zeta values (4(s1,...,s;) satisfy very explicit relations homogeneous in weight,
this spanning set of Z, is the natural choice from our point of view to determine the alge-
bra Z({ . More precisely, the algebra Zg will be generated by formal symbols C({ (815...,51),
for which we require to satisfy exactly the relations expected for the balanced multiple g-
zeta values. According to , this means that the formal symbols Cg (s1,...,s;) should
multiply with respect to the balanced quasi-shuffle product *; and should be 7-invariant.
To give such a definition of Z({ in terms of the quasi-shuffle algebra (Q(B), *,), we have
to introduce regularized multiple g-zeta values.

Theorem 1.4. (@) There is a surjective algebra morphism
;eg : (Q<B>’ *Q) - (Zq’ ')a
which extends the map in Theorem and satisfies ;% (bo) = 0.
Regularizing also the map 7 similar to Theorem does not give any new information
and makes the defining conditions of the later introduced affine scheme BM (Definition

1.7) more complicated, thus we stick to considering 7 as a map on Q(B)?. By the previous
discussion, a natural definition of formal multiple g-zeta values is given by the following.

Definition 1.5. Define the algebra Z{ of formal multiple g-zeta values as

Z({ = (@<B>7 >kq)/R£31q7

where Rely is the ideal in (Q(B), *;) generated by {bo} U {w — 7(w) | w € Q(B)°}.
By construction, we have a surjective algebra morphism
zf - z,,
F(w) = G (w).

Reformulating ([1.1.2]), we expect that this map is an isomorphism of weight-graded alge-
bras. The algebra Z({ is related to the algebra Zf of formal multiple zeta values (Definition

B.22|), by Corollary there is a surjective algebra morphism
Z({ — zf.

In a slightly different context, the subspace of Z({ of depth < 2 has been studied intensively
in [BKM21]. The relations and realizations obtained there can be directly translated into
the space Zg . Moreover, in [BIM] the algebra of formal multiple Eisenstein is studied,
which is isomorphic to the algebra Z({

From the theory of quasi-shuffle algebras due to M. Hoffman ([Hof00],[HI17]) it is known
that each quasi-shuffle algebra can be equipped with a Hopf algebra structure. More
precisely, this means the following.

Proposition 1.6. The tuple (Q(B), *q, Adec) s a commutative weight-graded Hopf
algebra, where Agec denotes the deconcatenation coproduct.

For any commutative Q-algebra R with unit, denote by (R((B)),conc, A,) the dual com-
pleted Hopf algebra to (Q(B), *4, Adec) (Theorem [4.4). Then a non-commutative power
series ® € R((B)) is grouplike for A,, if and only if the coefficients of ® multiply with
respect to the balanced quasi-shuffle product ;. Thus, similar to the case of multiple zeta
values studied in [Rac00], we define the following.



Definition 1.7. For each commutative Q-algebra R with unit, denote by BM(R) the set
of all non-commutative power series ® in R((B)) satisfying

i) (o) = 0,

(i) Ay P) = >R,

(i) 7(lo(®)) = Io(®),

(iv) (®lby) = 0 for k = 2,4,6,

where TIj is the R-linear extension of the canonical projection Q(B) — Q(B)°.

Also, the sets BMg(R) and DMy(R) (Definition [B.24) are related, by Theorem we
have injective maps

DMy (R) — BMy(R).

Theorem 1.8. The functor BMg : Q-Alg — Sets is an affine scheme represented
by the algebra

z,
(¢l@),¢l@,cl©)
where (Cg(Q), C({(Zl), C({(6)> denotes the ideal in Z({ generated by CJ(Z), Cg(él), C({(6).

As for DMy (Corollary , we expect that BMy is a pro-unipotent affine group scheme.

1.4 Lie algebras and generators of Z,. By linearizing the defining equations of BMy,
we obtain a space consisting essentially of the algebra generators of Zg . We expect this
space to be equipped with a Lie algebra structure.

Definition 1.9. Let bmg(R) be the Q-vector space consisting of all non-commutative
polynomials ¥ € R(B), which satisfy

i (Wlbo) = 0,

(i) Ay¥) = IR1+1xY7,

(i)  7(o(W¥)) = o (W),

(iv)  (P|br) = 0 for k = 2,4,6.

The space bmg(R) is graded by weight, denote by bmg(R)(™) its homogeneous component
of weight w. Set bmg := bmg(Q).

The space bmg should be seen as a generalization of the double shuffle Lie algebra dmg
introduced in [Rac00], more precisely by Theorem there is an explicit embedding of
vector spaces

omy — bmy.

After finding a suitable spanning set for Z,, namely the balanced multiple g-zeta values,
and obtaining an explicit description of the space bmg, the main task of this thesis was
to equip bmy with a Lie algebra structure. A lot of explicit computations and tests (cf
Subsection as well as relating the space bmg to certain bimoulds (cf Subsection
led to an explicit formula for a conjectural Lie bracket on bmg. Finally, we were able to
prove the following.

Theorem 1.10. There is a Lie algebra (mq,{—,—},) with the following

properties

(1) The twisted Magnus Lie algebra (mt,{—,—}) embeds into (mq, {—, —},).



(i1) The space bmy is contained in mq.

We call (mq,{—, —}4) the q-twisted Magnus Lie algebra and {—, —}, the g-Thara bracket.
The space bmy is conjecturally a Lie subalgebra of the g-twisted Magnus Lie algebra. More
precisely, as for the double shuffle Lie algebra dmgy (Theorem Corollary , we
expect the following for the space bmy.

Conjecture 1.11.
(1) The space bmyg is a weight-graded Lie algebra equipped with the g-Ihara bracket {—, —},.

(i) The functor BMy is a pro-unipotent affine group scheme with Lie algebra bmo.

Part (i) of the conjecture is checkedﬂ up to weight 9. Moreover, the associated depth-
graded space of bmgy embeds into a Lie algebra (Iq,{—, —}qD ), which will be described
below. The second part of Conjecture should be a consequence of the first part,
though this seems to require some more work. Similar to Ecalle’s free generation theorem
(Corollary , we could deduce from Conjecture the following.

Theorem 1.12. If Conjecture holds, then we have an isomorphism of algebras
2! ~ MU(SLy(2)) ®g U(bmp)".
In particular, Z({ would be a free polynomial algebra.

A vague formulation of this conjecture is given in [BK20] based on their study of the
Hilbert-Poincare series of these spaces.

We want to study the associated depth-graded space to bmy.

Definition 1.13. Let Iq be the Q-vector space given by all non-commutative polynomials
U € Q(B) satisfying

i (Wlbo) = 0,

i) Au(r) = IR1+1xY7,

(iif)  7(o(¥)) = I (),

(iv)  (Ulbkdby') = 0 k + m even,

where Ay, denotes the usual shuffle coproduct on Q(5) (Example [A.62]).
The weight- and depth-graded space [q is indeed a Lie algebra.

Theorem 1.14. The space lq equipped with the depth-graded ¢-Ihara bracket {—, —}f])
(Deﬁm’tion is a bi-graded Lie algebra.

Denote [b = grp, bmg. Then by construction (Proposition [4.56|), we have an embedding of
vector spaces
b — Ig.

But in contrast to the case of multiple zeta values, we do not expect this map to be
surjective. Actually, there is an element in [q of weight 8 and depth 2, which is not
contained in [b (Example . The Lie bracket {—, —}qD defined for [q is exactly the
associated depth-graded to the g-Thara bracket {—, —},, so by Conjecture [L.11] (i) we
should have the following.

2For example, one of the computed q-Thara brackets consists of three terms with 147, 225 and 206 words
and it is checked that it coincides with an element in bmg consisting of 205 words

10



Conjecture 1.15. The space b is a Lie subalgebra of (Iq,{—, —}qD).

The Lie algebra [q is related to the depth-graded double shuffle Lie algebra [s obtained for
multiple zeta values (Definition |B.36]), by Theorem we have an injective Lie algebra
morphism

([57 {_7 _}) — ([qa {_7 _}é))

Since it is expected that [s >~ grp dmg, the image of this embedding should lie in [b.

1.5 Lie algebras of bimoulds and Z,. We will briefly illustrate a second approach to
Lie algebras related to Z; by using bimoulds, this is inspired by the work in [Ecli], [ScI5],
and [IKZ06]. An introduction to the theory of moulds and bimoulds is given in Appendix
@ For this approach, we consider the spanning set of Z, given by the combinatorial
bi-multiple Eisenstein series (Theorem . Let = (B4)a>0 € GBARIP®™?7 be the
bimould of generating series of the combinatorial bi-multiple Eisenstein series, i.e., &g =1
and

m
de Xl,...,Xd _ Z G k1,...,kd Xkl—l}/lml Xkd—lydd d>1
Yi,..., Yy b1 mi,..., My 1 mq! d mg!’ B
mi,...,mq>0

Let Zéw) be the homogeneous subspace of Z, spanned by all combinatorial bi-multiple

Eisenstein series of weight w. Moreover, set Z, = Zq/ MVQ(SLQ (Z)Z. and denote by ?éw)
q

the image of the homogeneous subspace Zéw) in Z,. Let 7, = @ éfj”), then
w>1

Ty = Iq/12
q

is a weight-graded algebra and all products of multiple g-zeta values become trivial in 7.

Theorem 1.16. The projection of the bimould & € GBARIP®V:Z¢ onto BARIPO": 74
is an element in

- A is alternil,
BARIP™Y 77 — ! A ¢ BARIPO T | - A is swap invariant,

Q,swap
: Al(ifll) is even

There is a Lie bracket uri proposed by L. Schneps and used in [SK] (Deﬁnition, which
preserves by construction the space of alternil bimoulds. Unfortunately, the definition
involves poles, thus it is not clear whether the Lie bracket uri preserves the space of
polynomial bimoulds. We obtained a pre-law preuri (Definition , for which we can
show that it preserves the space of polynomials bimoulds (Proposition and for which

we expect (Conjecture [5.16])
uri(A, B) = preuri(A, B) — preuri(B, A), A, B € BARIPV.

Moreover, it is expected that the Lie bracket uri is compatible with swap invariance for
alternil bimoulds.

il,swap’

Conjecture 1.17. ([SK|/) The pair (BARIPOI’Q uri) is a weight-graded Lie algebra.

Next, consider the associated depth-graded space to 7Tg,

My= P M{(Iw,d)7 M((Jw,d) — gr%i) 7;(11))‘

w,d>1

11



Theorem 1.18. The projection of the bimould & € GBARIP®VZ¢ onto BARIP®"Ma
is contained in the space

- A is alternal,

- A is swap invariant,
X1y

- AI(Y1) is even

BARIPW Mo —

al,swap

A € BARIPOWMa

C.22) equips the space BARIPCLQ

The well-known ari bracket (Definition al swap

algebra structure.

with a Lie

ari )

The associated depth-graded space to BARIpOl’Qp properly embeds into the Lie alge-

il,swa,
bra BARIY) l’(“%p (Proposition [5.27)).

bracket is exactly the ari bracket.
grp BARIPLQ

il,swap

Theorem 1.19. ([5520, Theorem 3.1, Proposition 3.4, 3.5]) The pair (BARIpOl’Q

al,swap’

s a bi-graded Lie algebra.

Moreover, the associated depth-graded to the uri
herefore, Conjecture [[.17] would imply that the space
is a Lie subalgebra, of (BARIPOLQ ari).

al,swap’
The spaces bmg and [q defined in terms of non-commutative polynomials (Definition
1.13)) are closely related to the spaces BARIP?Y? and BARIP®'?  of bimoulds.

Lla swap il»swap

Theorem 1.20. (i) There is a vector space isomorphism
#y o pg : bmy = BARIEXQ

il,swap *

(ii) There is an isomorphism of bi-graded Lie algebras
#y ops: (g, {—, —}7) > (BARIYLY

al,swap’

ari).

The g-Thara bracket, which we expect to preserve the space bmg, should correspond to
the uri bracket, which is expected to preserve BARIP®:Y

stap’
#y o pp (Theorem [5.52)).

Summarizing the results, we expect the following commutative diagram of Lie algebras

under the above isomorphism

(mq’{_’_}q) (mt’{_v_})
Thm 3201 Thm B
T n
bmo, {—, -} \‘ = BARI;? i
o ' 1 ! #yoppn (5.51) il,swap? uri
Conj @ ! Conj @
0 //I QV
@25) S E0)
~ 1,Q .
(Dmo, {77 7}) (ARI&C;LI ,am)
Thm Thm
8o grDl lgrp grp
fs, {— — r ARIPY) -2 ari
S, { s } al/al ,arl
Thm [B37 Thm
g 68v
£.59
b, {-,-}7 = v, BARIPOY? ani
, ’ 1 #yops 8'p il,swap?
Conj m Conj @
fa, {— -} ~ BARIP?MC i
T T #yops  (B11) al swap>
Thm Thm 526
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1.6 Lie algebras and dimension conjectures for Z,. As an analog of Zagier’s di-
mension conjecture and the Broadhurst-Kreimer conjecture for multiple zeta val-
ues (or more precisely of Proposition , there are dimension conjectures for the space
Z4. Recall that a grading by weight Z, = @, Z(gw) is expected, where Z(gw) denotes
the subspace spanned by all balanced multiple g-zeta values or combinatorial bi-multiple
Eisenstein series of weight w.

Conjecture 1.21. ([BK20], Conjecture 1.3) (i) The dimensions of the homogeneous sub-
spaces Zq(w) are given by

im (w) ¥ = M(ZE)
wzzod (Z )T = T D01 (2) + D@RG)
1
T l-z-2— 2+ ab+ a7 +ad+ad
where
1 —~ . —~ 1
O1(a) = ”“’xQ, R(z) = 3 dim (S(SLa(Z)) & My (SLa(Z)))z*.

k>4

(i) The dimensions of the homogeneous subspaces grg) Zéw) of the associated depth-graded
space grp 2, are given by

im I'(d) (w) v d _ 1+ D(x)EQ(CC)y + D(a:)S(a:)y2
w,%;od (g D % ) Yoac ar(z)y + az(x)y? — az(x)y® — as(x)y* + as(z)y®’
where
z? ‘ i} 212
EyX) = 1= 2 S(x) = k;lem(Sk(SLQ(Z)))ﬂf = I
and
ai(x) = D(2)01(x), az(x) = D(z) Y dim(My,(SLa(Z))) %",
k>4
az(x) = as(z) = D(x)zS(z), as(x) = D(x) Z dim(Sk(SLQ(Z)))2xk.
k>12

Here My,(SLa(Z)), My (SLa(Z)) and S(SLy(Z)) denote the vector spaces of quasi-modular
forms, modular forms, and cusp forms for SLa(Z) of weight k.

There is an efficient algorithm to compute the first 10.000 coefficients of an element in Z,.
This algorithm was developed in [BK20] to provide Conjecture and verify it up to
weight 14 and all depths and up to weight 26 and depth 4.

Conjecture 1.22.
(i) The Lie algebra bmg is equipped with a derivation, which increases the weight by 2.

(i) The Lie algebra bmgy has exactly one generator f(g) in each odd weight k > 3, which

13



is related to the double shuffle Lie algebra dmg. Together with f((l)) = by and derivatives
of these generators, one obtains a complete generating set for bmg. The relations between
the generators in weight k are counted by dim My (SLo(Z)) & Si(SLa(Z)).

(iii) The Hilbert-Poincare series of the universal enveloping algebra of bmg is

1
~ 1—D(2)O1(z) + D(x)R(z)

Hiyy(ome) () = > dimU (bmg) ™)z

w>0

Part (iii) should follow from the first two parts of Conjecture By Theorem and
the expected isomorphy Z/ ~ Z,, there should be also an isomorphism

Z, ~ M(SLy(Z)) @ U(bmp)".

In particular, Conjecture m (iii) should be equivalent to the dimension conjecture m
(i) for Z,.

For weight < 13, we were able to check that Conjecture (iii) holds. To obtain the
dimensions of the spaces bméw), we used another alphabet V' satisfying (Corollary )

bmgy C Lie(@ <V> .

Duval’s algorithm ([BP94, Chapter 2]) allows to compute a Lyndon basis of Lieg(V)®™).
Picking the (on Q(B)?) r-invariant elements in the Lyndon basis then yields a basis of the

space bméw) (Theorem .

Similarly, there is an explicit expectation for the structure of the associated depth-graded
Lie algebra [b (Conjecture [L.15]).

Conjecture 1.23.
(i) The Lie algebra (b is generated by the depth 1 elements

grpfg) = (—ad(b0)) " (ox) + (- ad(bo))kfl(bmﬂ), k>1,m>0, k+m odd

and some elements in depth 4 introduced in Definition [5.537 in the spirit of Ecalle, which
are counted by dim Si(SLa(Z))?. They satisfy some relations in depths 2 and 5 related to
modular forms.

(7i) The Hilbert-Poincare series of the universal enveloping algebra of 1b is
Hyoy(z,y) = > dimU (1b)( D gy

w,d>0
1

1—ay(x)y + ag(x)y® — az(2)y® — as(x)y* + as(2)y>

By Theorem and the expected isomorphy Z({ ~ Z,, there should be also a depth-
graded algebra isomorphism

&€'p Zq/MVQ(SL2(Z))Zq ~ U(lb)".

Therefore, Conjecture [1.23] (ii) should be equivalent to the dimension conjecture [1.21] (ii).

Ipol,@

il,swap

Since there is a vector space isomorphism [b ~ gr, BAR (Theorem |1.20]), one could

check Conjecture [1.23|(ii) equivalently for the space gry, BARIPOI’QP. This was done by U.

il,swa;

Kiihn (JKiil9]) up to weight 26 and depth 4. Moreover in Subsection Conjecture [1.23]
(i) is explained in detail in terms of the space grp BARIZ?:Y

Q,swap '

14



1.7 Outlook. The first steps towards discovering a Lie algebra, which is associated to
multiple g-zeta values and generalizes the double shuffle Lie algebra dmg, are presented in
this work. This raises a lot of new problems and questions.

(1)

(i)

(viii)

The first point for future work is trying to find a proof that the space bmg equipped
with the g-Thara bracket {—, —}, is indeed a Lie algebra (Conjecture [1.11]).

We expect a natural map exp : b/nTo — BMy, which might be induced by the pre-law
of the g-Thara bracket (cf Theorem [B.30). Applying Yoneda’s Lemma to this expo-
nential map would prove the algebra decomposition Zg ~ MY(SLy(Z)) ® U(bmg)

(Theorem [1.12)).

The affine scheme BMy is expected to be a pro-unipotent affine group scheme with
Lie algebra functor bmg. Some partial results towards the group multiplication for
BMg are given in Subsection [3.4!

Conjecture m (iii) predicts a connection between relations in bmgy and modular
forms, which is made explicit in the depth-graded case in terms of bimoulds (Theorem
. There should be also an explicit way to connect the relations in bmg to (period
polynomials of) modular forms.

There should be a Lie algebra derivation on bmg, which reduces to the explicit
derivation on lq (Proposition [4.65]). Moreover, this derivation might be part of an
slp-action, similar to the one obtained in [BIM] for a slightly different space.

The formula for the g-Thara bracket is quite complicated. So it might be easier to
make progress in the previously mentioned points by obtaining a notion of block
degree and considering the associated block-graded space (cf Subsection [B.5)).

The g-IThara bracket {—, —}, should determine a coproduct A?OH, such that

f
G0 dw.ge) o)

becomes a weight-graded Hopf algebra. This might give a starting point to mimic
Brown’s techniques and find a small spanning set of Z, (like the brackets with entries
1,2,3).

There should be a motivic background for multiple g-zeta values, which allows ob-
taining upper bounds for the dimensions of the homogeneous subspaces of Z,.

15



In conclusion and similar to the situation of the formal multiple zeta values (B.35.1]), we
expect the following picture.

(Zg/ (¢/@),¢f(@),¢f©)) *q’Agm> - (oma-0.2)

representing

Hopf algebra

modulo (BM(), @q)

products

exp / log
(4completion)

z/ dual
(Q ( v (<g<2>,<g<4>,<4‘<6>)>’5Q> - (omo- ==

(1.23.1)
Here ®, denotes the dual product to the coproduct Agon, this might be hard to determine
on the whole universal enveloping algebra U (bmg). Moreover, the space of indecomposables

Q <ZJ/(<({(2), C{ @), CJ (6))) is endowed with a Lie cobracket d,, which is induced by the

coproduct AqGon (Proposition D and dual to the Lie bracket {—, —}, (Theorem .

The natural isomorphism exp : bmy — BMj should be obtained from Theorem
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2 Graded, involutive models for Z,

We will consider the algebra of multiple g-zeta values Z,, which should be seen as a -
analog of the algebra of multiple zeta values. In contrast to the case of multiple zeta
values, one has to restrict to certain spanning sets of Z, to obtain nice descriptions of
(conjectural all) relations in Z,. Actually, several models of multiple g-zeta values occur
in the literature and most of them span the whole space Z;. An overview of these models
is given in [BK20], [Br21], or [Zh20]. In particular, there are two well-known models
for multiple g-zeta values, the Schlesinger-Zudilin multiple g-zeta values studied by K.
Ebrahimi-Fard, D. Manchon, and J. Singer (JEMS16]) and the bi-brackets introduced by
H. Bachmann ([Bal9]). Both of them satisfy a weight-filtered product formula and some
homogeneous relations connected to an involution. So both models equip the algebra of
multiple g-zeta values with a weight-filtered structure (and these structures coincide).

In analogy to the case of multiple zeta values, a weight-graded, involutive spanning set
of Z, seems to be a more canonical choice. There are two subsets of Z, having these
properties. The first spanning set is given by the combinatorial bi-multiple Eisenstein
series ([BB22]), which are built from the bi-brackets and a rational solution to the extended
double shuffle equations. They satisfy the associated weight-graded relations of the bi-
brackets and conjecturally no other relations and thus they should induce a weight-grading
on the algebra Z,. Unfortunately, the involutive relations among the combinatorial bi-
multiple Eisenstein series become rather complicated in high depths and it is hard to
write them down explicitly. This led us to another spanning set of Z;, the so-called
balanced multiple g-zeta values, which should be seen as a weight-graded version of the
Schlesinger-Zudilin multiple g-zeta values. Explicitly, we expect that they satisfy exactly
the associated weight-graded relations of the Schlesinger-Zudilin multiple g-zeta values and
hence also induce a weight-grading on Z, (which is again the same as the one conjecturally
induced by the combinatorial bi-multiple Eisenstein series). For the balanced multiple g-
zeta values the product formula and also the involutive relations are quite easy to handle,
therefore from our point of view, these objects provide the most natural choice for a
spanning set of Z,. The balanced multiple g-zeta values are the main objects of this work,
thus we will work out their structure in many details. In particular, we will use their
algebraic structure to determine a conjectural Lie algebra consisting of non-commutative
polynomials in Section

2.1 The algebra of multiple g-zeta values

This subsection provides a short overview of the algebra of multiple g-zeta values, which
was introduced in this form by H. Bachmann and U. Kiihn ([BK20]).

Definition 2.1. To integers s; > 1, s9,...,s > 0and polynomials Ry € tQ[t], Ra,..., R €
Q[t], we associate the generic multiple g-zeta value

Rl(qnl) Rl(qnl)
C (517"'781;R17---,RZ) = - ——
' n1>~Z>:nz>0 (1_q 1) ! (1—(] l) !

The assumptions s; > 1 and Ry € tQJt] are necessary for convergence.

In general, a g-analog of some expression is a generalization involving the variable ¢, which
returns the original expression by taking the limit ¢ — 1. E.g. a g-analog of some natural

number n € N is N

1—
o= =1Hat o td,

17



since lim{n}, =1+ ---+1=n.
q_>1 N————
n

For all multi indices where the associated multiple zeta values are convergent, the generic
multiple g-zeta values are (modified) g-analogs of multiple zeta values.

Proposition 2.2. For s; > 2, s9,...,5 > 1 and Ry € tQ[t], Ra,...,R; € Q[t], we have

éi_)rri(l — @) T (81, ey S5 R oy By) = R1(1) - Ry(1)C(514 .o, 1)

Proof. This follows from the formal straight-forward calculation

Ry(¢™ R(q™
lim(1 — q)* 751, (s1, ..y 813 Ra, -y By) = lim Z 1g™) "g™)

g—1 g—1 1> g0 (lzgzl )51 (ll—ggl )sl
Ri(1 Ry(1
= Z 15(1) lgl) :R1(1>---Rl(l)C(Sl,...,Sl).
ny>-->n;>0 51 ™

Convergence issues are justified with the same arguments as in [BK16, Proposition 6.4.].
O

Definition 2.3. Define the Q-vector space spanned by all generic multiple g-zeta values
Z, = spang{(q(st, -y si; R1, . Ry) | 120,81 > 1, sg,...,8 > 0,deg(R;) < s},
where we set (,(0;0) = 1.

The additional assumption on the degree of the polynomials R; will be justified by its
relations to polynomial functions on partitions (Proposition . In particular, this def-
inition allows to obtain nice spanning sets for Z, invariant under some involution, those
will be introduced in the next subsections.

For s1,s9 > 1 and (4(s1; R1), (4(s2; R2) € Z4, the usual power series multiplication reads
Ce(s15 R1) - Go(s2; Re) = (y(s1, 52: Ri, R2) + (g(s2, 513 Ro, R1) + (g(s1 + s2; R1 Ra).

Since deg(R1R2) < s1 + s2, the product is also an element in Z,. Similar computations
for arbitrary multi indices show the following.

Proposition 2.4. The space Z, is an associative, commutative algebra. O
Thus, we will also refer to Z, as the algebra of multiple g-zeta values.
Definition 2.5. We define the following subalgebras of Z,

20 ={C(s1,-- s Ry, .., Ri) € Z4 | s1,...,50 > 1, Ri(t),..., Ri(t) € tQlt]},

Zya=1{C(s1,...,85R1,....,R) € Z¢ | deg(Rj) <sj—dforj=1,...,1},
((]J,d: Zgﬂzq,d.

A model for multiple g-zeta values is a spanning set of Z, usually obtained by an explicit
choice of the polynomials R;. Various well-studied models can be identified with some
of these subalgebras, an overview is given in [BK20], [Br21], and [Zh20]. Computational
experiments lead to the following.

Conjecture 2.6. ([Bald, Conjecture 4.3]) The following holds

Z,= 22
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It follows directly from the definition that the algebra Z, is closed under the derivation
qdiq, which plays an important role in the theory of quasi-modular forms. Actually, this
also holds for the space Z|.

Proposition 2.7. ([BK16, Theorem 1.7]) The pairs (2, qd%) and (27, qdiq) are differen-
tial algebras, in particular,

d d, _. o
qEq(Zq) ngP 7(Zq) ng =
There are explicit formulas expressing the derivation qd% in terms of different models of
multiple g-zeta values (e.g. in [Bal9, Proposition 4.2] and [Sil5, Theorem 4.1]).

The restriction in the definition of Z, to a special kind of generic multiple g-zeta values
(Definition can also be justified by relating Z, to polynomial functions on partitions.
In [BI22] cf (1.6)] it is shown that the space Z, is exactly the image of the polynomial
functions on partitions under the g-bracket.

Let A = (1™2™23m3 ) be a partition of some natural number N of length d, i.e.,
the multiplicities m; € Z>o are nonzero only for finitely many indices iy,...,74 and one
has Y ;=1 m;i = N. A polynomial f € Q[X1,...,Xg, Y1,...,Yy] can be evaluated at the
partition A by

f()\) == f(il,... ,id,mil,. . .,mid).

E.g., for A = (1220314959 . ) and (X3, X2, Y7, Ys) = X1 X5Y] we obtain
O = £(1,3,2,1) = 6.
Denote by P(N),d the set of all partitions of N of length d.

Proposition 2.8. ([Br21, Theorem 1.3]) An element F(q) € Ql[q]] lies in Z,, if and
only if there exists a sequence (fg)a>0 € @g>o Q[X1,- .., X4, Y1,...,Yy] of homogeneous
polynomials, such that

N
F(q):fo+z(z 5 fdw)qN.

N>1 \d=1\eP(N,d) ]
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2.2 Schlesinger-Zudilin multiple g-zeta values

We will study the Schlesinger-Zudilin multiple g-zeta values in their extended version,
which were introduced by K. Ebrahimi-Fard, D. Manchon, and J. Singer ([EMS16]). They
form a spanning set for Z, and thus endow the algebra with a weight and depth filtration.
Similar to the multiple zeta values their algebraic structure can be described in terms of
two alphabets, an infinite one and a finite one.

Definition 2.9. To integers s; > 1, s92,...,5 > 0, associate the Schlesinger-Zudilin (SZ)
multiple g-zeta value

nisi ny s

s7 _ 4 a
g (81,...,81) = Z g A g

ny>-->n;>0

For an index (s1,...,s7) € leo, the weight and depth is given by

Wt(817"'78l):Sl+"'+3[+#{i|Si:0}7
dep(s1,...,s1) =1—#{i | s; =0}.

We will also refer to these numbers as the weight and depth of Cqsz(sl, ey S1).
Theorem 2.10. ([BK20, p. 7]) The following equalities hold

Z, = spanQ{Csz(sl, cows) [ 1>0,81>1, s9,...,5 >0},

Z) = spanQ{ng(sl,...,sl) | 1>0, s1,...,8 >1}.
Here we set (5%(0) = 1.

Proof. For all integers s;1 > 1, so,...,s > 0 we have

gz(sl,...,sl) = (q(s1,...,8;t°, ..., t%) € Z,

and thus we deduce for s1,...,s; > 1 that
S2(s1,...,81) € 2.
On the other hand, the elements
(1=t j=1,...,s,

form a basis of {R € tQ[t] | deg(R) < s}. Thus for each polynomial R € tQ]t| of degree
< s, there exist elements a; € Q, such that

So any element in Z7 is a linear combination of SZ multiple g-zeta values with entries > 1.
Similarly, the elements ' '
(11—, j=0,...,s,

are a basis of {R € Q[t] | deg(R) < s}, so every element in Z, is a linear combination of
SZ multiple g-zeta values QqSZ(sl, .o, 81) with s1 > 1, s9,...,8 > 0. O
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By Theorem [2.10 the notions of weight and depth for SZ multiple q-zeta values endow
the space Z, with compatible ascending (vector space) filtrations

Fil() (2,) = spang{¢S%(s1, ..., 51) | wt(s1, ..., 51) < w}, (2.10.1)
. (d
Fllg))(Zq) = spanQ{ng(sl, ...y 81) | dep(s1, ..., s1) < d}.
The usual power series multiplication in Z, can be expressed in terms of the SZ multiple

g-zeta values, we will refer to this expression as the SZ stuffle product. To describe this
explicitly, we introduce the following quasi-shuffle algebra (cf Subsection [A.3)).

Definition 2.11. Consider the alphabet B = {bg,b1,b2,...} and let Q(B) be the free
non-commutative algebra over B. Moreover, denote by 1 the empty word.

Define the SZ stuffle product *gz to be the quasi-shuffle product on Q(B) corresponding
to
b; g7, bj = bi+j, b;, bj € B.

For all s1,...,s > 0, the weight and depth of the word by, ...bs, is defined as
Wt(bsy .- b)) =81+ + s+ #{i | si = 0},
dep(bs, ...bs,) =1 —#{i| s; =0}.
Then the pair (Q(B), *sz) is a bi-filtered algebra with respect to weight and depth.

Definition 2.12. Let Q(B)° be the subspace of Q(B) generated by all words, which do
not start in by. Define the involution 7 : Q(B)? — Q(B)? by 7(1) = 1 and

T(bg, b . bg b0 = by 1b6? T by b Y
forall kv,..., kg > 1, my,...,mg > 0.

The combinatorics of infinite nested sums imply that the SZ multiple g-zeta values multiply
with respect to the SZ stuffle product *gz, even more, the following holds.

Theorem 2.13. (i) ([Sil5, Theorem 3.3]) There is a surjective algebra morphism

7 (Q(B), %s2) = (24,7),
bs, ...bs, — Csz(sl, cey S,

which is compatible with the weight and depth filtrations.

(i) ([Tal3, Theorem 4]) The morphism Cg’z is T-invariant, i.e., one has for all integers
kl,...,kdz 1, ml,...,mdzo

Sk, {0}™ kg, {O}) = % (ma + 1, {0} my + 1, {0} ). .

The SZ stuffle product in Theorem m (i) is a g-analog of the usual stuffle product.
Assuming s; > 2, s2,...,8 > 1 and applying the limit ¢ — 1 (after multiplying with a
suitable power of (1 — ¢)), one obtains the stuffle product formula of multiple zeta values

(Proposition [B.20)).

Remark 2.14. The 7-invariance of the SZ multiple g-zeta values is quite similar to the
duality of Zudilin’s multiple g-zeta brackets ([Zul5, Proposition 4]).
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Example 2.15. In depth 2, the SZ stuffle product reads

Gy (R, {03™)CH% (kz, {032) i (THZJ <m2+1>< I )Csz(kl,{O}J k2, {0} 777)

7=0 \ =0 ma

.S (m ’ 1) ( o ) 3 (k2. {OF Ry, {0} 07)

m1

() ) or)

where k1, ks > 1 and mq,mg > 0, m = mq + mo.

_|_

An immediate consequence of Theorem (i) is the compatibility of the product in Z,
with the weight and depth filtrations.

Corollary 2.16. The notions of weight and depth for SZ multiple q-zeta values define two
algebra filtrations on Z,. In particular,

Fill?) (z,) Fill®) (z,) c Fll@ )z, Fal)(2,) Fille? (2,) c Rt (z,).

J. Singer introduced in [Sil5] a second finite alphabet to describe the algebraic structure
of SZ multiple g-zeta values. This can be viewed as an analog of the finite alphabet X
introduced for multiple zeta values (Definition |B.13)).

Definition 2.17. Let Q(p,y) be the free algebra over Q generated by the alphabet {p,y}
and denote by 1 the empty word. Define the SZ shuffle product gz on Q(p, y) recursively
by 1 Wgz w = w gz 1 = w and

(yu) Wsz v = u Wgy, (yv) = y(u LWgz v),
(pu) Wsz (pv) = p(u Wgz pv + pu Wsyz v + u gz v)

for all u,v,w € Q(p,y). Though we call this product the SZ shuffle product, it is not a
quasi-shuffle product in the sense of Definition Moreover, denote by Q(p,y)° the
subspace of Q(p, y) spanned by all words starting in p and ending in y, so

Qp,y)" = Q1 + pQ(p, y)y.

Expressing the SZ multiple g-zeta values via iterated Rota-Baxter operators leads to
Proposition 2.18. ([Si15, Theorem 3.2.]) The map
(Qlp, ), Wsz) = (24, ),
Py pty e Ghsta )
s a surjective algebra morphism. ]

The SZ shuffle product in Proposition [2.18|can be seen as a g-analog of the shuffle product.
Whenever s1 > 2, s9,...,5 > 1, then taking the limit ¢ — 1 (after multiplying with some
power of (1 — ¢)) yields the shuffle product formula for multiple zeta values (Proposition
B.16)).
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Example 2.19. In depth 2, the SZ shuffle product is given by

— k—1—j
o (b, {03™)C5% (ko, {03™) Z( > (,jl 1) (’?) 2 G A0Y™ k= j =i, {0}"™)

j=1 1=0

L7 j k mo mi
(b_ﬁ><2)&% (0™ k= j =i {0}™)

G—1\ (ks — S
# (1) () @ oy

where ki,ko > 1, k = ki + ko and m,mo > 0.
The involution 7 (Definition [2.12)) can be also defined on the algebra Q(p, y).

Definition 2.20. Let 7 be the anti-automorphism on Q(p,y) given by 7(1) = 1 and
7(p) =y, 7(y) = p, i.e., one has for all ky,..., kg > 1, mo,...,mg >0

T(ymoptiym . pkayma

):mdk mi, ki

Py My p™

The involution 7 preserves the subalgebra Q(p,y)?. Moreover, T relates the SZ stuffle
product xgz and the SZ shuffle product Wigy. To describe this relation, consider the
canonical embedding

i: Q(B) = Qp,y), (2.20.1)
bs, ... bs, = ply...p°ty.
Theorem 2.21. ([EMS16, Theorem 5.4]) For all u,v € Q(B), the following holds

i(u gz v) = 7(7 0 i(u) Wsyz 7 0 i(v)). 0

Since 7 is an involution, one obtains an injective algebra morphism

Toi:(Q(B),*sz) = (Qp,y), Wsz),
bs, ... b, = py°l .. py®l.

This allows interpreting the restriction of Lgy to im(70i) = Q+pQ(p, y) as a quasi-shuffle
product.

Just as one expects the extended double shuffle relations among multiple zeta values to
give all relations in Z (Conjecture , the following is conjectured for the SZ multiple
g-zeta values.

Conjecture 2.22. ([Tal3]) All relations in Z, are a consequence of the SZ shuffle product
and the T-invariance (Thearem of 87 multiple q-zeta values.

Example 2.23. By applying the SZ stuffle product formula, we obtain
GPGH2) = GA1L,2) + 72, 1) + G 3).

On the other hand, we can apply the SZ shuffle product formula. By Theorem this
means apply the 7-invariance to both factors, then multiply with respect to the SZ stuffle
product formula and then again apply 7T-invariance

CA)EA(2) = G (1)¢E%(1,0)
=2¢5%(1,1,0) + ¢%(1,0,1) + ¢§%(2,0) + ¢§%(1,1)
=2¢5%(2,1) + ¢7(1,2) + ¢5%(2,0) + ¢%(1,1).
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Comparing both product expressions, we obtain

S23) = ¢%(2,1) + (G%(2,0) + ¢§%(1,1).

Multiplying by (1 — ¢)* and applying the limit ¢ — 1, we recover Euler’s well-known
relation

¢(3) =¢(2,1).

We end this subsection by expressing the previously given algebraic relations of SZ multiple
g-zeta values in terms of generating series. For each d > 1, define the generating series of
the SZ multiple g-zeta values of depth d by

3 ("1‘}1’ - "’Y(‘i> = Y G0y {0 X T Y XY
Le--rdd ki, kg>1
mi,...,mq>0
(2.23.1)
and moreover set s35 = 1.
Lemma 2.24. ([Br21, Theorem 2.18]) For each d > 1, one has
X1, X d
534 (Yh . ,Yd> = > J[a+x) @+ vy tigne
1y:--51d .
up > >ug>0i=1
V1., 0g >0
d g
SR Sl (RRCEe :
uy>->ug>01=1 1- (1 + Xi)qm
where ugyq := 0. O

We reformulate the 7-invariance of the SZ multiple g-zeta values (Theorem [2.13] (ii)) in
terms of these generating series.

Proposition 2.25. For each d > 1, the generating series 534 s T-invariant, i.e., one has

X1, X4 Yy ... Y
93d <Y1,...,Yd> = 93d (Xd,...,Xl) '
Proof. Using the 7-invariance of the SZ multiple g-zeta values (Theorem (ii)), we
compute for each d > 1

X1,...,X . N o o
534 (Yi Yj) — Z SZ(/&‘L{O} Lo kg, {0} d)Xfl 1Y1 1...X§d IYd 4
Y kl?"'7kd21

mi,...,mqg>0

= > FHma+ 1, {01 g + Lo X Py Xy

ki,....kg>1

= 3> Pk, {0V kg, (0Y )XY Xy
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To describe the SZ stuffle product on the level of generating series, we have to consider
generating series of words (Subsection |[A.4). In this case, define the generating series of
words in Q(B)° by pg(W)o =1 and

pB(W)d<JQ,..-,§;d> = Y b bt b XY™ XS TYM d > L

Extend the SZ stuffle product defined on Q(B)? as well as the SZ multiple qg-zeta value
map CqSZ : Q(B)? — Z, (cf Theorem [2.13) by Q[[X1,Y1, Xy, Y5, .. ]]-linearity to the space
Q(B)°[[X1, Y7, X2,Ya,...]]. Then, one obtains by definition for all d > 1

X1, X X1, X
SZ 1, y 3d o 1, y hd
q (pB(W)d<Y1,...,Yd>>_53d<Y1,...,Yd>'

Since ng : (Q(B)Y, xs7) — (24, ) is an algebra morphism (Theorem (1)), we immedi-
ately derive the following.

Proposition 2.26. For all 0 < n < d, we have
X, ... X, Xoitse o Xy
53d<Y1)"'aYTL>55d_n<Yn+17"')Yd
_ +SZ 1 y 4Am n+1, s d
S (pB(W)n<Y17,Yn> sz pB(W)d_n<Yn+1)"'7Yd>> '

An explicit recursive formula for the SZ stuffle product xgz on the generating series of
words pg(W) is given in Proposition
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2.3 Bi-brackets

We will consider the bi-brackets introduced by H. Bachmann ([Bal9]). They form a
spanning set of the space Z, and endow the algebra with weight and depth filtrations.
There is only one infinite bi-alphabet, which describes the algebraic structure of the bi-
brackets. The advantage of this model is that bi-brackets are closely related to quasi-
modular forms and multiple Eisenstein series. In particular, one obtains that Z, contains
the algebra of quasi-modular forms.

Definition 2.27. For integers ki,...,kq > 1 and mq,...,mgq > 0, the associated bi-
bracket is

klv s 7kd 1 mi mq k1—1 kqg—1 u1v1 - Fugu
g = (T T LV q dvd

<mh”wmg @y_nLuww—Uupéipol d "l d
V1 4eey0g >0
_ Z R ' Pkl (qnl) Pk'd (qnd)
1 -y (1_qn1)k1'”(1_qnd)kd’

n1>->ng>0

where the Eulerian polynomials Py (t) € Q[t], k > 1, are defined by the equality

Py(t) _ Z k1 e
_ Ak _
A-0F ~ 2 (k-1
For a bi-index (nﬁi’:::’ﬁjd) € 7%, the weight and depth are defined by

mi,...,Mq
dep( 1, ’d>:d.
mi,...,Mq

We will also refer to this as the weight and depth of the bi-bracket g( ki, ka ).

mi,...,,Mq
Moreover, denote
k1, kg
g(k1, ..., kq) —g< 0....0 )

and we will refer to these g-series just as brackets.

ki, k
m(l”d>:h+m+M+mrF”+mh

Theorem 2.28. ([BK20, Theorem 2.3]) The following equalities hold

Zq:spanQ{g<k1""’kd> ‘dzo, ki,....,kqg>1, ml,...,deO},

mi,...,Mq

Z;) :spanQ{g(kl,...,kd) | dZ 0, kl,...,kd > 1}.
Here we set g(0) = 1.

By Theorem [2:28] the notions of weight and depth for bi-brackets define two compatible
ascending filtrations on the space Z,

. (w) o ki,...,kq ki,...,kq <
Fily," (Z,) = spang {g(ml’...7md) ‘ wt (mlv‘”?md <wy,, (2.28.1)

(d ki,....k ki,...,k
F11§:>)(Zq) = Spallg {g(mi,...mi) |dep (mi 77’le> = d}'
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We will obtain in Corollary [2.39] that these filtrations coincide with the ones induced by
the SZ multiple g-zeta values (2.10.1]).

Brackets of depth 1 appear in the Fourier expansion of the Eisenstein series G(7) for
k > 2 even,

__ Bk 1 n__Brk
G(r) = =55 + oD T;)O'k—l(n)q =5 t (k). (2.28.2)

This definition of the Eisenstein series is non-standard, the usual definition is obtained
by multiplying with the factor (k — 1)!. To keep the notations and formulas short in the
following, we will always use this normalization. There is also a formula for the Fourier
expansion of multiple Eisenstein series in terms of brackets in arbitrary depth ([Ba20l
Theorem 1.4]).

Since the Eisenstein series of weights 2, 4, and 6 generate the algebra of quasi-modular

forms, Theorem and ([2.28.2)) imply the following.

Proposition 2.29. The algebra Z, contains the algebra MQ(SLQ(Z)) of quasi-modular
forms with rational coefficients.

Moreover, the bi-brackets are (modified) g-analogs of multiple zeta values.

Proposition 2.30. (i) ([BI22, Section 4.1]) For all k1,...,kqg > 1, my,...,mq > 0, one
has (possibly after some regularization process)

li 1— ki4-+kq 1 s vd z
q1—>H%( q) g mi,...,Myq <

Here Z denotes the algebra of multiple zeta values (Definition .

(ii) ([Zull, Proposition 1]) For ky > mi+2 and k; > m; + 1, i=2,...,d, one obtains

. ki,..., kg
lim (1 — g) - +kd AR =C(k1 —mi,... kg—myg).
qlg}( q) ] C(k1 —ma, ... kg —mg) -
The usual power series multiplication in Z, can be expressed in terms of the bi-brackets,
we refer to this expression as the product of bi-brackets. It can be described in terms of

the following quasi-shuffle algebra (cf Subsection [A.3)).

Definition 2.31. Consider the bi-alphabet Y = {yj ,,, | k > 1, m > 0} and let Q(J)
be the free non-commutative algebra generated by Y. Moreover, denote the empty word
by 1. Define the numbers

)\?1,]62 _ ((_1)k1 (kl +hky—1 —j> n (_1)k2 (1{:1 + ko — 1 —j>> : Bk1+k2—j' cQ

ko —j ki—j ki 4+ ko —j)!
(2.31.1)
and set
k1+ko—1 ek
Yk1,m1 Obb Yka,mo = Yki+kami+my T Z /\jh Qyj,m1+m2-
j=1

We denote the corresponding quasi-shuffle product on (@(ybi) by *pb.-
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Define the weight and the depth of a word in Q()") as

Wt (Ykymy - - Ykgmyg) = k1 + -+ kg +mi+ - +mg,
dep(ykhml s ykdamd) =d.

The algebra (Q(VP1), xy,) is bi-filtered with respect to weight and depth.

Theorem 2.32. ([Bal9, Theorem 3.6]) The map
g: (@<~)}bi>7*bb) — (ZQ) ')a

Ky, .. kg
yk‘l,ml te ykd,md = g

mi,y...,Mq
s a surjective algebra morphism compatible with the weight and depth filtrations. ]
Ifky > 1, koy...,kg > 1 and my; = --- = my = 0, then applying the limit ¢ — 1 (and

multiplying with a suitable power of (1 — ¢)) in Theorem yields the stuffle product
formula for multiple zeta values (Proposition [B.20)).

To describe another kind of relations satisfied by the bi-brackets, it is convenient to con-
sider generating series. For each d > 1, define the generating series of the bi-brackets of
depth d by

Xi,..., X4 ki,... kq o1 Y7 ky1Yy
L = B X = X 2.32.1
gd(Yi,...,Yd> k1 de>1 g(ml,...,md 1 m1! d md! ( 3 )
M1 mg=>0

and further set gg = 1.

Lemma 2.33. ([Bal9, Theorem 2.3]) For each d > 1, one has

X X d
9d ( Yl’ <o 7yd> — Z H exp(viXZ-) eXp(uiYi)q“i”i
1y Yd A e
V1o, 0g >0
Xl Xd
ug >+ >ug>0 1 d

where

I <X> _exp(X +uY)q"

v u > 1. 0

1 —exp(X)g¥ ’ -

Interpreting the bi-brackets as generating series of polynomial functions on partitions (cf
Proposition [2.8)) gives linear relations among them.

Theorem 2.34. ([Bald, Theorem 2.3]) For each d > 1, the generating series gq is swap
invariant, i.e., the following holds

g le'”;Xd _ Yl+"'+Yd7"‘7Y1+}/2)Y1
“A\v,.... Y N\ Xg, Xg1— Xgyoo s X1 — Xo )

Similar to Conjecture the following is expected for the bi-brackets.

Conjecture 2.35. ([BK20/, [Bal9]) All relations in Z, are a consequence of the product
formula (Theorem [2.39) and the swap invariance (Theorem of the bi-brackets.
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We also want to describe the product of the bi-brackets *py, in terms of generating series (cf
Subsection |A.4)). Consider the generating series of words in Q(Y"') given by pyu (W) = 1
and

mi mgy
ki—1Y7 )(kd7112

= Z Yki,my - - - Ykayma X1 |

—_ d>1.
mi. md!

Xi,..., X,
p)}bi(w)d(ifi Yj)

For simplicity, we often drop the depth index and just write pyui (W) ()%’::’24).

Extend the product #pp, and the bi-brackets map g : Q(J*) — Z, from Theorem
by Q[[X1,Y1, X2, Ys,.. ]]-linearity to Q(YP)[[X1,Y1, Xo,Ya,...]]. Then, one obtains by
definition that for all d > 1

X1, Xy X1, .. X,
(W - .
9<p3’b( )d<Y1,...,Yd>> gd(Yl,...,Yd

The map g : (Q(YP!), #pp) — (24, ) is an algebra morphism (Theorem [2.32)), this implies
the following.

Proposition 2.36. For all0 < n < d, one has
X17"'7Xn Xn+17"')Xd
I \y, Y )% Y, Y
o (Xi X | Xt Xa
=4 (pyb‘(w)"<Y1,...,Yn> b ”yb“w)d‘”(ifnﬂ,...,ifd |

In particular, we want to describe the product #pp, explicitly on the generating series of
words pybi (W). From [Bal9, Lemma 3.2] one deduces the following.

Proposition 2.37. Set

By,

1
X)== ) = —kal 2.37.1
b(X) (X eX —1 2) = 2k! ’ (2.37.1)

where By, denotes the k-th Bernoulli number. Then for all 0 < n < d one has 1 xpp
pybi(W)n = pybi(W)n *ph 1 = pybi W), and

Py () @1 - if:) 5 pys (W) @:i N :ifild>
= () (mom (3273 om0 )
a0 (321) (o (5135 i ()
e 1) ol ) o)
- %pﬂf‘“ V) <Y1 f 11/n+1> - %p e <Y1)inl+ﬂll+1> )
. <pybi(W) ("% 5 i”) o, pyvi (V) (‘);ZE o ‘;?)) '

O
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Here - denotes the usual concatenation product, by Proposition [A.60] it is given for all
0<n<dby

A Xi,..., Xy A Xot1s--Xa\ X1,..., X4
pyb‘(w)<Y1, - ,Yn> Py (Y) ( Yiero¥a ) =P\ vy )
In analogy to Theorem combining the swap invariance of the bi-brackets (Theorem

2.34) and the product #pp, yields a second expression for the product of the generating
series gq. E.g., one has

X1 X1+X2,X1 n X1+ X2, X
\n ¥ Ya, Y1 — Pivivn-n
X1 + X2 Xl + X2
—2b(Y1 - Y —
o) () (755)
1l X+ X\ 1 (X + X,
2\ n 2 v )
This formula is a g-analog of the shuffle product for double zeta values. Explicitly, for

Y1 = Ys = 0 taking the limit ¢ — 1 (after multiplying with suitable powers of (1 — q))
gives the shuffle product written in terms of generating series (Proposition [B.42)).
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2.4 Comparison of SZ multiple g-zeta values and bi-brackets

In the previous two subsections, two different spanning sets of Z, were presented, the SZ
multiple g-zeta values and the bi-brackets . In particular, there is a translation
map from one spanning set into the other. We will give explicit formulas relating the
generating series of SZ multiple g-zeta values s3 and bi-brackets g. The formulas will show
that the weight and depth filtrations induced by these two spanning sets agree. Similar
to [Br21, Theorem 2.41], we obtain the following.

Proposition 2.38. For each d > 1, we have

IS, A—
5 eXp(Xl) - 1,6Xp(X2) —-1,... 7eXp(Xd) -1
3d \ exp(V1) — 1,exp(Yi + Ya) — 1, exp(Yi + -+ Yy) — 1
d
X,
53d<Y1,... ) I;IX+1(Y1-—|—1)

' In(X; +1),In(Xy+1),...,In(Xg+ 1)
84\ m(yy +1),In(Ya+ 1) = In(Y; + 1),...,In(Yy + 1) — In(Yy_y + 1) ) °

Proof. Lemma, and imply that we need to substitute
(1+ X;)Vi (1 + y;) vt exp(X;)" exp(Y;)"

by each other for i = 1,...,d. To get rid of the shift in the exponents by 1, there are
additional factors in both equalities. Then the first equality follows from the substitution

Xi—exp(X;)—1, Vi exp(Y14---4Y;) —
and the second equality follows from the reversed substitution
X;—=In(X;+1), Vi—In(Y; +1) —In(Y;—1 + 1)
(with Yy := 0). O

One verifies directly that the formulas in Proposition [2.38|are compatible with the product
formulas for SZ multiple g-zeta values (Proposition and the bi-brackets (Proposition
and that they translate between 7-invariance of the SZ multiple q-zeta values (Propo-
sition and swap invariance of the bi-brackets (Theorem .

Corollary 2.39. The notions of weight and depth for SZ multiple g-zeta values (2.10.1)
and bi-brackets (2.28.1) induce the same filtrations on the algebra Zg, i.e., we obtain

Fil( (2,) = spang{ ¢S (k1, {0}™ ... kg, {0}™) | ki + - + kg + m1 + -+ mg < w}

:spanQ{g(miw',nfd) ‘k1—|—---+k‘d—|—m1+--'+md<w},

Filld) (2,) = spang{¢S% (kr, {0}™ ... ki, {0}™0) | 1 < d}

B R
_spanQ{g(mh”.,mJ ’ [ < d}.
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Proof. Coefficient comparison in Proposition [2.38] shows that any bi-bracket of weight w
is a Q-linear combination of SZ multiple g-zeta values of weight < w and vice versa. The
translation formulas in Proposition [2:38] are homogeneous for the depth, so the depth
filtrations induced by the SZ multiple g-zeta values and the bi-brackets have to be equal.

O
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2.5 Combinatorial bi-multiple Eisenstein series

The quasi-shuffle algebra (Q(W"), %y,;,) for the bi-brackets (Theorem [2.32) is a weight-
filtered algebra. In analogy to the case of multiple zeta values, we are interested in
a weight-graded spanning set of Z,. Thus it seems natural to consider the associated
weight-graded algebra to (Q(J), xpp) (in the sense of Definition .

Definition 2.40. Define the g-stuffle product * on Q()™) to be the quasi-shuffle product
corresponding to

Yky,m ¢ Yka,mo = Yky+ka,mi+mo-

Then (Q(YP), %) is a weight-graded algebra, it is exactly the associated weight-graded
algebra to (Q(I™), #p,).

M. Hoffman obtained isomorphisms between all quasi-shuffle algebras in [Hof00] (cf The-
orem [A.57)), in particular, there is an algebra isomorphism

exp,.,, olog, : (Q™), %) = (QM), *up).

Thus, one gets a surjective algebra morphism

(@<ybi>7 *) - (ZQa ')a

w — g( exp*bb o log* (’LU)),

where g(w) denotes the image of w € Q()"') under the morphism in Theorem Unfor-
tunately, these images g(exp*bb olog, (w)) satisfy relations coming from some involution,
which is not weight-graded. Thus, we will provide another construction for a spanning set
of Z,, which satisfies the g-stuffle product formula and still the swap invariance. The ele-
ments of this spanning set are called combinatorial bi-multiple Eisenstein series, they were
first introduced in [BB22]. The key ingredients for the construction are the bi-brackets
(Subsection and a rational solution of the double shuffle equations (Definition
Theorem [B.25). In the following we will briefly recall the construction as given in [BB22].
This will be done on the level of generating series, thus we will use the language of bimoulds
introduced in Appendix [C]

Definition 2.41. By Theorem and (B.25.1)) there exists a solution to the extended
double shuffle equations b € DM_ 1 (Q) satisfying (b | a:’gazl) = ( for kK > 1 even. Decom-
24

pose the element b, € Q(())) (see Definition [B.24) into its homogeneous depth compo-
nents,

=307, bW e )@,

d>0

Apply the Q-linear map
Q) = Q[[X1, Xa,.. ]},

k1—1 kg—1
ykl...ykd>—>X11 ...de

to the elements b\”) to obtain power series by(X1,...,X4) € Q[[X1,...,Xy]] for all d > 1.
Moreover set by = 1, then b = (bg)4>0 is a mould in GARIPOVQ,

Due to the choice of b, we have (b | zoz1) = —5; = —% and (b | zfx1) =0 for k > 1
even, so b; coincides with the generating series given in . But in higher depths,
the element b € DM _ 1 (Q) is not unique. In the following, we will fix the mould b, so the
whole construction ofmﬁche combinatorial bi-multiple Eisenstein series will depend on this

choice.
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Definition 2.42. To the mould b associate a bimould also denoted as b by

Xi,...X
m(YI Yd>= Do bVt Y Y+ Ya, Y)bg (X Xa),
1,5 ¥d o<i<i<d

where the coefficients ~y; are defined by
. ~1)"*t B,
Y T =exp }:AQ—Al———Agsrn .
= = n 2n!
Moreover, define the bimould b = (Ed)dz[) by by = 1 and

; A
~ Xl,...,Xd (*1)z Xi+1 Xd
b =5 b A d>1.
d(m,ﬂgg> £ 75ij] Sy Y ) =

Definition 2.43. For each u > 1, let £ = (,leu))dzo be the bimould given by 2(()") =1
and

d
(u) Xl,...,Xd . ) Xl—Xj,...,Xj_l—Xj Xj
Sd <YI7"'7Yd>_Zb]1( Yl,...,}/vj‘,l Lu Y1++Yd

*[; ‘ Xd—Xj,...,Xj+1—Xj
4 Yda"'uyj-‘rl ’

where the power series L, (if) is defined as in Lemma by

u
L, X\ _ exp(X + uY)q ’ w1
Y 1 —exp(X)g"

In particular, the depth 1 component of the bimould £*) is equal to the power series L.
Definition 2.44. Define the bimould g* = (g})4>0 by g5 =1 and
Xl,...,Xd J (us) Xd. 1+1,...,Xd,
92( ) = > | J R " o
Yi,...,Yy S bl Y\ Yy 4155 Yg,
O0=do<d1<---<d;j_1<dj=d

ugp>>u;>0

Definition 2.45. Let = (8,4)4>0 be the mould product of g* and b, i.e., one has &y = 1
and

& = mu(g", b).
The main result of [BB22] was the following.

Theorem 2.46. [BB22, Theorem 6.5.] The bimould & is symmetril and swap invariant.

[
Definition 2.47. For ki,..., k3 > 1, m1,...,mg > 0 define the combinatorial bi-multiple
Eisenstein series G ( Tsi’:::’f)jd) to be the (normalized) coefficients of the bimould &,
X1,...,X Y™ Y
Q5d 1 s 4 d — Z G kl: 7kd Xfl 141 Xsd 144 .
Yi,...,Yd ko g1 mi,...,Mq mll md!

mi,...,mg>0
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As for the bi-brackets (Definition , we refer to the number k1 +---+kg+mi+---+my

as the weight of G(n]ii’:::’frfd) and to the number d as its depth. Moreover, the elements

k.. kg

G(kl,...,kd):G< 0

)7 kl?"'adeL

are called the combinatorial multiple Eisenstein series.

Example 2.48. 1) In depth 1, one obtains
X1 . X1 Xl

k _ Bk Bm+1 1 m, k=1 _uv
G<m>_ om0 gt =Ry T o 1)) 2w

" u,v>0

and thus for k> 1, m >0

In particular, the combinatorial Eisenstein series G(k) for k > 2 even are exactly the
classical Eisenstein series of weight k& with rational coefficients (expressed in their Fourier
expansion). Moreover, the combinatorial bi-Eisenstein series G (:1), k+m > 2 even, is
essentially the m-th derivative of the classical Eisenstein series G(k) and hence is also
contained in the algebra M@(SLy(Z)).

2) In depth 2, one has
X1, X2\ X1, X2 X1 — Xo Xo X1 \» [(Xo—-Xy
62(}@%)”(%%)“”( Yi >91<Y1+Y2>+91<Y1+Y2>b1< Ya )

X1 Xo X1, X5

This formula also gives an explicit but rather complicated expression of the combinatorial
bi-multiple Eisenstein series in terms of the rational coefficients of b and the bi-brackets.

Proposition 2.49. ([BB22, Proposition 6.15.]) The combinatorial bi-multiple Fisenstein
series form a spanning set of Z,. ]

By Proposition the notions of weight and depth of the combinatorial bi-multiple
Eisenstein series endow the algebra Z, with two filtrations. By construction, these filtra-
tions agree with the ones of the bi-brackets given in and hence also with the ones
in Corollary Moreover, Theorem the definition of the symmetrility (Definition

IC.13)), and Proposition imply the following.

Theorem 2.50. There is a surjective algebra morphism
G: (Q<ybi>7 *) - (Zq7 ')7

ykl’ml...ykd’deG< 1 d).

mi,...,Mq

As a reformulation of Conjecture the following is expected for the combinatorial
bi-multiple Eisenstein series.

Conjecture 2.51. ([BB22, Remark 6.11.]) All relations in Z, are a consequence of the
q-stuffle product formula (Theorem and the swap invariance (Theorem of the

combinatorial bi-multiple Fisenstein series.
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Proposition 2.52. If Conjecture[2.51] holds, then the algebra Z, is graded by weight

z,= 2.

w>0

Here Z(gw) denotes the subspace of Z, spanned by all combinatorial bi-multiple Eisenstein
series of weight w.

Proof. This follows immediately from the observation that the g-stuffle product and also
the swap operator are homogeneous for the weight. O
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2.6 Balanced multiple g-zeta values

The combinatorial bi-multiple Eisenstein series can be viewed as a weight-graded analog
of the bi-brackets, since they satisfy the associated weight-graded relations of the bi-
brackets. Similarly, one could ask for a weight-graded version of the SZ multiple g-zeta
values. To obtain these elements we will use the combinatorial bi-multiple Eisenstein series
constructed in [BB22]. More precisely, we will obtain the weight-graded version of the SZ
multiple g-zeta values by applying a linear variables substitution to the bimould & of the
generating series of the combinatorial bi-multiple Eisenstein series (Definition .

Definition 2.53. Let B = (B,)4>0 be the bimould in GBARI given by By = 1 and

X1,...,Xy Xq,...,Xy
B =06 , d>1.
d(Yl,...,Yd> d(Yl,YQ—Yl,...,Yd—Ydl -
Proposition 2.54. The bimould B is g-symmetril and T-invariant.

We will explain the resulting properties for the coefficients now and give the proof of the
proposition later (Subsection [2.7)).

Definition 2.55. For ky,..., kg > 1, my,...,mg > 0 define the balanced multiple g-zeta
values (q4(k1,{0}™, ..., kq,{0}™4) to be the coefficients of the bimould B,

%d (Xl, . Xd) = Z Cq(kla {O}mla ety kda {O}md)Xfl_lylml T Xc]lgdilydmd'
o k1,...ka>1,
mi,...,mq=0

As for the SZ multiple g-zeta values (Deﬁnition, we call s;4---+s;+#{i | s; =0} the
weight and [ — #{i | s; = 0} the depth of the balanced multiple g-zeta value (4(s1, ..., s).

Proposition 2.56. The balanced multiple q-zeta values form a spanning set of Z,.

Proof. The combinatorial bi-multiple Eisenstein series form a spanning set of Z, (Propo-
sition . Since the translation between the combinatorial bi-multiple Eisenstein series
and the balanced multiple g-zeta values given in Definition [2.53]is bijective, also the bal-
anced multiple g-zeta values give a spanning set of Z,. O

In particular, by Proposition [2.56] the notions of weight and depth of the balanced multiple
g-zeta values induce two filtrations on Z,. Since the transformation from the combinatorial
bi-multiple Eisenstein series into the balanced multiple g-zeta values is given by a weight-
and depth-homogeneous substitution (Definition , they coincide with the filtrations
induced by the combinatorial bi-multiple Eisenstein series and thus also with the ones in

Corollary [2.39

Definition 2.57. Consider the alphabet B = {bg,b1,bs,...} and define the balanced
quasi-shuffle product *, on Q(B) to be the quasi-shuffle product corresponding to

b'+' if i, =1,
bi oq bj = {Oz ’ olse .

By definition (Q(B),*,) is the associated weight-graded algebra to quasi-shuffle algebra
(Q(B), *sz) introduced for the SZ multiple g-zeta values (Definition [2.11]). We call the
product *, balanced quasi-shuffle product, since it combines the well-known shuffle and

stuffle product (Definition B.17)) is a very simple way (cf (4.6.1)).
Let Q(B)? be the subalgebra of Q(B) spanned by all words, which do not start in b.

37



Theorem 2.58. There is a T-invariant surjective algebra morphism
Cq - <Q<B>Oa *q) - (an s
b51 - bsl — Cq(sl, - 73l)~
Proof. The surjectivity follows from Proposition [2.56 By Proposition and the def-
inition of g-symmetrility (Definition [2.66]), we obtain that the map is indeed an algebra

morphism. Finally, Proposition and the same calculations as in Theorem show
that the balanced multiple g-zeta values are T-invariant. ]

As a reformulation of Conjecture 2.22] we expect the following.

Conjecture 2.59. All relations in Z, are a consequence of the balanced quasi-shuffle prod-
uct formula and the T-invariance (Theorem of the balanced multiple q-zeta values.

If Conjecture holds, then the algebra Z, is graded by weight

z, =Pz,

w>0

where Zéw) is the subspace of Z; spanned by all balanced multiple g-zeta values of weight
w. This conjectural grading coincides with the one of the combinatorial bi-multiple Eisen-
stein series (Proposition [2.52)).

Example 2.60. 1) By Example and the bimould B satisfies the following rela-

tions in depth < 2
X1 Xo
Y1 + Y Y1 + Y
%1<X1>_%1<X2> :%2< Xo, X1 )+%2< X1, Xo >+ 1+Ys 1+ Y,
X7 — Xy

X1+ Xy B X1+ Xy
Xy + Xy, X X+ Xy, X D S e W ¢
_%2< 1 2 2)+%2< 1 2 1)+

Yi -Y;

Formalizing these equations, one gets a space closely related to the formal double Eisen-
stein space introduced and studied in [BKM21].

2) In depth 1 the balanced multiple g-zeta values coincide with the combinatorial bi-
multiple Eisenstein series up to multiplying with some factorials, thus we deduce from
Example 1) that for all k > 1, m >0

By, Byt Bl
k,{0}") = ) E g
Galk: {0}™) = mOQk' k’12(m+1) k—1) 'm' uwt
u,v>0

In particular, the element (,(k,{0}™) is essentially equal to the m-th derivative of the
Eisenstein series G,.

3) Denote by B(k1, k2) the coefficients of the depth 2 part of the mould b (Definition ,
50 b(X1, X2) = ok, ky>1 Bk, ko) X171 X 5271 Then direct calculations show that

1 1
G23)=B23) ~ 2 S v g Y g,
48 2
u,v>0 w1 >uz>0
v1,v2>0
1 1
2 2
¢(2,0,3) = 3 E uyvivygtt R — E ULy vy,
wp>u2>0 u1>u2 >0
v1,v2>0 v1,v2>0
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An explicit construction for the numbers (kq, ko) is, for example, given in [GKZ06) Sec-
tion 6], in this case, one has §(2,3) = 0. Other constructions for these rational numbers
are given in [Brol7(2)] and [Ec02].

4) The quasi-modular forms are contained in the algebra Z, (Proposition |2.29), in particu-
lar, the modular discriminant A = ¢][,,>;(1—¢")** is a Q-linear combination of balanced
multiple g-zeta values. Precisely, we have

1
130002 = 240G4(4, 4,4) +120G,(4, 8) + 120¢4(8,4) — 98¢4(6,6) — 9¢,(12).

As studied in [EMS16] and [Sil5] for the SZ multiple zeta values (cf Theorem ,
there is a second product defined on the non-commutative algebra Q(p,y) describing the
product of balanced multiple g-zeta values.

Definition 2.61. Let L, be the product on the non-commutative free algebra Q(p,y)
recursively defined by 1 L, w = w W, 1 = w and

(yu) Wy v = u Wy (yv) = y(u Wy v),

L f — 77 d — ~
(pu) Wy (pv) = p(u g p) + p(pu L U)+{p(u ov) iu=yiandv =y

else
for all u,v,w € Q(p,y).
The involution 7 : Q(p,y) — Q(p,y) from Definition relates the products , and L.
Proposition 2.62. For all u,v € Q(B), we have
i(uxgv) =7(T0i(u) Wy Toi(v)),
where the embedding i : Q(B) — Q(p,y) is defined in (2.20.1)).

Proof. Let u = by, ...bs, and v = by, ... by, be words in Q(B) and s;,7, > 1. Since x,
is a quasi-shuffle product, it can be equally defined recursively from the right. Thus, we
obtain

i(uxqv) =1i(bsy ...bg | *g by .. b )Py +i(bs, ... bg, % bpy ... bp DY
+ i(bsy - . - b, *q bpy .. b )P TRy

and on the other hand
T(Toi(u) Wy Toi(v)) =7(py®™...py™" Wypy™ ... .py*")
= T(pys’ (py™ =" py™ Wy py™ . py"™) +py™ (py™ - py™t Wepy"™ . py™)

+py™ T

Py py™ Wepy™ . py™))
= 7'(7' 0i(bg, ...bs ) WgTOoi(by ... b,«k))psly
+ T(T 01i(bs, ...bs) WgToi(by, .. .brk,_l))prky
+ 7‘(7‘ 0i(bs, ...bs_,) WygTo0i(by ... brkil))psl‘”ky
Next, assume that s; = 0 and r; > 0. Then we obtain

i(uxqv) =1i(bg, ... bg_, *¢g bpy .. by )y +i(bsy ... bs, *g by .. by )P ™Y
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and
T(Toi(u) Wy Toi(v)) =7(py®™...py™ Wypy™ .. .py"")
= 7(ploy " - opy™ W py™ Y™+ Y (Y™ oy Wy py™))
= 7'(7' 0i(bg, ...bs_,) Wy Toi(by, .. .brk))y

+ T(T 0 i(bs ... bs,) g T 0 i(by, .. brk_l))p”“y

In both cases, induction on the length of the words implies the claim. O
By Proposition there is injective algebra morphism
Toi: (Q(B),*q) — (Qp,y),Wy), (2.62.1)
b, ... bs, — py® .. py®l.

In particular, the restriction of L, to im(70i) = Q+pQ(p, y) can be seen as a quasi-shuffle
product. Denote

Qp,y)° = QL+ pQ(p, y)y.
Theorem 2.63. There is a surjective algebra morphism
(Q<p7 y>07 |—|—|q) — (Zq, ')a
Pty ... p°ly — (e(st, ..., 81).

Proof. First, observe that by definition ¢,(i(u)) = (;(u) for all u € Q(B)°. So for s1,7r >
1, S2,...,81,72,...,7 > 0, we compute with Theorem [2.58 and Proposition [2.62]

Capy™ - oy )Ca(py™ - py™) = G (™Y - P Y) G (P My - "™ Y)
= CQ(b81 : )CQ(bﬁ )
= (q(bs, - bsl *q by, .ka)
:Cq(T(Toz coubg) Wy T oi(byy ... b))
= (y(Toi(bs, .. )LLIqToi(b,«l...brk))
= C(py™ . py™ Wopy™ ... py™).
Surjectivity is a direct consequence of Proposition [2.56 O
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2.7 Comparing the symmetries of & and ‘B

We will explain the symmetries of bimoulds, which occur particularly in the context of
the balanced multiple g-zeta values. We are interested in a very explicit and detailed
description of them. Then we will relate these symmetries to the ones of the bimould &
(Theorem and this will give the proof of Proposition An introductory overview
of bimoulds is given in Appendix [C] All bimoulds in the following will have coefficients in
some fixed commutative Q-algebra R with unit. Moreover, the components of all bimoulds
considered in the following are power series or polynomials. In particular, we will drop
the indices indicating the underlying Q-algebra and the shape of the components.

Definition 2.64. For a bimould A € BIMU, define the bimould 7(A) by
X1, ... Xg\ [ Ya....W
T(A)<Y1,...,Yd> _A<Xd,...,X1> '
We call a bimould A 7-invariant if 7(A4) = A.
Let A € BIMU be a bimould and write for all d > 1
Xp,.oXa) kisoooika | yhi-1 ka—1v,ma ma
A<Y17---,Yd> = > a(ml,...,md> D CED ¢ LS G
ki, kg>1

mi,...,mg>0

Then A is T-invariant if and only if

ki,...,kq B mg+1,...,m;+1
a(ml,...,md>a(kd—l,...,kl—l <2.64.1)
for all k1,...,kg > 1and my,...,mgq > 0.

We want to translate the shuffle product and the balanced quasi-shuffle product defined
on Q(B) into the language of bimoulds by applying the general setup introduced in
Recall that the depth of a word in Q(B)° is defined by dep(by,b(" ... by,by'?) = d for all
ki,...,kqg>1, m1,...,mg > 0. A Q-linear map pp satisfying the conditions in Definition

[A764) is given by
p5 : Q(B)’ — Q[X1,Y1, X2, Y2, .. |,
b, b b b s Xy xRy ma g kg > 1 ma, . mg > 0).

The generating series of words in Q(B)" associated to pg is given by ps(W)o = 1 and for
d>1 by

pB(W)d<)§%"”";ild>: ST bbb b XY L XS (2.64.2)
R k1,...kg>1

mi,...,mg>0

Definition 2.65. Let L be the shuffle product on Q(B)?, i.e., the quasi-shuffle product
with b;ob; = 0 (Example 1)). A bimould A € GBARI is called g-symmetral if there
is an algebra morphism ¢y, : (Q(B)°, ) — R, such that for all d > 1

Ad<X1”"’Xd>: S pwlr by b by XYL XY

k1,....kg>1
mi,...,mq>0

In other words, A is g-symmetral if and only if it is (¢, pg)-symmetric in the sense of
Definition [A-71] We will refer to the map ¢y, as the coefficient map of A.

The subset of all g-symmetral bimoulds is denoted by GBARI, _s.
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According to (A.71.1)) a bimould A € GBARI is g-symmetral with coefficient map ¢, if
and only if for all 0 <n < d

Xi,..., X, Xng1,---,Xg
A 9y 9 A 9 Y
(Yi)uyn> <Yn+17"'7yd
Xq,..., X, X415, Xy
= w W pp(W .
‘Pu.l(PB( )<Y1,,Y> pB( )<Yn+1a---7Yd
An explicit recursive formula for L on the generating series of words pg(VV) is given in

Proposition (i).

Definition 2.66. Consider the balanced quasi-shuffle product *, on Q(B)°, i.e., the quasi-
i,j =1

else

bitj s :
shuffle product with b;04b; = {O + (Definition[2.57). A bimould A € GBARI

is called q-symmetril if there is an algebra morphism ¢, : (Q(B)°, ;) — R, such that for
alld > 1

Ag (f} a })fd> = > o (O by b by XYL XY
Loy dd Ki,okg>1
mi,...,mqg=>0

So A is g-symmetril if and only if A is (¢, pg)-symmetric. As before, we call the map
©x, also the coefficient map of A.

Denote the subset of all g-symmetril bimoulds by GBARI, ;.

A bimould A € GBARI is g-symmetril with coefficient map ., if and only if for all
0<n<d

Xla"-vXTL Xn+17"‘7Xd
A A
(Yl,...,Yn> (Yn+1,...,Yd
_ Xla"',Xn XTL+17""Xd
= P (pB(W)<Y1,-~7Yn> *qu(W)<Yn+17---;Yd '
An explicit recursive formula for the balanced quasi-shuffle product *, on the generating

series of words pg(W) is given in Proposition (ii).
Example 2.67. For a bimould A € GBARI, g-symmetrility in depth 2 and 3 means

X X5 X0, X4 X1, X9
A CA =A ’ A ’
<Y1> <Y2> <Y2>Y1 +Y2> * <Y1,Y1 —i-Y2>
1 X1 Xo
A —A
e (05 ()
X1 X2, X3 Xo, X3, X1 Xo, X1, X3
A A =A A
(m) (YQ,Y3> (YQ,YS,Ylwg)* <Y2,Y1+Y2,Y1+Y3>
X1, X, X3 1 X2, X4 X, X3
A A - A
- <Y1,3f1+Y2,Y1+Y3>+X1 %\ M\ e+ v Y2 Yi+Ys
1 A X1, X3 4 Xo, X3
XX Yi+Y2,Y1+4+Y3 Yi+Ye,V1+Ys) )"

Omit all terms of lower depths to obtain the formulas for g-symmetrality in depths < 3.
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Definition 2.68. Define the following subsets of GBARI,

GBARI, s = {A € GBARI | A g-symmetral and 7-invariant},
GBARI,.is - = {A € GBARI | A ¢-symmetril and 7-invariant}.

The bimoulds in these two subsets also satisfy a second product formula. For GBARI, s -
we will give an explicit description, then consider these formulas modulo lower depths to
obtain the corresponding formulas for GBARI,_as. 7.

Definition 2.69. Define the product *, recursively on the generating series of words
p3(W) for 0 <n < d by 1xr pg(W)n = ps(W)n *r 1 = pp(W), and

X1, X, Xoits.r o Xy
W - ps(W
pB( )<Y177Yn>* pB( )<Y7’L+1)"'7Yd>
_ X1+ Xnp Xoy. s Xy Xnt1y---,Xqg
‘pB(W)< Yi ) (pB(W)<Y2,...,Yn>*TpB(W)d‘”<Yn+1,...,Yd
X1+ X, X1, X0 Xoio,.. . X
+pB(W)< li/n+1 H) ' <”B(W)<Yi Yn) *r 'OB(W)(Y,;Z Yj))

X+ X, X1+ X,
PB(W)< Yy “)—pzs(W)( 'y “)
1 n+1

+
Y1 -Y.

X27"'7X7'L XTL+27"'7Xd
(o) ooz ) )
Proposition 2.70. A bimould A € GBARI,_is » satisfies for all 0 <n < d
X1y X0\ Xty Xy

()G

B X1, X, X1,y Xy

= (pB(W)<Y1,...,Yn> *TPB(W)<Yn+1,...,Yd>) ’
where ¢, : (Q(B)°, x;) = R is the coefficient map of A (cf Definition .

If A equals the bimould 25 of the generating series of the balanced multiple g-zeta values,
then Proposition [2.70]is equivalent to the second product formula of the balanced multiple
g-zeta values given in Theorem [2.63

Proof. Let A € GBARI,_is - and write for d > 1

A<X17"'7Xd> _ § : CL( kla" . 7kd > Xk:l—l Xkd—lyml Ymd

- 1 .. d 1 .. d .

Y17...,Yd ey g >1 mi,...,My
mi,...,mg>0

Then

ki,..., kg
B)Y = R, b, by ... by, by AR
Q< > ) k1% kav0 a mi,...,mg
is an algebra morphism for the balanced quasi-shuffle product *, and the coefficients
a(nﬁi’:::’ﬁjd) satisfy the T-invariance given in ([2.64.1]). So instead of simply multiplying two
coefficients with respect to the balanced quasi-shuffle product, apply the 7-invariance to

both factors then multiply with respect to the balanced quasi-shuffle product, and finally
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apply again the 7-invariance to all terms. Since A is an element in GBARI, s -, this gives
the same result. On the level of bimoulds, this means for 0 < n < d

Xt X0\ (X Xa
A A
(H)?YTL> (Yn+17"'7Yd
B X1, X Xyt s Xu
= Pxq (T <T<”B(W)) (Yl, Y ) *q T(pB(W)) ( Yoit, ..., Yy '
Evaluating 7 and *, (cf Proposition (ii)), we immediately see that the right hand

side is equal to ¢y, (PB(W) <)§%, . ,;(n %7 (W) (J}(/n:, e })5;)) -

Example 2.71. Expanding out the product *; in depths 2 and 3, we obtain that any
bimould A € GBARI,_s - satisfies

X4 Xo\ [ X1+ X2, Xo X1+ X9, X

1 X1+ Xy X1+ Xo
i (07 (M),

A<X1> .A<X2’X3> _ A(Xl +X2,X2,X3> —|—A<X1 +X2,X1+X37X3>

Yy Y2, Y3 Y1,Y2, Y3 Y2, Y1,Y3
X1+ X0, X1+ X3, X, 1 X1+ X9, X3 X1+ X9, X3
A ) b A ) _A )
i ( Y2, ¥, Vi )*Yl—yg Yi.Ys Y. Yy
n 1 qf Xt X Xi+ X)X+ X, X+ X
Yl—}/é YéaYI }/27}/3 ‘

Finally, we want to relate the previously introduced sets GBARI,_5s - and GBARI, s » to
the following sets.

Definition 2.72. Define the subsets

GBARI,s swap = {A € GBARI | A symmetral and swap invariant},
GBARIs swap = {A € GBARI | A symmetril and swap invariant}.

Note that by Theorem the bimould & of the generating series of the combinatorial

bi-multiple Eisenstein series is contained in GBARIioszvag .

Definition 2.73. For a bimould A € BIMU, define for each d > 1

A#Y Xl,...7Xd — A Xl,...,Xd .
Yla"'ayd H7Y1+}/27---,Y1+"‘+Yd
Theorem 2.74. The map #y restricts to bijections
#y : GBARI a5 r — GBARI;s swaps #y : GBARI,.is r = GBARIs swap -

Note that 7-invariance induces relations on the coefficients, which are much easier to
handle than the relations induced by swap invariance (cf and Example .
Thus, it seems convenient to consider the spaces GBARI, 55, and GBARI, i instead of
GBARIs swap and GBARI swap-

44



Proof. Let A € GBARI, s . First, we show that A#Y is symmetral. For all d,d’ > 1
denote by w(d,d') the set of all permutations o € Sy, 4 satisfying o(1) < -+ < o(d),
od+1) < -+ < o(d+d). Moreover, write ¥; = Y1 +--- +Y; for 1 < i < d and
Yirj = Yy + -+ Ygy; for 1 < j < d. Then the g-symmetrality of A implies by
Proposition [A.78] (i)

#Hy Xl? Xd H#Hy Xd+1""aXd+d’
Ad (Yl,...,Yd>A <Yd+1,...,Yd+d, (2.74.1)
_ Z Ad XO' 1(1)""7X0'71(d+d’)
— p |
veltgay e Yoptay o Yoraray + Yoptaray

o Y max{n|o tn)>dn<k}), 1<k<d,

and
o Ymax{n|o t(n)<d, n<k}), d+1<k<d+d
YU;1(k) = 0 if such a number n does not exists. Applying the inverse

X1, X, X1, Xo,..., X
-1, 1, s “xd 1, A2, y xd
v 'M<Y1,...,Yd> HM(YI,YQ—H,...,YCI—Ym)
to any terms in the above sum, we get
A#Y Xo.fl(l)v .. ,ngl(d—i—d’) _ Ad p Xo.fl(l), .. 7Xa*1(d+d’)
d+d Ya.—l(l) +Y0;1(1)7---7Yo*1(d+d’) +Yg1(d+d) + Y071(1)7"‘7Y071(d+d’)
(2.74.2)

where we set o*;l(k:) = {

To obtain this formula observe that for every k = 1,...,d+d' the predecessor of the entry
Yok + Yo_gl(k) in the bi-index is given by Yo—1(4)_1 + ¥ -1 (where Y, -1(3)—1 = 0 if
_ M [ S —

k € {1,d+1}) and, moreover, we have Y;, —Y,,_; =Y,,. Combining the equations (2.74.1])

and ([2.74.2)), we get

Xl,.. Xd # Xd+1,...7Xd+d/ X —1(1 ,...7X =1(d+d’
AHY AP _ ATY N i O o~ td+d') |
d <Y1, --,Yd> d <Yd+17~->Yd+d’ Uemz;ld,) G\ Yor(1)s s Yort1(dad)

From Corollary we deduce that A#Y is symmetral. The proof that A#Y is symmetril

for all A € GBARI,.js is similar. Just observe that for every entry < coming

Xj
Y+ Y
from the third line in the recursive expression of #*, given in Proposition (ii), the
predecessor of the lower row is given by Y; 1 +Yj_; (with Yioi=Y 1= 0). Moreover,
we compute straight-forward

Xi. .. X, X1, Xo. .. Xy
A#Y ’ ) — A ) ) 9
m(4) (Yl,...,Yd) ( )<Y1,Y1+Y2,...,Y1+---+Yd
_ (YA YaYid A Y, Y
Xg, Xag-1,..., X1

:A#Y(Yl+'“+Yd7Y1+"'+Yd_1,...,Y1>

X, Xg1—Xg,..., X1 — Xo

= swap (A7Y) (i(/i’ ’iﬁj) .

In particular, a bimould A is 7-invariant if and only if A#Y is swap invariant. O
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Theorem [2.74] enables us to prove the following proposition from the previous subsection.
Proposition [2.54. The bimould B is g-symmetril and 7-invariant.

Proof. Observe that we have by definition %6 = ®#v' . Since & is contained in GBARIZ®": 2

is,swap
(Theorem [2.46)) and there is a bijection #y : GBARIE(_);’SV:TZ = GBARI&?;"VN?; (Theorem
2.74)),we deduce that the bimould B is g-symmetril and 7-invariant. O
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3 The g-Ihara bracket

G. Racinet introduced in [Rac00] the twisted Magnusﬂ affine group scheme MT and the
twisted Magnus Lie algebra mt and proved that the double shuffle Lie algebra dmgy and
its corresponding affine group scheme DMg embed in there (cf Theorem . In this
section we first recall the results obtained in [Rac00] for the twisted Magnus affine group
scheme and Lie algebra. Then we will introduce a g-analog of this Lie algebra, which can
be seen as a generalization of mt, and explain what is known towards the corresponding
group multiplication.

3.1 Twisted Magnus affine group scheme MT and the Lie algebra mt

Let A be an alphabet and (Q(A), ) the free non-commutative algebra over .4 equipped
with the concatenation product. The empty word is denoted by 1. Define the degree of
each word in Q(A) to be the number of its letters, this defines a grading on the algebra
(Q(A), ). For each commutative Q-algebra R with unit, denote by R((A)) the completion
of R(A) = Q(A) ® R with respect to this grading (in the sense of Proposition [A.45).

Definition 3.1. For each commutative Q-algebra R with unit, denote
M(R) = {f € R((A)) | (F] 1) = 1},
where (f | 1) denotes the coefficient of f in 1. Then
M : Q-Alg — Groups, R+— (M(R),)
is called the Magnus affine group scheme.

It is obvious that the concatenation product - is associative and possesses an identity
element in M(R). Moreover one easily verifies that the inverse of an element G = 1+ g in
M(R) with respect to the concatenation product is given by

G =1+ (-1)"g" € M(R).

n>1
Thus, (M(R),-) is indeed a group.

Definition 3.2. For each commutative Q-algebra R with unit, define

m(R) = {f € R{A) | (f[1) = 0}.

Then (m(R),[—,—]) is called the Magnus Lie algebra, where [—, —| denotes the usual
commutator bracket on (R(A),-).

One derives immediately from Definition that the Lie algebra functor to the Magnus
affine group scheme M is given by

fi: Q-Alg — Lie-Alg R+ ((R),[—, —]),

where m(R) denotes the completion of m(R) with respect to the grading on R(A) defined
above. In Example it is explained in detail, how to derive the commutator bracket
from the concatenation product on M.

Now we will restrict to a specific alphabet consisting of two letters and consider a twisted

3In [Rac00] the affine group scheme is called "Magnus tordu”
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version of the Magnus affine group scheme and Lie algebra. Precisely, consider the alphabet
X = {xg, 21} and denote by Q(X) the free non-commutative algebra over X'. Define the
weight of a word in Q(X’) to be the number of its letters. For each commutative Q-algebra
R with unit, we denote by R{(X)) the completion of R(X) = Q(X) ® R with respect to
the weight. In other words, the space R((X)) consists of formal non-commutative power
series in the letters zg, x1 with coefficients in R.

Definition 3.3. For any commutative Q-algebra R with unit, define
MT(R) = {f € R((X)) | (f [ 1) = 1}.
For G € MT(R), define the algebra automorphism (with respect to concatenation)
ke s R((X)) = R{(X))

by
k(1) =1, ka(xo) = xo, ka(z1) = G 'z1G.

Then set
G® H = Grg(H), G,H € MT(R).

Note that the product ® only differs from the usual concatenation product by the twist
in x; (in the definition of k).

Proposition 3.4. ([Rac00, II, Proposition 2.4]) For each commutative Q-algebra R with
unit, the pair (MT(R),®) is a group.

Proof. Evidently, the multiplication ® preserves the set MT(R). Observe that the identity
element for the multiplication ® is given by 1, since kg(1) = 1 and k1(G) = G for each
G € MT(R). To prove the associativity of ®, first compute for Gy, G2 € MT(R) that

(K‘Gl o K‘Gz)(‘r()) = 2o,
(kG © kg, (1) = ke, (Gy '21G2) = ke, (G 1) Gy ' 11Grke, (Ga)

-1
— (Glﬁgl (G2)> 1 (GlﬁGl (GQ)) = (Gl ® GQ)_lxl(Gl ® GQ)
= KGy a6, (T1)-

Thus, one has kg, © kg, = kG ea, and can deduce for G1, G2, H € MT(R)

G1® (G2 ® H) = G1 ® (Gak,(H)) = Gike, (G2)ka, (ka, (H)) = Gikg, (G2)kciec, (H)
= (Gl ® G2)K‘/G1®G2(H) = (Gl ® Gg) ® H.

Finally, it has to be shown that any G € MT(R) has an inverse. For H = /ﬁal(Gfl) €
MT(R) one computes

G® H = Grg(H) = Grg(rg' (GT) = GG =1.
By group theory, it is enough to show that G has a right inverse. O

Theorem 3.5. The functor MT : Q-Alg — Groups, R+— (MT(R),®) is a pro-unipotent
affine group scheme.

We will refer to MT as the twisted Magnus affine group scheme.
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Proof. MT is an affine scheme represented by the algebra Ql(zw)wex *]/( 2 —1) and thus

by Proposition an affine group scheme. For the pro-unipotence, we refer to [Rac00,
Section II1.2]. 0

Definition 3.6. For each commutative Q-algebra R with unit, define
mt(R) = {f € R(X) | (f|1) =0}
Moreover, set mt = mt(Q).
It is obvious from Definition [A.88] that
mt : Q-Alg — Lie-Alg, R~ mt(R)

is the Lie algebra functor to the affine group scheme MT, where n/ﬁ(R) is the completion
of mt(R) with respect to the weight. In particular, the space mt(R) admits a Lie algebra
structure, which can be derived from the group multiplication ® on MT.

Theorem 3.7. Let R be a commutative Q-algebra with unit. Then the space mt(R) is a
Lie algebra equipped with the Lie bracket

{f,9} = ds(9) —dy(f) +[f,9l,  frg€mt(R),

where dy : R(X) — R(X) is the derivation defined by ds(1) = 0, df(xo) = xo and
df(x1) = [21, f].

We call (mt(R),{—,—}) the twisted Magnus Lie algebra and the Lie bracket {—,—} the
Ihara bracket.

Proof. For any G € MT(R), consider the endomorphism
o(G) : R{(X)) — R((X)), H— G & H.

Let R[e] be the algebra of dual numbers with e2 = 0. For f € mt(R), define the endomor-
phism s; : R((X)) — R({(X)) by

o(1+¢cf) =id+esy.
Let {—, —} be the corresponding Lie bracket to ®, then we have
S¢tgy = [5£554), f,g € mt(R). (3.7.1)
Moreover, one computes for f € mt(R)
1+ef=0(1+ef)(1) = (id+esy)(1) =1 +esf(1)
and thus s¢(1) = f. Combining this with leads to
{19} =s7(9) = s4(f),  f.g € mi(R). (3.7.2)
Furthermore, for f € mt(R) define the endomorphism d; : R{{(X)) — R({X)) by
Kiqep = id +edy.
Then one calculates for f € mt(R) and u,v € R{(X))

Kltef(uv) = Kiqef(U)R14er(v) = (u +edf(u))(v + eds(v)) = uv + e(uds(v) + dp(u)v).
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So dy is a derivation for the concatenation product and it suffices to obtain an explicit
formula on the generators. One has

Ii1+€f($0) =x0+¢€-0,
Frrer(a1) = L+ef) ol +ef) = A —ef)mi(l+ef) = a1 + (a1 f — far).

Therefore, dy is the derivation determined by d¢(xg) = 0 and ds(z1) = [x1, f]. Finally,
compute for f € mt(R) and w € R{(X))

o(1+ef)(w) = (1 +ef)rrtep(w) = A +ef)(w+edp(w)) = w+e(dp(w) + fuw)
and hence
sf(w) =dg(w) + fw.

From (3.7.2) one obtains then that the Lie bracket on mt(R) (and hence also on mt(R))
is given by

{f,9} =dg(g) + fg—dy(f) —gf.
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3.2 The g-twisted Magnus Lie algebra mq

After reviewing the results in [Rac00] on the twisted Magnus affine group scheme and Lie
algebra, we will introduce now the g-twisted Magnus Lie algebra. In particular, our main
result will be a generalization of Theorem [3.7]

Consider the alphabet B = {bg,b1,b2,...} and denote by Q(B) the free algebra over B.
Moreover, for a word in Q(B) define the weight and depth by

wh (b0 by, byt .. b bg' ) = k1 + - 4 kg +mo + - + mag,
dep(b('by, by . . . b, b)) = d,
where k1,...,kg > 1, mqg,...,mqg > 0.
Definition 3.8. We define the Q-linear map 9; on Q(B) by
0; (D00 bry b - brey by ) = b0 Obg, b bgy bg T bk 100 bk Do b by
if 1 <i<dand d;(by bk, by™ ... bg,bo"") =0 else.

For a word w = b("%by,, b(" ... bi,by' (where k1, ..., kg > 1, mg,...,mg > 0) and a positive
integer 1 < j < d, we set then

d
5;(w) =[]0 — 9;)% 1 (bgobibg™ . . brby by, by biby L. byby?)
i=1
i#]
and extend this definition by Q-linearity.

Example 3.9. For k,a > 1, we compute

k—1
82(brba) = (91 — 02)* 1 (b1ba) = > _(—1)' )bklba+l7

k—1 E—1
01(babr) = (92 — 01)F L (bab1) = > (~1)! ( )ba+lbk_l.
Thus we deduce

k—1 E—1
09 (bgba) — 61 (baby) = Z(—1)l< z ) [br—1, bast]-

=0

Definition 3.10. For any word w = by"bg, b ... b,by"* in Q(B) (where ki,..., kg >

1, mo,...,mqg >0)and r > 1, a < kj, we set
lcéa’o) (w) = w,
s my— my m
lcg-a T)(w) = Z batjybjy - - - 03, b br b - bg; by ;1o br; 4100 T by by
Jittir+1=kj—a
jlﬂ"'7j7‘+121

and extend this definition by Q-linearity.
Example 3.11. We have

6,2

12 (bisbin) = Y bosgibisbisby,
Ji+j2+73=5
J1,J2,j3>1

= bgb1b13b1 + brb3b13b1 + brb1b13b3 + bgbabi3by + bgb1b13ba + b7babi3ba.
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Definition 3.12. For a given word w = by b, b(' . .. b, by'?, we define the derivation d,
on (Q(B),-) by its values on the generators

diy (1) = df,(bo) = 0,

Feiteothg—d
di (b)) = Z (—1)r(lc&i_11’T) 0 0g+1(wby) — lcga_l’r) o 51(baw)), a>1.
r=0

As before, extend this definition by Q-linearity.

Lemma 3.13. We have for d%,, where w = b{" by, b'* ... by, by, the explicit formula

dgy(ba) = [w, be]

VL ) ()

h=0  I4=0 la
(11,0,0) #(0,...,0)

) ({bgmbklllbgu s bkd*ldbgbdv ba+l1+---+ld}

k1+-+kqg—d
+ Z (_1)7" Z ba+j1—lbj2 . "bjr bgnobkl_llbgnl .. .bkd_ldbgld,bjﬂrl})
r=1 Jitetgrpr=lit+lg+1
J1yeendrg121
with a > 1.
Proof. This follows straight-forward from applying the definitions. O
Note that for ky = --- = kg = 1 all sums in Lemma vanish. So the first term [w, b,]

in the above expression of d (b,) should be seen as the part from the Thara bracket (cf
Theorem . The terms in the third row extend the Ihara bracket part to the whole
algebra Q(B), and the terms in the fourth row handle the non depth-graded parts.

Example 3.14. One computes

A —bopy (01) = [D2b0 — bob2, b1] — [b1bo — bob1, ba] + b1 [b1bo — bob1, bi],
dy, (babo — bobz) = [b1, b2]bo — bo[b1, ba],

Lemma 3.15. (i) If w € Q(by,b1), then di, is a special derivation (as in Theorem
dl (bo) =0, dl(by) = [w,bs] fora>1.
(i) The assignment (w,v) — di (v) is homogeneous for the weight, i.e., one has
wt (d?v(v)) = wt(w) + wt(v).

Proof. (i) follows immediately from §;(wibwa) = w1bqws for wy, ws € Q(bg, b1), dep(w;) =
j—1and lcg-a’o) =id. (ii) can be read of from Lemma [3.13 O

Note that (w,v) — d¥(v) is not homogeneous for the depth on Q(B), the last line in the
definition of d% produces terms of depth > dep(v) + dep(w).

The following definition is the main definition of this section, observe its similarities to
Theorem
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Definition 3.16. For f,g € Q(B), we define the g-Thara bracket as

Moreover, for f,g € Q(B) the pre-law of the g-Thara bracket is given by

st(g) = d}(9) +gf.
Thus, we also have
{f.9}q=s5(9) — si(f)-
Example 3.17. With the results in Example one computes

{b2bo — bob2,b1}q = — [b1bo — bob1, b2] + b1[b1bo — bob1, b1] — [b1, b2]bo + bo[b1, bo]
= — biboba + 2bgb1ba + 2b2b1bg — babob1 — b1babg — bobaby
+ 2b3boby — bybob? — b3by
One of the main results of this thesis is that the g-Ihara bracket is indeed a Lie bracket, so
it satisfies anti-symmetry and Jacobi’s identity. In particular, we will obtain a Lie algebra

(mg,{—, —}¢) (Theorem [3.20), which should be seen as a g-analog of the twisted Magnus
Lie algebra (mt,{—, —}) (Theorem [3.7)). To obtain these results, we need the following.

Key Lemma 3.18. For all f,g € Q(B), the following equality holds

q _ 1l
.03, = 15243
where [—, —| denotes the usual commutator bracket.

The proof is given in Subsection [3.3]
As an analog of the twisted Magnus Lie algebra mt (Definition , define the following.

Definition 3.19. Let mq be the subspace of Q(B) given by

mg={f€QB)|(f[1)=0}.
Theorem 3.20. The pair (mq,{—, —},) is a Lie algebra.
We will refer to this Lie algebra as the g-twisted Magnus Lie algebra.

Proof. From Lemma (ii) we immediately obtain that the g-Thara bracket {—,—},
preserves the space mq. It is clear from Definition [3.16] that the g-Ihara bracket is anti-
symmetric. Thus we only need to check Jacobi’s identity (see Definition [A.9). We compute

for all f,g,h € Q(B)
{fi{g:hatq +{9,{h, f}e}q + {0, {1, g}q}q

= B00) = AR =l ) = iy (1) = 1B+ 11,8 + 11, o]
Sl (F) — U R)) — d(Ih, S1) — Yy . (9) — 9. dLD] + lg YR + [g. 1, ]
T d3(d4(9)) — dL(as(1)) — di(1f.g)) - {fg}q<h> (b d3(9)] + [, d2( )] + [ [£. 9]
— [d%, d2)(h) + 9, d21(F) + [, d%)(g) — a2y (1) — & py (9) — %y (9)

=0.

The second equality follows from simple cancellation and Jacobi’s identity applied to the
commutator bracket, the third equality is obtained from Key Lemma [3.18] O
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The g-twisted Magnus Lie algebra (mq, {—, —},) is a generalization of the twisted Magnus
algebra (mt, {—, —}) (Theorem [3.7)), precisely the following holds.

Proposition 3.21. There is an embedding of Lie algebras
0;’ : (mtv {_7 _}) — (mqa {_7 _}l])a
Tsy ... Tg > —bg ... by

Proof. Let f,g € mt. Recall that the derivation d; in the Ihara bracket is given by
df(xo) = xo, df(x1) = [z1, f]. Thus, Lemma (i) implies that

0 (d =dl_ (0%
x(df(9)) ex(f)( x(9))
and therefore one computes

0% ({F.9}) = 03(ds(9)) — O(dy (1) + 05 ([f. 9]
—di_ (Oe(9) — d_ (0(1) = 62(1).0x(s)]

={0%(f),0%(9)}q-
O

Remark 3.22. In Section [4] we will embed the double shuffle algebra dmg contained in
mt into a subspace of mq. To preserve the symmetries of these subspaces, we will need a
more complicated embedding (cf Theorem 4.25)).
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3.3 Proof of the Key Lemma
To prove the Key Lemma [3.18 we need the following combinatorial identity.

Lemma 3.23. Lets>1, m >0, 01,...,0,>0and j <6, +---+ 05 +m, then we have

01 O 8 go Q) (mF+b+- -2 ——x)  (m
>3 e () ()= ()

xr1=0 rs=0w=1

Proof. Observe that for j < 0 both sides of the equation are equal to 0, thus we can
restrict to the case j > 0. To prove the equality consider the following generating series

in Q[z1, ..., 2]
0

0,

01 s 01

z z
Az, ... 25) = Z a01,-..,95ﬁ“- 6’8" B(z1,...,25) = Z bel,,..,esﬁ...
01,050 1 s* 015,05 >0 L

We compute directly that

A(z1,y...,25)B(z1,. .., 25)

= 1 T T1,...,2sY01—21,....0s—Ts 61'95'

01,...,0s>0 \z1=0 zs=0

For 01,...,0, > 0 and j,m > 0 set

(=Dottos o
Qgy,....0, = {(j—é)l—..._as)p J 01 0y >0,

) bo,,..0, = (m+601+---+05)
0 else

s

Then we obtain from the previous formula

' 01 0s 0, 95
A(z1,. .., 25)B(21, ..., 25) = Z ((m+91+---+93—])! Z( >< )

O1,....05>0 1=0  z.—0 \"1 Ls
0
] SRR b ) | L G i E PR
j*ﬂ?lf--'*.’ﬁs 91' 05'
On the other hand, we deduce from the multinomial theorem
1 J 0 0
Alz1,...,25) = — . —21)7 o (—26)7 3.23.2
( S) ]!917'%>0<017"'7GS7]_01_“'_9$>( ) ( S) ( )
1
— ﬁ(l_zl_"'_zs)J
Next, we show that
O +---+6
Blat,... ) = m! <m+ it )f" (L= 2y e ) D),
917”'79520 m7 1y---,Vs
(3.23.3)
The first equality follows from the definition of B(zi,...,zs) and we prove the second

equality by induction on m (where we omit the factor m!). If m = 0, then we obtain from
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the geometric series expansion and the multinomial theorem

(1—21—"‘—25)_1:Z(zl+“‘+zs)kzz Z (91 '1.6_9>Z?1"‘ng

01 +---+0
= Z ( 19—1_ _; S) 2?1 . ng‘
01,...,0s>0 1y.-.,U0s
Assume that (3.23.3]) holds for some m. Then differentiating with respect to z; gives

(m+1)(1 =z — - —z,)” "2 = Z (m+91+~"+95>912?11232."223
61>1,02,...,05s>0 m, 01, -, B

_ oy (mrehiees.
- m, 0y +1,0s, ... 0

)(91 +1)20 . 20
917---76520

and dividing by (m + 1) leads to

_ F1460+- 405\ 4
1— 2y — - — ) (m+2) m M L
(1== ) " %:N) m+1,61,...,0, |71 s

From (|3.23.2)) and (3.23.3]) we deduce for m > j that

m)

A(z1y ...y 25)B(21, ...y 25) = 7(1 e ZS)—(m—i-l—j) (3.23.4)
_ ml(m—j+6i+---+0s\ 9 4.
o Z il . 21 e Zg
01,...,0s>0 J: m_]791,...795
91 95
= > (")m—jro o
01,...,05>0 th 0!
and for m < j that
m! j—m—1
A(Zla-.-;Zs)B(Zl,...,ZS):?(1—21_..._28)] . (3235)

Assume that j < 61 + -+ + 05 + m, then coefficient comparison in (3.23.1]) and (3.23.4),
(13.23.5) gives

i i ﬁ(_l)xw<9w><m+91+---+95—$1—"'—$s> :{

z1=0 zs=0w=1 J— T T T T

(M, m=j,

0, m<j

)

01 s
For the first equality observe that the monomial %! e ‘Zi r does not appear in (3.23.5)) for
j—m >0+ 46 O

Now, we are able to give a proof of Key Lemma this means we show

d; 5. = d},d3),  f.g€QB).

56



Proof. (of Key Lemma Since we consider derivations on Q(B), the equality only
needs to be shown on the generators b; for i > 0. Evidently, we have for f,g € Q(B)

d o (bo) = 0 = [d% %) (bo).

Due to linearity, we can assume that f = by by, by ... bk, by and g = b{°by, b(" ... by, by°.
Then we obtain for each @ > 1 by the explicit formula in Lemma [3.13
df; oy, (ba) = A1(f,9) + A2(f,9) + As(f, 9) + Aa(f. 9)
- Al(.q’ f) - A2(97f) - A3(gv f) - A4(g7 f)
— A5 — As,

where (with the abbreviations k = ki + -+ kg, | =01+ +1le, ¥ =k +---+ k),
s=81+ -+ 4, t:t1+...+te)

e ki—1  kg—1ki—ki—1 ka—ky—1], 1 Li—1 Ltk —1liyai—=1 -1
ﬂg)ZZZZ DI IEED DD DD DR
= lk-’ k-’fo s1=0 sq=0 t1=0 ti—1=0 ;=0 t;41=0 te=0
. H(_l)k;+3u ky =1 Ky — k; -1 s (_1)tu ly—1 (_1)151‘ li+ K -1
/ .
u=1 k“ Su v=1 ty ti
v
72, i Tj—1 | 7.1 m m,
’ [boobll—tl bo' by —t, 0o [bO Obkrk;fabo EE bkd*k’d*SdbO ‘4 bli—ti"'k/]
5 7. +1
bO blL+1 —tit1 bOI . blefte 5867 ba+s+t} y
e ki—1  kg—1ki—k{—1 kq—kj—11,_1 Li—1 Lt+k'—1liy1—1  lo—1k4l—d—e

P3P REDIED IS DD IREDIED DED SEED DD 2

i=1 k’:O k’:O s1=0 sq=0 t1=0 ti—1=0 ;=0 t;41=0 te=0 r=1 hi+-+hrp1=s+t+1

d O T AN S A o (lo—1 (iK1
e () e )<-1>( )

r)
74 71 i —1 ()
“ba+hy—1bn, - - - bn, [boobh—tl bO : bl —1—1t; 1b " [b blﬂ A —slb bkd K/, —sdbO 7bl —t +k’}
n; u +1 n,
bO blz+1 tz+1b01 . ble*teboev bhr+1] )
e ki—1  kg—1ki—K;—1 ka—kj—1}_q li—1 Li=1 Liti—2ligi—1  le—1ip—1
YIRS DD SETD DED SN DI SIS S Z DD IEDIEEDY Z
i=1 k4 =0 k=0 s1=0 8a=0 p=liy+-Fipp1=k'+1t1= ti—1=0 ;=0 t;11=0 te=0i,=0
ipr1—1 d e -
pz H k’ tsu ky—1 Ky — k‘; -1 H(—l)t’” ly,—1 (_1)%‘ li+11—2
k! s t t;
=0 u=1 U u v=1 v g
+1 vi
o (-1
oy w T 70 7] i1 . i i mQ M1
. H (71) w ( 7:/ ) [bo bl17t1b0 “ee bli—l*ti_1b01 blifti‘f’ll*lbiz*ié e blp—lé |:b0 bk17k1751b0
w=2 w
mq n; Vi1 e
bkd K, —sdbo »bzp+1 i1 ]bo blm tz+1b0 'ble—teboevba+s+t+i’2+~~+i;+1]v
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e ki—1  kg—1ki—k{—1 kq—k,~1p_ g4 -1 Li—1 Li+ii—2liy1—1  lo—1ip—1

HUDEDIDIEED DD DD SED DD DD SED DD IR DD IS

i=1k{=0 k=0 s1=0 $a=0  p=liy+--+ipp1=k'+111=0 ti—1=0 ;=0 t;41=0 te=04,=0

ip+1—1 k+l—d—e—p d /
) e To i (R =1\ [k — K, — 1
PO, 2 o () ()

i = = hatos e =stttih ol 41 u=1 Su
¢ ly—1 Li+iy—2\ 2 i —1

N ) (D G T T 1™

v=1 t“ ti w=2 b

r)

74 3 i —1 ul m

Dty —1bhg - - bn, [boobll_tlbol Bty B0 bbby (BB i B
mq 75 41 7,

RV N SN [0 AR e VTS

and the A;(g, f) are obtained from the A;(f,g) by exchanging the roles of f and g (for
t=1,...,4) and

1= S S e () e ()

k;/lzo k:izotl:O te=0u=1 v=1

M m 7, 7 7
: Hbo gy -y b - Oy bg 5 b0 by, b - -ble—tebge] ; ba+k'+t]:

ki—1  kg=1li—1  le—1k+l—d—e d (ke — 1) & I —1
ZEDIED D IEED DY > Il U'“( K )HU)“( t >

k=0 k=0 t1=0 te=0 r=1  hi+-+hpp1=k"+t+1 u=1
s o m, 74 7 7,
bashy—1bny - - bp, Hbo by D - By, b Dby, O .blc,tcbof’} , bhm].

On the other hand, we obtain

d}(dg(ba)) — dg(d}(ba)) = Bi(f,9) + B2(f,9) + Bs(f,9) + Ba(f,9)

- Bl(g7f) - BQ(Q?f) - B3(gaf) - B4(gvf)
+ Bs + B,

where (again with the abbreviations k = k1 +---+kq, =0+ +1, K' =k +---+k),
8§ =581+ -+ 84, t:t1+---+te)

e ki—1 kq—111—1 le—1 d " e l -1
ST S S s () e ()
=1 k=0 k'"i=0 t1=0 te=0u=1 =1 v

70 71 M1 mo M1 Mg
TR AN P R T N ey

un 41 (7
bOlblHl*lebOl - bt bge, ba+t]a

e ki—1 kq—111—1 le—1l—e d Ak —1 e I -1
:ZZZZZZ Z (_1)PH(_1)M<“}% )H(_l)tu<vtv )

i=1k=0  k,=001=0  te=0p=1j1++jpp1=t+1 u=1
70 71 Ti—1 | 71m0 m1 mq
T T M N R TR [T PV Y YA VR T

7 nz+1 n, .
bO bl,+1 t1+1b0 . ble*teboev b]p+1:| )
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e ki1—1 kg—111—1 le—1k—d d . If 1 e l -1

! U ty [ YV

UED5) RIS 9 DS S SIND VIR ID | (UL (v D 1 (S (O
i=1k} =0 kfz:(] t1=0 te=0p=1 41+ +ipr1=k+1 u=1 u v=1 v
[BBOB B b b 1bia i (BB i G By 5 by

n; i1 n
bO blz+1 t1+1b01 . ble—te b067 ba+t] )

e ki—1 kqg—111—1 le—1 k—d

g)zzzzzzz Z lf Z (—1)Prtee

i=1k} =0 k!, =01t1=0 te=0p1=Li1+-+ip, 1=k +1p2=0 g1+ +jpy+1=1+1

—1) £ I, — 1 ~
H ( k/ ) H(l)tv< " )ba+j1—1bj2 pr [bo bll tlbO . 'bli—lfti_lbg 1

v=1

. . . 120 1 Mg 7, . 7 711 Ne .
bli—tz‘+l1—1bl2 s blpl [b() bk] —k] bO s bkd—kl’ib() 7b1p1+1] b() bl1+1 fz+1b0 : ble—tebOP’ bﬂp2+1} ’

the terms B;(g, f) are obtained from B;(f,g) by exchanging the roles of f and ¢ (i =

1,...4), and
Fu—1\ 1, o (lo—1
(e ()

T T 7, gz . mdq
[T o PV P TR I |

jlf_n’“i’f...lfﬁ ( k,‘l)ﬁu)“(“;l)

k’l =0 ké:() t1=0 =0u=1 v=1

ki—1 kqg—11;—1 le—

CEPES 3 S M1 (5

k,=0 =0£1=0

’ [bglobklfk/l bgnl S bkrkl’ib(y)nd> [bgoblrtlbgl oo bi—t bG, ba+k’+t“

k1—1 kq—111—1 le—1 k— d Mk —1 e L
Bﬁzzzzzz Z (_1)pH(_1)ku(uk/ )H(_l)tv<vtv )

E{=0 k,=0t1= i1+ Fip 1=k +1 u=1 U v=1

: (b(mﬂ-ll R S N S O Y [T P Py N |
p
= baia b b [D0 b b5t D by By by (6B, i DG - B D5 B

el m m, T 3 T,
= bakin1biy - biy [B67bk, g DG - By D [050b b e b,ﬂﬁt]])
k1—1 kqa—111—1 le—1 l—e

£ OEEH 5 i 5) SN DINE ) 1 (RIAT G D (ST Gl

k/—O k/—Otl te=0p=1j1++jpr1=t+1

' ( - ba+k’+j1—1 [banobkl—k'l bgu s bkd—kfibgde bj2 s bjp [bgobll—tl bgl s ble—tebge7 bjp+1“
p
+ D basrji—1bjy - b,y [bf)nobkl—k’l R TA bjz+k’]bjz+1 - bj, {bgobzﬁtl bg* - .- bio—e. b6, bjp+1}

=2

. . . 7.0 1 , My m1 mq .
+baﬂ1,1bj2...b]p[b0 by, s, b ...ble_teboe,[bo by - B0 - D, by ,bmﬁk,”)
k1—1 kqa—111—1 le—1 k—d

15 50N 55 SHE ) SINED DENED SNND DN ST

E{=0 kh=0t1=0 te=0p1=Li1+-+ip, +1=k+1p2=1ji++jpy+1=t+1
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d T A A |
Ao (M ) e ()

u=1

. . . . 10 1 LT N . . 70 71 7, X
-(baHlebw.,blm (66 b, g D5 - By D iy | b - By (8500 B - b1, b5 g

p1
720 71 7,
= bagis1bis - by iy 1bs by (B0 b b0 B by By D
=2

ipq
m m md
[bO Obkl—kibo Lo bkd—k"jbo 7bip1+1:|

. ) . el m1 md X X ) . 0 1 7, )
— Dbz By [V biy i BBy D By 1B - by (85000 0 e B g ]|

n n n m m ey
— bt tin—2bis - by [0 0GBt B By | Bia - Big, [0k kg D byt D iy 1

p2
. . . L . . mo 1 Mg 1. ) .
D bagi1bja - biubjpin1bis - biyy (BB BBy 06 Bigy s b By

=2

(600 b5 D by
Bt 10z - by (000t B - Bt B b1y - i, [0 bk, g D b B, biml“) .
We will show successively that A;(f,g) = Bi(f,g) for i = 1,...,4, and —A; = B; for
i =5,6.

We start by showing the equality A1 (f,g) = Bi(f,g). Fori € {1,...,e}, t, € {0,...,l,—1}
forv=1,...;i—1i+1,...,e, 04 € {0,...,ky, — 1} foru =1,...,d and 7 € {—(k —
d),...,l; — 1}, the coefficient of

SR Y e T PR PR R [ by

i+1—tit1

7,
oo bie—t. 00", ba+t1+“‘+ti71+ti+1+‘“+te+7+0'1+“‘+0'd:|

in A1(f,g) is given by
o d
(_1)t1+"'+ti71+ti+1+"'+te+7 i L Zd H (_1)zu+au (ku - 1) (ku - Ty — 1)
21=0 xg=0u=1 u
Li+xi++zg—1\ 1 (lo—1
TH+T1+ -+ 2g o1\ to
i

and the coefficient in Bj(f,g) is given by

d
(—1)t1+"'+ti—1+ti+1+~~-+te+r H ky —1 li—1 ﬁ I, —1 ‘
Ou T+o1+---+0g4 to

u=1 v=1
VF£L

Therefore, we have to show that

i i ﬁ(_l).’ru—‘ra'u(ku_l)<ku_xu_l> <li+$1+"'+$d_1>

z1=0 zq=0u=1 z Ou = Tu
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Applying the identity (ktfc:l) (kz,:f;:l) = (k’gl) (7) and substituting @, — oy — x, sim-
plifies the equality to

i i ﬁ(_l)xu<au> (li_1+0-1+"‘+0'd—$1—-~~—;L'd>

_ I — 1
S \rHoi+Fog)

This equation follows from Lemma substituting s = d, m = l; — 1, 0, = o, for
u=1,...,dand j =7+ 01+ -+ 04.

Next, we show that As(f,g9) = Ba(f,g). Fori € {1,...,e}, t, € {0,...1, — 1} for v =
Loooyi—li+1,....e,00 €{0,.c ky—1foru=1,....d, 7€ {—(k—d),...,l; — 1},
re{l,....,k+l—d—e}and hi+---+hpp1 =t1+---+ti1+tip1+- - Fte+o1+- - -+og+T,
the coefficient of

TS P [ R TR [ PO M

 biby bttt bi.—1,by°, bhr+1:|

i+1—ti+1Y0

in As(f,g) is given by

o o, d
(71)tl+"’+ti—1+ti+1+"'+te+7'+7" Zl .. Zd H (71)1'u+0'u (k“ B 1) <k“ = Tu 1)

z1=0  x4=0u=1 Ty Oy — Ty
. Li+z14+-4zg—1 ﬁ I, —1
T+x1+ -+ 24 el ty
v#£i

and the coefficient in Ba(f,g) is

d
(_1)t1+'”+ti71+ti+1+"'+te+7+'r H ku =1 li—1 ﬁ lh =1 )
Oy TH+o1+:---+0g ty

u=1 v=1
i

In particular, the equality As(f,g) = Ba(f,g) is proven similar to the previous case
Al(f7 g) = Bl(f?.g)

We want to show that As(f,g) = Bs(f,g). For i € {1,... e}, t, € {0,...l, — 1} for
v=1,...,i—1i+1,...;e,0, € {0,....ky — 1} foru=1,...,d,r € {1,...,k —d} and
t+to+ - Ftrp1 < o1+ -+ 0q4+1; — 1, the coeflicient of

| R R A JRY [T TR L R

74 41 7
’ bOlbli+1—ti+1bOZ oo bie—.bp”, ba+t1+"'+t7,'71+ti+1+"'+te+0'1+"'+0d+L*L2*"'*Lr+1+1:|

in A3(fa g) is

o1 o4 d

(_1)tl+"'+ti—1+ti+1+~~~+te+L—L2—~~~—Lr+1+7’+1 Z Z Z H(_1)$u+0u

z1=0 zg=0y1++yrt1=z1+Fz4+1 u=1
y; =1

ky —1 ky — 2y —1 li+y—2 y2 — 1 Yr+1 — 1 ﬁ ly, =1
Ly, Oy — Ty, y1+1¢ y2—t2)  \Yre1— trpa v—1 ty
v

61



and the coefficient in Bs(f,g) is

Ou

d
(_1)t1+-~~+ti—1+ti+1+~~-+te+L—L2—"~—Lr+1+r+1 H (k“ - 1)

u=1
i —1 ﬁ l,—1
o1+ +og+1l+ie—ta——trp1 ool ty
v

Therefore, we have to show that

d
S8 () ()
z1=0 zg=0y1+-+yry1=z1++x4+1 u=1 Lu yite

y;j =1

(-1 Yr1 -1\ _ li—1
Y2 — L2 Yr+1 — br41 0'1+"'—|—O'd+1+L—L2—~-'—LT+1 '

Substituting s =d, m=1;— 1,0, =oc, foru=1,...,dand j =01 +---+oq+1+1—
tg — -+ — tp4+1 in Lemma [3.23| yields

li—1
o1+ Fog+tltie—to— =1

—i...iﬁ(_l)xu Ou li—1401+-+og—x1—"—24
Tu)\o1+ - F+og+14+t—t0— —tpy1 — 21—+ — 24

z1=0 rq=0u=1
:i...iﬁ(_l)xu—&-ou Oy Li—1+xz1+--+x4 ‘
z1=0 zg=0u=1 Ty L—LQ—...—L,,,+1—|—1—|—x1+..._|_xd
Thus, we are left with showing that we have with x = a1 +--- + 24
Z ity —2)(y2—1 Yry1 — 1 _ Li—1+=x
Y1+ tyrp1 =+l yrrt y2—t2)  \Yr+1 — bra L=t — =+ 1+a)
y;=1

To prove this equality consider the following generating series

> hm2midnde i)y () ettt (3.23.6)
So\ li—2—utet Aty

=(1—2)"GQ - (1= )T

_ Z Y1+l —2—1\ [y +10—1 Yr41 + g1 — 1 e
li—Q—L Lg—l Lr+1—]_ ’

ylv"'7y7"+120

where we made use of the identity } (") 2 = (1—2)~ D (of (3:2333)). Coefficient
comparison in ([3.23.6) at z*t—2— =1t yields

li—1+x
li—=2—t+1a+ -+ trq1

= Z (yl th—2- L) <y2 2= 1) (yr—I—l Tt b1 — 1)
Y1+ Hyrp1=a+Hi—to——tpy1+1 li—2—1 t2—1 b1 — 1

y; >0
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which simplifies to (substitute y; — y1 +¢, yj = y; —¢; for j =2,...,r+1)

li—1+4+2 _ 5 li+y1 =2\ [y2—1 Yry1 — 1
L=l — " —lpt1 +1+zx Y1+t y1=z+1 Y1+t Y2 — L2 Yr+1 — br+1

y;=>1
This proves As(f,g) = Bs(f,g). Again the equation A4(f,g) = Ba(f,g) follows similarly
to this case.

Applying Jacobi’s identity for the commutator bracket, one easily obtains As + Bs = 0
and hence the desired equality —As = Bs.

Finally, we will show that —Ag = Bg. Any word occurring in Ag or Bg is of the form

Dactrs D - - - Dy, DO Bpey i B by U5 by by DEObr, B8 - by, Dbz, D

D, Dy, Day
(3.23.7)
or
batrs Dy - by U1y~ B b1, Dby by Dby g O™ - gy bz - by

for some k, € {0,..., k, — 1} foru=1,...,d,t, € {0,...,l, —1} forv=1,...,e, wy > 1,
wy >0, wy € {0,1} and @1 + -+ Xwy + Y1+ F Yup + 21+ -+ 2wy = K+ 1. We
will focus on the first case , the second case is proven completely similar due to
anti-symmetry. If wy = w3 = 0, the part of —Ag containing words of the form is
given by

d e
(- L=k <k”k,_ 1) [Tt <l”t_ 1) 3 (3.23.8)
u=1 u v

v=1 hite b, =k +t41
*bathy—1bhy - - - bhy, bg"”bkl_kll bo't ... bkd_k&bgndbgobll_tlbgl T
and the part of Bg containing words of the form ([3.23.7)) is

d e
GO R | [C Vi (k“k,_ 1) [T-v* (l”t_ 1) (3.23.9)
u=1 v

u v=1

m m M 1.7 7 e
: ( > Datthis —10i5 iy B9 Dky e 0 - Doyt 06 05 bty 1,05 -+ b, 1, b
i1+t i, =k +1

+ Z ba+j1_1bj2 e bjw1 bgnobkl_kllbgll e bkd_k(/ibgldbgobll_tlbgl . ble—tebge
R
wi—1

+ Z Z Z ba+j171bj2 R bjw/lflbjw/1+i171bi2 R biw17w3+1
wh=2 i1+~~~+iw1_w/1+1:k’+1 j1+---+jw/1 =t+1

mo m1 mqino 1 e
'bo bkl_kllbo ...bkd_k‘/ibo bO bll*tlb(] "'bleftebo ).

The three terms together in (3.23.9) give exactly all possibilities for the decomposition in
(13.23.8]), thus these two terms agree.

Next we consider the case wy = 1, w3z = 0, then in —Ag occur no words of the form

(3.23.7) and the part of Bg containing words of the form (3.23.7) is given by
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d e
(_1)w1 1:[ (_1)k; <kuk/— 1) H(_l)tv (lut: 1)

u=1 v=1
mQ st uri 0 1 Ne
.<_ > Darttin—1Diy - - biyy 05 bk, gy 05" - by by bl r, —, b - by, g, b
i1 iwy =k +1
mo mi mq 0 71 Tle
+ > Datin—10iz -+ By U5 g, g 05+ gy b5 it b5 bty —, 05" - b~
1 i, Hi=k/+1
. . . . 710 M1 Mdp 1,10 n1 e
+ > Batju—10js -+ By 1 Djy 44700 Oy iy UG+ Doy B D505 buy 1, B5" -+ b, 1, b
Jitetjwy =t
. . . mo mi mdzy, . no 71 Ne
- > Bartji 105 + - Doy DGOy gt b5 -+ gy By b5 buy 4,0 - b, b
Jietjwy Fi=t+1
u m m 7 T T
+ > D bavivrgi—1bip - iy 05 0bg, gy UG by by b6 by g G by, b
i1y =k +1 j1Hj=t+1
w1—1
+> > 2 baiabi by bi b iy
wi=2 z1+~~~+iw17w/1+1:k’+1 ]1+"'+Jw/1+j:t+1

7m0 m1 mdyp 1,120 ust m,
Dbk, g DG - by b 000 by, UG - by, G

w1
-y 3 Y by by b nmab b,
L R L e s

m m Wz T i Te
By g D™ Dy D bib by g, B by, B >

As in the previous case, the sum of the second, third, fifth, and sixth terms is equal to

3 Dt —10h - - - Dy Dby gt O™ by B bbby, e, O by, e, b
hi++thw, +h=K+t+1
(3.23.10)

and the sum of the first, fourth, and seventh terms is equal to the negative of .
Thus the terms in Bg, which are of the form with we = 1, wg = 0 cancel out.

Next, we consider the case wy = 1, wy > 2, wy = 0. Again there are no words in — Ag,
which are of the form . Moreover, the parts in Bg having the form in are

d e
(=17 [T (= (’““k,_ 1) 11" (l”; 1)

u=1 v=1
X mo m1 mdy, . A 70 71 Ne
( > Dt ti—100 b~k 00+ - Doy 05 0y - b, 06001y 0 - b1, B
JHitt b jwy =t 41
mo m1 mq 10 1 Tle
- > ba+j—1b0 "y —k 00" -+ - Okg—tt, Do Ojy k70 - - - 0oy, 0601 16" - - - it by
j+jl+"'+j1.02:t+1
mo m1 mq
- > > batir+j—2b0 "Dk —k 0" - - - Oky—kt by

i1+io=k'+1 j+j1++Jwy—1=t+1

n n
. bi2bj1 R bjwzflb()obll—hbol e ble—tebge

mo my mqy
+ Z Z ba—l—il—lbo bk1,k1b0 s bkdfkélbg bl2+]1—1
i1+io=K'+1 1+ +juwy =t+1

by - DOl e R ble_tebge> .
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As before, the sum of the first and fourth terms and the sum of the second and third terms
cancel out, therefore also Bg has no terms of the form (3.23.7)) (if wy = 1, we > 2, and
w3 = 0)

Finally, we consider the case w1, ws > 2, w3 = 0. Then there are no words in —Ag, which

are of the form ([3.23.7]), and the parts in Bg of the form (3.23.7) are given by

d e
(=" JL=D* (k“k,_ 1) [T" (l”t: 1)

u=1 v=1

. . . 7120 11 Mdy .
’ < - Z ba+]l_1bj2 te b.]wl bO bk1fk’160 te bk’d*k&bo b]w1+1+k/bjw1+2
Jit At Jwy 4wy =t+1

. 0 1 ()
By D0 b1 0, OG- b e B

. . . . mo mi1 mdyp . .
+ > Datji 167z + Dy 1 405 "Bk i 05+ Ot 00 D 1+ D 1y
Jittwg 4wy =t+1
un n1 Ne
b0y, 4, bt . by, g b
. . . . 170 mi map . f .
_ 3 > Da-tir-+j—2bis - - - Diyy D0 bk k1 05" - - - by b5 “Dibyy
i1t +iwy H=K 41 j+Hj1+ At Jwy —1=t41
. ) 1 Ne
o by 1 00b e b by, B
. . . . mo m1 Wry e
+ > > Da-tir+5—2bis -+ Dinyy B9 "Dy~ 06 - - Doyt 5 by
i1 i =K 1 471wy =t 41

Ty T T
P b]w2 boobll_tlbol P ble_teboe

mo mi mq
+ > > batiy—1biy - Dy g by ey by - - Oy gt Do big iy —10j
Z1++'Lw1 +i=k'+1 jl++]w2:t+1
)

T n T
g 00" 0100 -+ D1 —.bp°

wi1—1

_ Z Z Z ba+j1—1bj2 . bjwl_w,l bjwl_w,1+l+i1—1bi2

w’1:1i1+~~-+iw/1 HI=R Lty —w! fwy =t

m,
by Dby Db b i BIOby, g, bEL .. by, g bR

wlfw/1+2 T jwlfw/1+w2

wi—1

+ 2 > > batin—1bj -+ biy oy iy o rin—10iz

wh=2 i1+---+iw/1 =k'+1 j1+"'+jwl_w/1 Fwg41=1H1
. 10 11 mdp . . 70 ni n
. bzw,l bO bkl*k/l bO - bkd*k/db() b]w17w3+2 ce bjwlfw/1+w2+1b0 bll—tlbo ce ble—teboe> .

For the same reason as before, the sum of the second, fourth, fifth, and seventh terms and
the sum of the first, third, and sixth terms cancel out. This means, in Bg there are no
words of the form (for w1, wy > 2, ws =0).

To prove the claim for w3 = 1, one can use the same case distinction and obtains the
results in the same way. O
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3.4 Towards a g-twisted Magnus affine group scheme MQ

We will present some tentative results towards an affine group scheme corresponding to
the g-twisted Magnus Lie algebra (mq, {—, —},). In particular, as an analog of the twisted
Magnus affine group scheme MT (Definition [3.3)), we define the following.

Definition 3.24. For any commutative Q-algebra R with unit, define
MQ(R) = {f € R{(B)) | (f [ 1) = 1}.
Here R((B)) denotes the completion of R(B) = Q(B) ® R with respect to the weight.

Definition 3.25. Let R be a commutative Q-algebra with unit. To all G, H € R{(B)),
assign an algebra morphism (with respect to concatenation)

Kig.m + RUB)) = R{(B)),
such that the following conditions hold
(i) The map R((B)) x R{(B)) — Endgr(R{(B))), (G, H) — /i‘(qu) is bilinear,
(ii) For all G € R((B)), one has

Fe (1) =gy =1, (g bo) = k(g (bo) = bo,

(iii) For any word w = by"bg, b(™ ... b,by" in R(B) and a > 1, we have

ki+-+kqg—d

r a—1,r
“?1,11;) (ba) = Z (-1) lcg Do 81(baw),
r=0
ki4-+kq—d (a=1)
”((]w,l)(ba) - Z (_1)T1Cd+1 "0 day1(why).
r=0

(iv) For all G, H € R((bo,b1)) and a > 1, one has

ﬁl(lGﬂ)(bo) = by, ”((]G,H)(ba) = Gb, H.

For two elements G, H € MQ(R), we set then
G @q H = K/L(]G7G,1)(.H)G.

Here G~! denotes the inverse with respect to the concatenation product.

Conjecture 3.26. Let R be a commutative Q-algebra with unit. For all G,H € R((B))
there are maps /i((lcﬂ) satisfying the conditions in Deﬁmtion such that

MQ : Q-Alg — Groups, R — (MQ(R), ®,)

s a pro-unipotent affine group scheme.

66



Let w1, = bgnobkl bgll e bkdbgw, wo = bgobllbgl RPN blebgﬁ be words in R<B> (Where ]{,‘1, ceey kd,
liy...yle > 1, mq,....,mg,n1,...,ne > 0) and a > 1, then a naive guess for the algebra
MOrphism Ky, ) 18 given by

/@‘(le’wz)(l) =1,

K((]wl,wg)(bo) = bo,
ki+-tkgtli+-+le—d—e (a—1.r)
K((]wl,wg)(ba) = Z (*1)74 1Cd+1 ’ 05d+1(w1baw2).

r=0

For each Q-algebra R, let mq(R) = mq ® R and by mq(R) we denote the completion of
mq(R) with respect to the weight.

Theorem 3.27. Assume that Conjecture [3.26 holds. Then the corresponding Lie algebra
functor to the affine group scheme MQ 1is given by

Mg : Q-Alg — Lie-Alg, R — (an(R), {-, —}q).

Proof. It is obvious that the underlying sets of the Lie algebra functor to MQ are exactly
given by the sets mq(R) (cf Definition [A.88]). Thus, we are left with deriving the Lie
bracket on mq(R) from the group multiplication ®, on MQ(R). Let G € MQ(R) and
consider the endomorphism

04(G) : R((B)) = R((B)), H— G ®, H.

By Rle] we denote the algebra of dual numbers, so €2 = 0. For f € mq(R) we define the
endomorphism 5; : R((B)) — R((B)) by

(1 +¢ef) =id+€55.
Denote by [—, —]e , 1s the corresponding Lie bracket to ®,, then we obtain
Sifgle, = 55250 fg € ma(R). (3.27.1)
We compute for f € mq(R)
Ltef=04(1+ef)(1) = (id+esp)(1) =1 +e5¢(1)

and therefore we have 57(1) = f. So evaluating in 1 we get

Fogley = 37(0) — 3,(f),  fg € ma(R). (3:27.2)
Moreover, we define for f € mq(R) the endomorphism d; : R((B)) — R{(B)) by
=id —|—6Jf.

q
B(1tef,(1+ef)1)

Since /’it(ll bef.(14ef)-1) is an algebra morphism by assumption, we compute for f € mq(R)

and u,v € R((B))

(ureraren (00 = uieraienn W aren—©)
= (u+edp(u))(v+ed(v) = uv + e(udp(v) + dp(u)v).
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So Jf is a derivation (for the concatenation product) and hence it suffices to obtain an
explicit formula on the generators b;, i > 0. We have for a > 1

q

R(tres,ater)-1)(b0) =bo+e-0,

(
Wisepren (Be) = Wlaepaep (ba) = 5y 1) (ba) + (5 1) (ba) = 5ty (b)),
where ‘Ehe last equality follows from the assumption that (G, H) /ﬁ‘(JG ) is bilinear.
Thus, dy is the derivation determined by

d(bo) =0, dp(ba) = K{s 4 (ba) = Ky 5 (ba)

From the definition of d‘} (Definition and the third requirement on x? (Definition

j we deduce that dy(b,) = d}(bs) for all @ > 1. In particular, we get dy = d} for all
€ mq(R). Finally, we calculate for f € mgq(R) and w € R{(B))

01+ ef) (W) = Kaiepaiep-1) (W) (A +ef) = (w+edj(w)) (A +ef) = w+e(wf + dj(w)).

and therefore
§p(w) = di(w) +wf.

In particular, the map 57 equals the pre-law 8;{ of the g-Thara bracket (Definition .
By (3.27.2)) the Lie bracket on mq(R) is given by

[f,9le, = s5(9) — si(f) = di(g) + gf — di(f) — fg ={f g}q

where the last equality follows from the definition of the g-IThara bracket (Definition (3.16]).
O

Remark 3.28. (i) Since we expect that MQ is a pro-unipotent affine group scheme with
Lie algebra functor mq, there should be a natural isomorphism exp : mq — MQ (Theorem
. In particular, the g-Thara bracket {—,—}, on mg should determine the group
multiplication on MQ uniquely via the Baker-Campbell-Hausdorff series. This approach
to the group multiplication on MQ seems to be too extensive for this work.

(ii) In [Rac02, Section 3.1] another extension of the twisted Magnus affine group scheme
MT and the twisted Magnus Lie algebra mt is introduced. The product and Lie bracket in
this generalization are homogeneous in weight and therefore differ significantly from the
generalization given in this section.

Proposition 3.29. Assume that Conjecture holds. Then for each commutative Q-
algebra R with unit, there are embedding of groups

o3 . (MT(R),®) — (MQ(R), ®,),

Ty - Tg > bg, .. b,

Proof. Let G,H € MT(R) and recall that the algebra morphism k¢ in the group multi-
plication ® is given by kg (zo) = 20, kg(r1) = G~l21G. We deduce from the condition
(iv) required for x? (Definition [3.25) that

g?ynti(’iG(H)) = I{?eg(nti(G)ﬁ}nti(G)—l) (ei'nti (H))
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Therefore, we get

0¥ (G ® H) = 03" (Gra(H)) = 03" (va(H))05(G)
= ﬂ?g}nti(G)’Q}nti(G)fl)( aXntl (H))@}ntl(G)

= 0(G) @, 03" ().
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4 Lie algebras for Z;: Non-commutative approach

We expect that the algebra of multiple zeta values is a free polynomial algebra decompos-
ing into the algebra generated by ((2) and the graded dual of some universal enveloping
algebra (Conjecture [B.10). G. Racinet proved in [Rac00] that the algebra of formal multi-
ple zeta values (Definition admits this decomposition (Corollary. So assuming
that the algebra of formal multiple zeta values is isomorphic to the algebra of multiple
zeta values, one would obtain this decomposition for the algebra of multiple zeta values.
Even more, this decomposition gives evidence for Zagier’s dimension conjecture (p. [196]).
To show the decomposition of the algebra of formal multiple zeta values, G. Racinet in-
troduced a pro-unipotent affine group scheme DMy (Definition having values in the
weight-completed dual shuffle Hopf algebra (Proposition and a corresponding Lie
algebra dmg (Definition [B.27).

We are interested in establishing an analog approach for multiple g-zeta values. In par-
ticular, we will introduce a weight-completed Hopf algebra consisting of non-commutative
power series and the algebra Zg of formal multiple g-zeta values, whose definition is moti-
vated by the balanced multiple g-zeta values. We will see that there is an affine scheme BM
with values in this weight-completed Hopf algebra, which is represented by the algebra Z{
of formal multiple g-zeta values. This leads to the definition of a space bmg, which should
be seen as the dual of the space of indecomposables of Z({ (modulo the ideal generated by
the formal elements Cg (2), C({ (4), C({ (6)) and contains the double shuffle Lie algebra dmy.
We expect that bmy is a Lie subalgebra of the g-twisted Magnus Lie algebra (mq, {—, —}4)
introduced in Subsection Numerical experiments show that for small w the dimension
of homogeneous subspaces of bmg of weight w coincide with the conjectured dimensions in
1.22] (iii). At the end of this section, we will consider the associated depth-graded space (b
to bmg. We will show that [b is properly embedded into some Lie algebra lq equipped with
the depth-graded g-Thara bracket {—, —}5) and we expect that [b is a Lie subalgebra of Iq.
For small numbers w and d, we obtained by numerical experiments that the dimensions of
the homogeneous subspaces (bW of weight w and depth d coincide with the dimension

conjecture [1.23) (ii).

4.1 The balanced quasi-shuffle Hopf algebra

We will introduce a Hopf algebra, which should be seen as an analog of the shuffle Hopf
algebra as well as the stuffle Hopf algebra for multiple zeta values (Proposition .
To obtain this Hopf algebra, we focus on the algebraic structure of the balanced multiple
g-zeta values introduced in Subsection [2.6]

Consider the alphabet B = {bg, b1, ba, ...}, denote by B* the set of all words with letters
in B, and let 1 be the empty word. Equip the free non-commutative algebra Q(B) with
the balanced quasi-shuffle product %, on Q(B) corresponding to (cf Definition [A.52))

bA+' ifi,j>1,
i 0q b = {OZ ’ else '

Let Q(B)Y be the subalgebra of Q(B) generated by all words, which do not start with bg.
Then the involution 7 : Q(B)? — Q(B)? is given by 7(1) = 1 and

7Dy DI - b b)) = by 108 by 11 BB (4.0.1)
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By Theorem we have a surjective 7-invariant algebra morphism
C(I : (Q<B>Oﬂ *q) — (an ')7 (402)
bs, ... bs, = Cg(S1,...,81).

Both the product formula and the 7-invariance of the balanced multiple g-zeta values are
completely explicit and of a simple shape. For the combinatorial bi-multiple Eisenstein
series (Deﬁnition the swap invariance is only easy to handle on the level of generating
series, thus we prefer the balanced multiple g-zeta values in this context.

In the following, we will introduce a weight-graded Hopf algebra structure on (Q(B), *,)
and determine its completed dual.

Definition 4.1. Let Agec : Q(B) — Q(B) ® Q(B) be the deconcatenation coproduct, so
for each word w € Q(B) one has

Agec(w) = Z U .

Observe that the deconcatenation coproduct satisfies the recursion
Adec(biw) = (bz ® I)Adec(w) +1® biw7 b; € Ba w e Q<B>

Theorem 4.2. The tuple (Q(B), *q, Adec) s a weight-graded commutative Hopf algebra.

Proof. Since (Q(B), *4) is a quasi-shuffle algebra, this follows immediately from Theorem
1A.59) O

Note that Agee does not preserve the space Q(B)°, so Q(B)? cannot be seen as a Hopf
subalgebra of (Q(B), *¢, Adec)-

We will give a completed dual for the Hopf algebra (Q(B), %4, Adec) With respect to the
weight. For any commutative Q-algebra R with unit, denote R(B) = Q(B) ® R and let
R((B)) be the completion of R(B) with respect to the weight (cf Proposition ie.,

R((B)) = [ R(B)™,

w>0

where R(B)(®) denotes the homogeneous subspace of R(B) of weight w. In particular,
the elements in R((B)) are formal non-commutative power series in the alphabet B with
coefficients in R. The space R((B)) is filtered by weight and depth. Similarly, denote by
R{(B))® completion of the vector space R(B)? = Q(B)" ® R.

Definition 4.3. Define the coproduct A, : R((B)) — R{(B)) ® R((B)) by

i—1
j=1

and extend this definition with respect to the concatenation product.

Theorem 4.4. The tuple (R{(B)),conc,A,) is a complete cocommutative Hopf algebra.
The pairing

R((B)) ® Q(B) — R,
dRw— (P | w),

where (® | w) denotes the coefficient of w in ®, gives a duality between the weight-graded
Hopf algebra (Q(B), *q, Adec) and the complete Hopf algebra (R((B)),conc, A,).
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Proof. We prove the duality of (Q(B), *¢, Agec) and (R((B)), conc, A,) with respect to the
given pairing. Then (R((B)), conc, A,) is a cocommutative Hopf algebra (Theorem |A.31)).
It is well-known that Agee and conc are dual maps. Moreover, for u, v € Q(B) one obtains

i—1
(Ag(bi) u®v) = (1®bi+bi®1+2bi®bi_j ’ u®v) = (bi | uxqv)
j=1

The last equality holds, since the word b; appears in the product u *, v if and only if

u=1 v="boru=1"b, v=1o0ru=bj, v=>b_;forsomej=1,...,7—1 Since 4,
is compatible with the concatenation product by definition and the letters b; generate the
algebra (R((B)),conc), we deduce that the maps A, and #, are dual. O

Note that the coproduct A, does not preserve the space R{{B))°.
Lemma 4.5. The antipode S, of (R((B)), conc, Ay) is the anti-automorphism defined by

Sq(bo) = —bo,

Sy (ba) :Za: > (=1)"bj, ... by, a>1.

r=1 j1‘+~'~—&ij:a
Jiyendr21

Proof. The letter by is primitive for the coproduct A4, thus we deduce from Theorem
(ii) that Sy(bop) = —bo. Moreover, compute for a > 1

a—1
(conco(S, @id) o Ag)(ba) = Sy(1) - ba + Sy(ba) - 1+ D Sy(bn) - ban
n=1

a a—1 n
=ba+>, > (=D)Tbj by YD > (=1)%, .. by ba
r=1ji1++jr=a n=1s=14i1++is=n
J1seensdr21 01 yeeyls > 1
a a—1
=3 ) Db b+ > > (= 1)hyy by,
r=2ji1+---+jr=a s=1i1++is+1=a
J1seensdr21 11,e.yls41>1

=0=c¢(by)
and similarly one checks
(conc o(id ®Sy) o Aq> (be) =0 =¢(ba), a>1.

O

Relation to the Hopf algebras of multiple zeta values. Consider the shuffle Hopf
algebra (Q(X), W, Agec) (Proposition and the stuffle Hopf algebra (Q(Y), *, Adec)
(Proposition defined within the context of multiple zeta values. Both of them are
closely related to the balanced quasi-shuffle Hopf algebra (Q(B), %4, Agec), more precisely
there are two surjective Hopf algebra morphisms

(Q(B), %g; Adec) = (Q(X), LU, Adec),
by — xo,
b1 — x1,
bi—0, i>2
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and

(Q<B>7 *q5 Adec) - (@<y>’ *, Adec)a
bo — 0
bi = Y, 1> 1.

By duality, we also obtain two injective Hopf algebra morphisms

Ox : (R((X)), conc, Ay) — (R((B)),conc, Ay), (4.5.1)
o bo,
x1 > by,
and
0y : (R((V)),conc, A,) — (R({(B)), conc, Ay), (4.5.2)

Remark 4.6. The stuffle Hopf algebra (Q()), %, Agec) can be identified with the Hopf
subalgebra of (Q(B), *¢, Adec) spanned by all words, which do not contain the letter by.
This leads to an injective Hopf algebra morphism

(Q<y>7 *a Ad‘EC) — (Q<B>7 *qa Adec)a
yi by, 1> 1.

On the other hand, we have by x; b1 = Qb% + by, and thus the words containing only the
letters bg, by do not span a Hopf subalgebra of (Q(B), *4, Adec). Therefore the shuffle Hopf
algebra (Q(X), L, Agec) does not canonically embed into (Q(B), *4, Adec). In particular,
one obtains a sequence of Hopf algebras

0= (QUV), *, Adec) = (Q(B), *q, Adec) = (Q(X), 1, Agec) — 0, (4.6.1)

which is nearly exact (the only exception is the span of the words b} € Q(B), n > 0).
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4.2 Regularized multiple g-zeta values

We introduced the balanced quasi-shuffle Hopf algebra (Q(B), *4, Adec) and observed that
the coproduct Agec cannot be restricted to the subalgebra Q(B)? (or respectively the dual
coproduct A, to R{(B))°). So to define the algebra of formal multiple q-zeta values, we
have to extend the algebra morphism ¢, : (Q(B)°, ;) — (2,,") given in to the
whole algebra Q(B). This will yield the definition of regularized multiple g-zeta values.

Proposition 4.7. Let T' be a formal variable and extend the product , by Q[T]-linearity
to Q(B)°[T]. The map

reg, : Q(B)°[T] — Q(B),
wT™ = w g by
is an algebra isomorphism for the balanced quasi-shuffle product *,.

Proof. For the surjectivity of reg,, we show that any word w € Q(B) is a polynomial in bo
with coefficients in Q(B)°. Let w = by"by, by"" ... by, by'¢ for some integers ki, ..., kg > 1
and my, . .., mg > 0. We prove by induction on my, that w = u+wvx,by for some u € Q(B)°
and v € Q(B), where all words in v have weight < wt(w). Then induction on the weight
proves the claim. The case mg = 0 is trivial, simply choose u = w, v = 0. Next, calculate

T T N o T I N A
d
+ > " (mi + 1) b o, bbby b b b b
=1

Applying the induction hypotheses to every word in the second line leads to

1 mo— UL e
w:%(u+(v+boo Yok, 05+ by b *qbo)

for some u € Q(B)? and v € Q(B), where v + bg‘o_lbkl byt ... b, by consists of words of
weight < wt(w).

Let P € Q(B)°[T]\{0} and write P = wT™ + R, where w € Q(B)°\{0} and R € Q(B)°[T]
is a polynomial of degree < n. We have

reg,(P) = w *4 b + reg,(R) = nlbjw + w,

where w € Q(B) consists of words with at most (n—1)-times the letter by at the beginning.
We deduce reg,(P) # 0, thus reg, is injective. O

Definition 4.8. For every w € Q(B), define the regularized multiple g-zeta values by

Gie(w) = G (regy " (w)lr=o)-
This definition is unique in the following sense.

Theorem 4.9. The map (*® : Q(B) — 24, w — (*®(w) is the only map satisfying

(i) ¢ Bw) = Cq(w) w € Q(B)°,
(i) ¢ o) = 0,
(iil)  GErqw) = GB)GEwW), v,weQB).
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Proof. Since reg, is the identity on Q(B)Y, the map (8 satisfies (i). Moreover, we have
(reg,)"(bo) = T and thus (}°8(bg) = 0. Finally, reg, is an algebra isomorphism for x,,
hence (3 satisfies (iii).

By Proposition any word w € Q(B) is a polynomial in by with coefficients in Q(B)°.
Thus any algebra morphism on Q(B) (with respect to the product %4) is uniquely deter-
mined by its values on by and words in Q(B)°. O

Note that the map 7 is only defined on the space Q(B)° (cf (4.0.1))) and not on Q(B), thus
we cannot require all regularized multiple g-zeta values to be 7-invariant.
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4.3 Formal multiple g-zeta values

Similar to the case of multiple zeta values ([IKZ06|], [Ec02]), we want to formalize the
algebraic relations satisfied in the algebra Z,. To describe them we use the spanning set
given by the balanced multiple g-zeta values (4(s1,...,s1), s1 > 1, s2,...,51 > 0. In
(4.0.2) we have seen that there is a 7-invariant surjective algebra morphism

Cq : (Q<B>O’*Q) - (Zq’ ')7

bs, ... bs, = Cg(S1,...,81).

Actually, we expect that all algebraic relations in Z, are encoded in this morphism, which
means that all relations in Z; should be a consequence of the balanced quasi-shuffle product
formula and the 7-invariance of the balanced multiple g-zeta values (Conjecture .
This conjecture together with the regularization obtained in Theorem motivates the
definition of the algebra of formal multiple g-zeta values.

Definition 4.10. The algebra Z[{ of formal multiple g-zeta values is given by

Z‘.lf = (Q<B>7 *q)/Relq’

where Rely is the ideal in (Q(B), *,) generated by {bo} U {w — 7(w) | w € Q(B)°}.

Denote by C({ (w) the image of w € Q(B) in the quotient space Z({ and set C({(l) = 1. Then
Zgj is the weight-graded algebra spanned by the elements C}; (w), w € B*, which exactly
satisfy the following relations

@) o) = 0
(i) ¢Joxqw) = )W), vweQB)
(i) ¢f(r(w) = Jw), weQ(B)’

Observe that we have similar to Theorem |4.9)
C({(w) = Cg(reggl(w)\T:()) for all w € Q(B).

Thus, the space Z({ is spanned by the elements CJ (w), where w € Q(B)" are words.

Remark 4.11. In [BIM] the algebra of formal multiple Eisenstein series is studied, which
is isomorphic to the algebra Zg (on the level of generating series the isomorphism is given

by #vy, cf Theorem [2.74)).

Proposition 4.12. There is a surjective algebra morphism

zl - z,,
CHw) — CB(w).

Proof. By Theorem the elements (;°¢(w) satisfy the properties (i) and (ii) of the for-
mal multiple g-zeta values. For each w € Q(B)° one has (*°8(w) = (,(w) and the balanced
multiple zeta values are 7-invariant on Q(B)° (Theorem . Thus the regularized mul-
tiple g-zeta values (;°®(w) also fulfill condition (iii) of the formal multiple g-zeta values.
This shows that the given algebra morphism is well-defined. Since the balanced multiple
g-zeta values form a spanning set of Z, (Proposition , one obtains surjectivity. [
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All relations in Z, should be induced by the balanced quasi-shuffle product formula and
the 7-invariance of the balanced multiple g-zeta values (Conjecture [2.59)), therefore we
expect that the morphism in Proposition [£.12]is an isomorphism.

By definition, the algebra Z({ is equipped with the following universal property.
Proposition 4.13. For every Q-algebra R and every algebra morphism
¢ : (Q(B),xq) = R,

which is T-invariant on Q(B)°, there exists a unique algebra morphism  : Z({ — R, such
that the following diagram commutes

f
QB) — s 2
\ .

1

R

Similar to the case of multiple zeta values ([Rac00]), we want to relate the algebra Z({ to
a subset of the Hopf algebra (R((B)),conc, A,).

Definition 4.14. For each commutative Q-algebra R with unit, denote by BM(R) the set
of all non-commutative power series ® in R((B)) satisfying

(i) (@lbo) = 0,
(i) Ay P) = R,
(i) 7(Io(®)) = Io(P).

Here TIy denotes the R-linear extension of the canonical projection Q(B) — Q(B)", which
is the identity on Q(B)? and maps all words starting with by to 0.

Let BMg(R) be the subset of all ® € BM(R) additionally satisfying
(iv) (@ [b2) = (@ bs) = (® | bs) = 0.

Theorem 4.15. For every commutative Q-algebra R with unit, there are bijections

f
BM(R) ~ Homg-ag(Z2],R),  BMo(R) ~ Homg.aj <Zq/(<g(2), ¢l(4), g{(es))’R)'

In particular, BM : Q-Alg — Sets is an affine scheme represented by the algebra Z{ and
. zf
BMg : Q-Alg — Sets is an affine scheme represented by <4 .
0:Q-Ale . v V@, .4 ©)

An introduction to affine (group) schemes is given in Appendix
Proof. The first bijection is given by the map
f : Homg.alg(Z], R) — BM(R),
o Y (] (w)w.

weB*

Let ¢ : Zg — R be a Q-algebra morphism. Since C(;(bo) = 0, we obtain (f(¢)|bp) = 0.
The formal multiple g-zeta values satisfy the balanced quasi-shuffle product formula, thus
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we have (f(¢)|u*qv) = (f(@)|u)(f(e)|v) for all u,v € Q(B). From the duality of *, and
Ag (Theorem [4.4)), we deduce

(Aq(f(9)) [u@v) = (f(p) | uxqv) = (f(¢) [u) (f(¢) [v) = (flp) @ flp) [u@ )

for all u,v € Q(B). In particular, the power series f(y) is grouplike for A,. Since 7
maps words onto words, the T-invariance of the formal multiple q-zeta values on Q(B)°
implies 7(ITo(f(¢))) = o(f(¢)). This shows that ¢(f) is contained in the set BM(R) and
therefore the map f is well-defined. The inverse of f is given by

BM(R) — Homg_ai (2], R),
= (¢f(w) = (@ | w)),

hence f is indeed a bijection. It is an immediate consequence that f also induces a bijection

{ € Homg ai(2], R) | (¢ (2)) = #(¢] (4) = 0(¢[(6) = 0} — BMo(R),
e f(p)

By the universal property of the quotient space, the set on the left hand side is in bijection
to

z/f
Homg. q SR |.
Q-Als < (d@.d@.d©) )
This yields the second claimed isomorphy. O

Corollary 4.16. For the regularized multiple g-zeta values given in Definition [4.8, one
obtains

Y. GE(w)w € BM(Z,).

weB*

Proof. Apply the bijection in Theorem to the Q-algebra morphism
zI = 2, ¢f(w) = (% (w)

given in Proposition O

Relation between formal multiple g-zeta values and formal multiple zeta values.
Let R be a commutative Q-algebra with unit. We relate the set DM(R) defined for multiple
zeta values (Deﬁnition to the set BM(R). This leads to a projection from the algebra
Z({ of formal multiple g-zeta values onto the algebra Zf of formal multiple zeta values
(Definition . We will need the embeddings of the dual shuffle and stuffle Hopf algebra

into (R((B)),conc, A,), those were defined in (4.5.1) and (4.5.2)) as

Ox : (R((X)),conc, Ay) = (R((B)),conc, A,), z; = b; (i€ {0,1})
0y : (R((Y)),conc, Ay) = (R({(B)),conc,Ay), y; — b (i >1).

To capture the fact that the map 7 is an anti-morphism, we consider the following Hopf
algebra anti morphism

O3 (R((X)),conc, Ay,) — (R{(B)), conc, A,), (4.16.1)

Tgy ... Tg, > bg, .. by,
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Lemma 4.17. For the canonical projections Iy : R((B)) — R{(B))° (Definition
and Iy : R((X)) — R{{})) (Definition , we have

70 Ig 0 63 = 0y, o TTy.
Proof. For a word w = ' "tz .. gd Y21 in R((X)) (where ki, ..., kg > 1), we compute
(1 0Ig 0 O3 (w) = 7(biby? " .. bybg* ") = bpy + . by = Op(Yny - - - Yiy) = (B 0 Iy) (w).
If w = vz for some word v in R{{X)), we obtain
(70 Ig 0 03") (w) = (7 0 o) (bof3" (v)) = 0 = Ly (vzg) = (By o Ily)(w)
O

Theorem 4.18. For each commutative Q-algebra R with unit, we have an injective map

6 : DM(R) — BM(R),
¢ = 03" (9)0y (¢+)
where we denote (as in Deﬁmtionm

(-1

n>2

¢« = Gcorrlly () = exp (Z (Hy(cb)yn)y?) Iy (¢) € R((Y))-

The chosen order of the factors in the definition of 6 is necessary for the compatibility of
the projections IIy and Il under the map 6.

Proof. Let ¢ € DM(R). We have (¢ | x9) = 0 and hence (0(¢) | by) = 0. Since 9388, 6y,
are coalgebra morphisms and ¢ and ¢, are grouplike for Ay, and A,, we compute

Aq(0(9)) = Ag(03(9)) g (By(6.)) = (93(9) @ 6F"(9)) (O (d) @ O(.))
= 6(6) & 6(6).
By Lemma we obtain
r(To(0(9)) ) = (Mo (63 (9))0y(6.)) = 7(0y(6.)) (o063 (9)))
= 7(03(6.)) 0y (Ty(9)) = 7 (0y(Ty(6)) ) 7 (03 (Do) ) 0y (T (6))
= 1o (63(6) ) Oy (Gconr ) 0y (1T (6) ) = Tho (6585(6) ) 03(6)
= Ty (0(¢)).

Note that 6y (¢corr) consists of the letter by and is therefore 7-invariant. We have proven
that 6(¢) is an element in BM(R) and thus the map 6 is well-defined. The injectivity of 6
follows immediately from the injectivity of Ga“m and Oy. O

Since the set DM(R) is non-empty for any commutative Q-algebra R with unit (Theorem
B.25|), the existence of the injective map in Theorem shows that BM(R) is non-empty.

Since 6 : DM — BM is an injective natural transformation of affine schemes, we obtain a
surjective morphism between the representing algebras (Theorem [A.81)).
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Corollary 4.19. There is a surjective algebra morphism from ZJ onto the algebra ZT of
formal multiple zeta values (Deﬁm’tion given by

p: Z({ — Zf,
¢ (w) = > (0¥ w)d (651 w),  (weB.

W=U

uEQ(bO,bl),ver@i\iZl)

Here ¢/ (u) denotes the stuffle-regularized formal multiple zeta values and ¢f(v) denotes
the shuffle-regularized formal multiple zeta values (obtained by applying the techniques
in Proposition to the formal multiple zeta values).

Proof. The element idz; € HomQ_Alg(Zf , Z) corresponds to the element 3 (d: (w)w
wWEX*

in DM(Z/) under the bijection given in Theorem We obtain

9( > Cdﬁ(w)w> = 93?“( > Cch(u)u) 9y< > (ff(v)v>

wEX* uEX* veEY*
= Y L 0)63" (u)by(v)
uEX*, veEY*

= > cL (0 (w) ¢! (65" (v) Juv.

uE{bo,bl}*, Ue{bi|’izl}*

So under the bijection given in Theorem {.15| the element 9( > Cdj(w)w) € BM(2/)

weX*
corresponds to the algebra morphism
D: ZL{ — z/,
¢ (w) > (O W) d (65'0)  (weB).

’uEQ<b0,b1>, U€Q<bi|’i21>

By Yoneda’s Lemma (Theorem [A.81) this is exactly the algebra morphism induced by the
natural transformation # : DM — BM of affine schemes. O

Remark 4.20. (i) The map p : Z({ — Zf can be seen as a formal limit ¢ — 1, for example,
one computes

p(¢] (b2b3)) = (L) (yoys) = ¢ (2,3)

and similarly

q—1

In [BI22, Theorem 4.18] it is proven in a slightly different context that these similarities
hold in general. Moreover, in [BIM] a quotient of the algebra of formal multiple Eisenstein
series is considered, which is isomorphic to the algebra Zf of formal multiple zeta values.
The corresponding projection map is similar to the map p.

(ii) In [BKM21] the formal double Eisenstein space &, of weight w is introduced and there
is a canonical projection &, — Fil(Dz) (Z({ )@ (which is on the level of generating series

given by #;,1, cf. Theorem . On p. 6 they give a split exact sequence relating the
space &, to the formal double zeta space D,, defined for multiple zeta values ([GKZ06]),

0 —— ker(my) Ew —2 Dy 0.
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If we exclude the case w = 2, then we have a canonical projection D,, — Fﬂg)(Zf )@ In
particular, the map m,, has some similarities to the projection p.

Moreover, they obtained in Proposition 3.7 a realization in the algebra of quasi-modular
forms & — Mg(SLg(Z)), which might give rise to a non-trivial element in the set
BM(MO(SLs(2))).
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4.4 Definition of the space bmg

Linearizing the defining equations of the sets BM(R) (Definition [4.14) yields the definition
of the following spaces.

Definition 4.21. For each commutative Q-algebra R with unit, let bm(R) be the R-vector
space consisting of all non-commutative polynomials ¥ € R(B) satisfying

(i) (Vlbo) = 0,
() AU) = Tel+low,
(iii)) 7(Io(¥)) = o (P).

Here IIy denotes the R-linear extension of the canonical projection Q(B) — Q(B)? (cf
Definition {4.14)).

Let bmg(R) be the subspace consisting of all ¥ € bm(R) additionally satisfying
(iv)  (¥lb2) = (W[bs) = (¥[bs) = 0.
Denote bm = bm(Q) and bmy = bm(Q) and observe that we have

bm(R) = bm® R, bmy(R) = bmy ® R.

Proposition 4.22. For an element ¥ € bm(R), the condition (iv) is equivalent to
(U|bby') = 0, E>1, m>0, k+m even.
Proof. Consider the R-linear map

ps : R(B)? — R[X1,Y1, X0, V1,.. ],

mo mg ki—1y m1 kqg—1y mgq
bklbo ...bkdbo ’_>X1 Yl ...Xd Yd

and define for each f € R(B) the polynomials pg(f)o = 0 and
X1y Xa) _ (d)
PB(f)d(Yh”de)—PB<H0<f) )7 d=>1,

where IIo(f)@ denotes the homogeneous component of IIo(f) of depth d. In the following,

we will usually drop the depth index and just write pp(f )(%’:::’é‘i). Moreover, set

X1,...,X X1,X0,...,X
#y 1, y Ad _ 1, A2, y A d
pstf) (Yl,...,Yd> ”B(f)<m,Y1+Y2,...,n+---+Yd>'
Then as observed in Theorem and Corollary for each ¥ € bm(R) the bimould

(p[g(\ll)jy)dzo is alternil and swap invariant. Thus, we have (cf Example|C.14]and (C.15.1))
considered modulo products)

X, X Xo, X X, X
— #y 1, A2 #y 2, A1 1,2
0= ps(¥) <Y1,Y2> T es(l) <Y2,Yl> *RX<Y1,Y2>

X1+ X9, X X1+ X9, X X1, X
_ pB(\I/)#Y 1+ KXo, X1 + pB<\P>#Y 1+ Xa2, X2 + RY 1, A2 ,
Y27Y1 - }/2
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where

,Yy ) X1 —Xo '

X1+ Xo X1+ Xo
) #Y — ) #y
R X1, Xo _pB() < Y1 > p(?) < Y2 )
\vYs ) V) — Y, ‘

X1 X5
U)#y — pp(W)#Y
R (Xl,X2> pB( ) <Y1—|—Y2> IOB( ) <Y1—|—Y2>
X

The following computations are similar to [BKM21, Lemma 4.2., Theorem 4.4]. First, we
obtain from the above equations

X9, X X1, X X1, X
#y 2, A1 _ #v 1, A2 1,42
pB(\Ij) <Y27Y1> pB(\Ij) (Yl,YQ) RX(Y&,%) )
X1 Xl—XQ X1+X2 Xl
U\ #yY ) — ) #Y )
PB( ) (Yl + Y5, —Y2> PB( ) ( Yo, Y1 - Y, > X1=X1—X2, Xo=Xy
Y1=Y1, Yo=Y1+Y>

X1 X2 Xl_XZ X2
= —pp(W)#y [ ~-R ’ :
p5(Y) (Y17Y2> Y<Y1,Y1+Y2>

We deduce
(4.22.1)
X1=Xz, Xo=X3

Xg XQ—Xl Xl Xl_X2
P #Y ) — P #Y )
pB(¥) <Y1 +Y2,—Y1> pB(¥) <Y1+Y2,—Y2>
Yi=Ys, Yo=Yi
X9, X1 X9 — X1, X1
= —pp(W)#r [T -R ’
oY) <Y2Y1> Y<Y2,Y1+Yz>
X1 XQ X1 Xz X2 _Xl Xl
= pp(U)*Y [ D R ’ -R ’ .
ps(¥) <Y1,Y2)+ X<Y1Y2> Y<Y2,Y1+Y2>

Applying again the same substitution X1 = Xo, Xo=Xo— X1, Y1 =Y1+ Yo, Yo=-Y";
to both sides and then using (4.22.1)) leads to

Xo— X1, —X4 Xo, X9 — X4 Xo, X9 — X4
\\J #y ’ — ] #y ) R 5
pu(¥) ( Yo, ¥ - Yo ) po(¥) <Y1 +Y2,—Y1> " X(m +Y2,—Y1>

X. X Xi. X
— #y 1, A2 1, A2
= o) (Ysz)*RX(Ym&) R
XQ,XQ_Xl X17X2
R
+ X<Y1+Y2,—Y1> ( Yl,Yz)

Finally, applying the same substitution a third time and then using m, we end up
with

—Xp,—-X
pMWﬁY(_£_4;> (4.22.2)

X9, Xo — X4 X9, Xo — X4 X1, Xy
_ i} #y ) R ) R )
oY) <Y1+Y2,—Y1> * X<Y1+Y2,—Y1> Y(—YM@)

XlaXl
Y2,Y1+Y2
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Xo— X4, Xy —X9, X0 — Xy
+RX< Y- ) RY(—Yl—YQ,—Yl>

X1, Xo X1, X Xo— X1,.X4 X9, X0 — X4
= pp(W)*Y [T R ’ -R ’ R ’
ps(¥) (Ym@)* X<Y1,Y2> Y<Y2,Y1+Yz>+ X<Y1+Y2,—Y1>
-X1,Xo Xo — X1, - Xy X9, X0 — X3
_RY<—Y1,Y2>+RX<Y2,—Y1—Y2> RY<—Y1—Y2,—Y1)'
Observe that we have

S R ol i TRt

.Y, ki ka>1 my
mlzmgizo
X1, X ki+ kg —2 o
RY(Yl Y2> L ( -1 >(‘I”bkl+k2168“+m2“>X{“ XLy,
b2 ki ko> 1 1=
mi,m2>0

Thus for k1, ko > 1, my,mg > 0, k = k1 + ko, m = m1+mo and k+m even, the coefficient
of Xf=lxh—lymiym2 iy ([1.22.2) is given by

m
0= ( )(\p | bb) 5k1,12< ) U | b1 b
mi
k—2
kl 1 m mi+ki1—1 m—+1
+ 6y 0(— Z<k1_1>\ﬂ|bkb) (-1) <k1_1>(qf‘bk_1b0 )

-|-(5m27 m1+k1 1 Z ( ey ) (T | bkbm 5k2,1 Z ( > (T | b _lbm+1)

Note that the terms of depth 2 cancel out, since they only differ by the sign (—1)*=2+m,

Simplifying the formula, we obtain

m k1—1 k 1 mi1+k1—1 k 1 my\
(<m> Fbmyo(-1) <k2 - 1) +bmag(-1) ( e
ki1 K—2 m+1 m+1 m
((—1) 1+k1—1 (k;l B 1) + 5k1,1< - ) + kg1 <m2 n 1)) (¥ | br—1bg ""1) (4.22.3)

Assume that £ > 6 and in (4.22.3)) choose the case (ki, ke, m1,mg) = (k —2,2,0,0) and
multiply with % and then subtract the case (k1, k2, m1,ma) = (k — 3,3,0,0) to obtain

(k+1)(k—1
12

Therefore, we get for & > 6 even and ¥ € bm(R) that

NEZ9) (| byt =0

(U ]br) =0
and by iteratively applying the identity (4.22.3) we obtain
0= (U |bg) = (V| bp_1bg) = (U | bp_ob?) = --- = (¥ | byd).

Thus we are left with showing that we can deduce from (¥ | b)) = (¥ | by) = (¥ | bg) =0
that (¥ | biby') = 0 for k +m < 6 even. But this follows again from applying iteratively
the identity (4.22.3]). The converse implication trivially holds. O
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In analogy to the case of multiple zeta values (Theorem m Corollary B.31)), there is
the following big main conjecture.

Conjecture 4.23.
(i) The space bmgy admits a weight-graded Lie algebra structure.

(i) The functor BMy is a pro-unipotent affine group scheme with Lie algebra functor

bmg : Q-Alg — Lie-Alg, R+~ bmg(R).

Here b/m\o(R) denotes the completion of bmg(R) with respect to the weight (cf Proposition
A.45). As in the case of formal multiple zeta values (Corollary , the following holds.

Theorem 4.24. Assuming Conjecture [{.23, we obtain an algebra isomorphism
2! ~ MY(SLy(Z)) ® U(bmy)".
In particular, by Pmposition Z({ would be a free polynomial algebra.
Proof. Since BMy is a pro-unipotent affine group scheme with Lie algebra functor
bmo : Q-Alg — Sets, R+ bmg(R),
by Theorem [A-95] the exponential map gives a natural isomorphism
bmg = BM.

Applying Yoneda’s Lemma (Theorem |[A.81]) we can deduce an isomorphism between the
representing algebras, which are by Theorem [£.15] and Proposition [A-90] given by

zf - ’
o). W, ¢ @) = Sm).

By Proposition this also gives an isomorphism
ZI ~Q[¢](2),¢](4),¢J(6)] @ U(bmp)".

Finally observe that @[C({ (2), C({ (4), Q{ (6)] is a free polynomial algebra generated by exactly
one element in weight 2, 4, and 6 and thus is isomorphic to the algebra of quasi-modular
forms MQ(SLy(Z)). O

We end the subsection by showing that the double shuffle Lie algebra dmgy (Definition
B.27) related to multiple zeta values embeds into the space bmg.

Theorem 4.25. There is an embedding of vector spaces

0 : dmyg — bmy,
= 0P () + Oy (),

where we denote (as in Deﬁmtz’on

W = Thp0)  tome = Ty(0) + 2 0 (01 ()

n>2

and the maps 0379, 0y are defined in (4.16.1)), ([£.5.2).
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Proof. Let ¢ € omg. Then one has (¢ | z9) = 0 and hence (8(¢)) | bg) = 0. Since the maps
631 and 6y are coalgebra morphisms and the elements ), 1, are primitive for Ay, A,,
one obtains

Ag(0(8)) = Ag (05(0) + 0y (1)) = 1@ 03 (®) + 03 (1) © 1+ 1@ Oy (1) + Op(v.) © 1
=160W)+0W)®1

By definition of the map 6y, the image 6y (1.) does not contain the letter by, and thus
Iy(0y(¢s)) = Oy(1hs). Together with Lemma compute

(o (8(v))) = (To(63" (1)) ) + 7 (v (1))
=0y (Hyw ) (9y Iy 7!}))) + T(ey(wcorr))
¥)+

- 93’ (Hy ( antl )) + 0)) (wcorr)
o (631 (1)) + Oy (x0:)
=1l (9 (?/)))-

For the third equality observe that 0y (1corr) consists of the letter b; and is therefore 7-
invariant. Finally, we obtain from Proposition that (¢ | 2§ 'x1) = 0 for k > 2 even
and thus (6(¢) | b2) = (0(¢) | ba) = (0(¢)) | bs) = 0. Altogether, the element 0(¢)) is
contained in bmg and thus the map 6 is well-defined. Since §3" and 6y are injective, also
the map 6 is injective. O
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4.5 Calculating the space bm,

We will present an algorithm to compute a basis for bmg in some given weight w. The
computations are partly similar to the ones done in [ENRO3] for multiple zeta values.
In particular, implementing the algorithm allows us to compute the dimensions of the
homogeneous subspaces bmgw) for weight w < 13 and observe that they coincide with the

dimension conjecture (iii). The computations will be done in a new alphabet V.

Definition 4.26. For each k > 1, denote by v the homogeneous part of weight k of
log (1 +22>1 bl), this means

U= )
li+-+lg=k
l1,.5lg>1

Moreover set vg = bg and let V be the alphabet consisting of the letters v;, ¢ > 0. We
define the weight and depth for a word in Q(V) as

wt(vs, ... 05) =81+ -+ s+ |[{i|s =0}, dep(vg, ...vs) =1 —[{i | s; = 0}].

Example 4.27. One computes

U1 = b17
1
Vo = bg — ib%,
1 1 15
v3 = bz — 55152 - 55251 + §b1;
1 1 1 1 1 1 1
= by — =bibg — ~boby — ~bsby + =biba + ~b1baby + S bobt — ~bi.
U4 4= 50103 = 50202 231+312+3121+321 rid!
Lemma 4.28. The alphabet V generates the algebra (Q(B), conc).
Proof. For all k > 1, one has
1
b= > S0 g (4.28.1)
lit-+lg=k
I1,00g>1

Since the letters by = vy and by, k > 1, are the canonical algebra generators of Q(B), we
obtain the claim. O

Observe that the notions of weight and depth defined for the alphabet V' (Definition |4.26)
and the alphabet B (Definition [2.11)) induce the same filtrations on the algebra Q(B).

Proposition 4.29. The primitive elements of (Q(B), conc, A,) are exactly given by Lieg(V).

Proof. Let A = {agp,a1,as,...} beacountable alphabet and equip the free non-commutative
algebra (Q(A), conc) with the shuffle coproduct (Example [A.62)

Am(ai):ai®1+1®ai, 1 >0,

so Ay, is compatible with the concatenation product. We show that we have a Hopf
algebra isomorphism

o : (Q(A), conc, Ayy) = (Q(B), conc, A,),

a; — ;.
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Since the primitive elements of Q(.A) are exactly given by Lieg(A) (Corollary , we
deduce Prim(Q(B)) = Lieg(V). Clearly, o is an algebra isomorphism, thus we only have
to check that o is a coalgebra morphism. We obtain

A, (1+Zbl> :1®1+Z(1®bl+bl®1+ > bll®bl2>

>1 >1 l1412=1

I1,lo>1
= (1+sz) ® (1+Zb,) ,
>1 >1

so the element 1 + 37~ by is grouplike for the coproduct A,. Therefore, Theorem
implies that log (1 +2 1 bl) is primitive for A,. Since the coproduct A, is graded for the

weight, also the homogeneous components v, k& > 1, of log <1 + 2 >1 bl) are primitive.

Moreover, the element vy = by is by definition primitive for A,. We deduce for each i > 0
Ag(o(a;)) =D¢(v) =100 +1; 81 =1®0(a;) +0(a;) ®1 = (0 ®0)(Auw(as)).
Hence o is a coalgebra morphism. O

Since one requirement on the elements in bmy is to be primitive for the coproduct Ay, we
obtain the following.

Corollary 4.30. We have an inclusion bmy C Lieg(V).

In particular, the first step towards a basis of some homogeneous space bm(()w) is to compute
a basis for the homogeneous space LieQ(V)(w) in some weight w. More precisely, we will
compute the Lyndon basis (Definition Theorem [A.13)). We start by generating a list

of all Lyndon words in the alphabet V up to some weight w.

Proposition 4.31. ([BP9/), chapter 2]) The following variant of Duval’s algorithm com-
putes for some given Lyndon word w € Q(V) of weight < n the next Lyndon word of
wetght < n.

Algorithm 1 Duwval’s algorithm

e Input: Lyndon word w € Q(V), weight n€N

e (Generate the word u of length n, whose ith letter is equal to the ith
letter of w modulo the length of w
While wt(u) >n omit the last letter of u
If wt(u) = n and the last letter of u is not equal to vy, omit the
last letter of u
Replace the last letter v; of u by vi41
Output: u

]

In particular, starting with the smallest Lyndon word vy in the alphabet V and successively
applying Duval’s algorithm to the previous output yields a list of all Lyndon words in V of
weight < n. The procedure stops at the Lyndon word v,,, since the next output of Duval’s
algorithm is the empty word.
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Example 4.32. Up to weight 5, one obtains successively the following Lyndon words by
applying Duval’s algorithm (Proposition [4.31])

Vo, VoUoUoloV1, VoUoUoV1, VpUpUpV1V1i, VoUoloV2, VoUoV1, VoUpU1vp¥1, UoUoV1V1,
VpVoV1V1V1, VoUoU1V2, VoUoV2, VoUoU2V1, VoloV3, VoV1, VoU1VoV1V1, UoV1VoV2,
Vpv1v1, UYU1V1V1, VpU1V1V1V1, VoV1U1V2, VoU1V2, VoU1V2V1, VoU1V3, Vo2,
Vov2V1, VoU2V1V1, VU202, VU3, VoU3V1, VU4, V1, V1V1V1V2, V1U1V2, V1U1V3,

v1v2, U1V2V2, U1V3, U1V4, V2, UV2V3, U3, U4, Us.
Next, we compute the standard bracket of each Lyndon word (Definition (ii)).

Proposition 4.33. ([Lo05, p. 15]) For an arbitrary word w € Q(V), the following algo-
rithm computes the length (first output) and the multiplicity (second output) of the first
Lyndon factor of w.

Algorithm 2 Lyndon factorization
e Input: Lyndon word w € Q(V)
o Seti=0, j=1
e While j is smaller than the length of w and the (i + 1)-th letter of w
is smaller or equal to the (j+ 1)-th letter of w, do:
e If the (i+1)-th letter is smaller than the (j+1)-th letter of w,
set 1 =0; else increase 7 by 1
e Increase j by 1

o output: (j—i, |55

]

Consider some Lyndon word w € Q(V) and denote by @ the word obtained from w by
omitting the first letter. Successively applying the previous algorithm to the word w yields
the Lyndon factorization

w=1I0"...0', 1y >--->1 Lyndon words.

Then the word [, is the longest suffix of w and hence the longest nontrivial suffix of w,
which is a Lyndon word ([Re93, Lemma 7.14]). Thus the standard bracket of w (Definition

1A.12)) is recursively given by
y(w) = [y Y ().
From Theorem one directly obtains the following.

Proposition 4.34. The standard brackets v(w), w € Q(V) Lyndon word, give a basis for
the space Lieg(V).

Example 4.35. By applying the algorithm in Proposition [£:33] one obtains successively
the following basis for the homogeneous subspaces of Lieg(V) up to weight 5:

vo, V1, V2, ,U3, V4, Us, [vo,v1], [vo,v2], [vo,vs], [vo,va], [v1,v2],
[vi,vs),  [vr,v4],  [v2,03],  [vo, [vo, va]],  [vo, [vo, va]ls  [vos [vo, vs]],  [[ve, v1], vil,
[vo, [v1,v2]],  [vo, [v1,ws]],  [[vo,val v, [[vo, vo]sval,  [[vo,vs], va],  [ur, [V, va]l,
[v1, [v1, vs]],  [[o1, 2], v2],  [vo, [vo, [vo, v]]],  [vo, [vo, [vo, val]l,  [wo, [[vo, v1], v1]],
[vo, [vo, [v1, val]],  [vo, [[vo, val, vl [[vo, v1], [vo, v2]],  [[[vo, v1], v1], va],

[vo, [v1, [v1, vall],  [[vo, [v1, val],va]s  [[[ve, va], va],va],  [or, [v1, [or, va]]],

[vo, [vo, [vo, [vo, v1]]]],  [vo, [vo, [[vo, vi], v]l],  [[vo, [vo, v1]]; [vo, va]],

[vo, [[[vo, v1], vi],v]],  [[vo, vil, [[vo, v1], va]]s [[[[vo, v1], v1], v1], va].
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The last step for computing a basis of bm(()w) is to determine the subspace in LieQ<V>(w)

spanned by the elements, whose projections to Q(B)° are 7-invariant.

Theorem 4.36. Let n > 1 be given. Then the following steps lead to a basis for the
homogeneous subspace bm(™ of weight n:

1) Compute the standard brackets ~y(w) for all Lyndon words w € Q(V) of weight n

(Proposition [4-33).

2) Rewrite all standard brackets v(w) from step 1) in the alphabet B (Deﬁm’tion
and apply the projection 1lj.

3) Compute a basis for the intersection of ker(t —id) and the vector space spanned by
the elements obtained in step 2).

4) In the basis obtained in step 3) replace all the projections with their original standard
brackets.

If n = 2,4,6 omit the elements containing the word v, to obtain a basis of bmén). In all
other cases, one has bm(()n) = pm(™,

Unfortunately, the size of the matrices in step 3) increases very fast, hence we were able
to execute the algorithm only up to weight 13.

Example 4.37. 1) Without any algorithm it is easy to see that the homogeneous subspace

(1)
1
©)

bm, ’ is spanned by the element
2) To determine a basis for bmg ', we first compute the projections of the standard brackets
of weight 2 (obtained in Example |4.35)):

1
o1 =by—Sbibi, 03 = ~bibo.

Restricting the map 7 — id to spanQ{Jf), JéQ)} we obtain that the kernel is spanned by

(2 _ )

01
Thus the space bm® is spanned by the element vy — [vg,v1] and the space bmg is empty.

3) In weight 3, we have the following projections of the standard brackets (given in Example
.39))

=

1 1 1 1
053) =bs — §b1b2 — fb2b1 + §blblb1, Ué )= —bobo + iblblbo’ Uég) = b1z — boby,

o = bibobo, 08 = —2b1boby + bybibo.
o . (3) () _(3) _(3)
The kernel of the map 7 — id restricted to spang{oy”, 05", 05", 0, ,05 } has the basis

3
R R AR R U 209)_
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Thus a basis for the homogeneous subspace bm(()3) is given by

5(3) I [ A O N A O

2 1
§<1> = —[vo, va] + [v1,v2] = 5 [[vo, vi], va].
4) A basis for bm® is given by

§<2’ 1) = [[vo, va], v1] + 2[vo, [v1, v2]] — [v1, [v1,v2]] + %[[[00701]7”1]?”1]7

1,0
1 = 2o, 5]+ 3loo, 10, 2] — oo, w0, oo, o] + o1, 6] — S oo, o )]
— 7100, lfoo, o), ] + 5lon, o1, val) = gllfoo, ), ], ).

In particular, the first element spans the space bmé4).

5) A basis for bm[()S) is given by the elements

5(3) = v5 + [vo, [vo, [vo, [vo, v1]]]] — g[v1,v4] + 5[va, v3] + 2[vo, [vo, [[vo, v1], v1]]]
25

- g[[vm [vo, v1]], [vo, v1]] + E[Ula [v1,v3]] — E[[Ulv va), 2] + 2[wo, [[[vo, v1], v1], v1]]
+ 2 [0, nl, [, o) oal) = 2o, o, o, wal] + (oo, wn], wn] o] i,
€G>=-ﬁ%wd—WmMMWWﬂ%HMWA—§MﬂM—;Mﬂmwﬂ—QWm%Lw

+ %[[vo, v, va] — %[an [vo, [[vo, v1], v1]]] + %[[’007 [vo, v1]], [vo, v1]] + [vo, [vo, [v1, v2]]]

~ [0 [[e0, val, 1)) = 2[feo, ] v, ] — 5o, for, eal] = 5101, o), 2

+ w0, [, o, o]+ 3lfv, o, o], o) + o0, v, wal, 1] = 5 o, [, ), ], )]
— Sllew, vl lfoo, vl o) = S o, o, wal)] + 5 o0, o), w1l ) ),

§@>=mewﬂ+2Wmeﬂ—Mmeﬂ—;meMwﬂHéMMMw%WH

+ ;[[vo, 1), [vo, v + %[Uh [v1, v3]] + [[v1, va], v2] — [vo, [v1, [v1, v2]]]

= Zlleo, for, al), 0] = 5o, {10, 1], ) ] + 110, w1 foo, ), ]
1 1

+ (o, [vg, [vr, va2ll] = 7 {ll[vo, va], o1, wa], ol

5(11J>::—ﬂwhwhwhvﬂn—3uw»whvﬂLm]—nwmvﬂwan]+hnmm,whvﬂn

— 5o, il wnl, wrl i

Recall that we expect the following dimensions for the homogeneous subspaces of the
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universal enveloping algebra of bmg (Conjecture [1.22] (iii))

. - 1
Hy(omo) (z) = %dlm@“ (bmo) " = — D(z)O:(z) + D(z)R(z)

Lemma 4.38. There are integers g, € Z, such that

1
=] (@1—2av)9v.
1 —D(z)O:(x) + D(z)R(x) };[1
Proof. This is a simple application of [Bou89l p. 140, Lemma 1]. O

If (1 — D(x)01(X) + D(x)R(x))"! is indeed the Hilbert-Poincare series of the universal
enveloping algebra U(bmg), then by Proposition and Corollary we must have
gw > 0 for all w > 1. In particular, Conjecture m (iii) is equivalent to the following.

Conjecture 4.39. For all w > 1, we have
dimg bm{") =
QIMy * = Guw-
For example, for w < 14 the following values are obtained in [BK20]:

w |1 2
gw |1l 0

3 4 5 6 7 8 9 10 11 12 13 14
2 1 4 3 8 11 18 28 48 74 126 202
We continued the calculations illustrated in Example [£.37] to obtain the following.
Theorem 4.40. For each w < 13, we have

dimg bm(()w) = Gu-

Proof. Execution of the algorithm given in Theorem .36 with the computer algebra system
PARI/GP. O

The algorithm solves linear equations in Lieg())). Since

1

Sl —2r—a2—ad—apt— b — .

3" dimg U(Lieg(V)) ™)

w>0

=14 2z + 522 + 132° + 342* + 892° + 2332% + 61027
+15972% + 41812° + 1094620 + 286572 + 75025212
+ 1964182 + 514229z + .. .,

sophisticated methods are needed to verify Conjecture [£.39] for higher weights.
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4.6 Alternative description of bm; in the alphabet C"

For further studies of the space bmg, we will introduce a third alphabet. In this new
alphabet, the elements in bmg possess the shortest representation. In should be seen as a
g-analog of the alphabet C defined for multiple zeta values (Definition [B.65)).

Definition 4.41. For £ > 1, m > 0, define
Crm = (—ad(v0)) " (v) = [ [[v, v0], v), . . ., vo]
—_— —
m times
and denote by CP' the alphabet consisting of all these letters.

Proposition 4.42. (Lazard elimination, [Re93, Theorem 0.6]) The space Lieg(C) is a
free Lie algebra and .
Lieg (V) = Qup @ Lieg <Cbl>. O

By considering the universal enveloping algebras and applying Lemma one obtains
Q(B) = Qlvo] ® Q(C™). (4.42.1)

In the following, we will always make use of the fact that the alphabet )V provides a free
generating set for the algebra (Q(B), conc) (Lemma [4.28]).

Definition 4.43. Let 0y : Q(B) — Q(B) be the derivation with respect to concatenation
given by dy(vg) = 1 and Jdp(vg) = 0 for all £ > 1.

Proposition 4.44. (i) The kernel of the derivation 9y is exactly given by Q(CPY).
(ii) The restriction of Iy : Q(B) — Q(B)Y to ker(dy) has an inverse given by

secq - Q(B)" — Q(B),
re s E o)

m>0

In particular, the image of secy is contained in ker(dp).

Proof. (i) Follows directly from the decomposition in (4.42.1]).
(ii) For any f € Q(B)°, compute

on(secq(£)) = 3 CH (o ()

=y S g+ - E e

We deduce im(secy) C ker(dp). Since Ilp(vg*do(f)) = 0 for all m > 1, we obtain for
feQ®B)’

o (secq(f)) = To(f) = f.

So Iy has the right inverse sec,. Next, let g € ker(dp) and write g = 3=, 50 V4" gm With
gm € Q(B)Y. Then compute

0= 80(9) = Z mv[r)nilgm =+ Z U(TaO(gm)

m>1 m>0

93



Since g, € Q(B)? for all m > 0, one obtains dy(gm) € Q(B)°. Thus coefficient comparison
with respect to vy at the beginning leads to

0 =mgm + d(gm-1), m=>1.
Inductively, we deduce for all m > 1

g = 0 )

and thus get

_1)ym
secq (To(9)) = secyl(g0) = 3 D spogi(go) = 3 vigm = .
m>0 m: m>0
So secy is also the left inverse for the restriction of Iy to ker(dp). O

The map sec, allows extending the involution 7 (see (£:0.1))) to the algebra Q(C").

Definition 4.45. Define the map 71: : Q(CP) — Q(CP!) to be the composition
Tevi = secg oT o 1.

Explicitly, the map 7vi can be computed as follows:

1) Translate words in Q(CP) into words in Q(B) (Definition 4.41]).

2) Apply the map 7 o Ip.

)
3) Translate words in Q(B) into words in Q(V) (see (4.28.1)).
4) Translate words in Q(V) into words in Q(C") by using iteratively the identity

SeCQ(Ckl,ml T ij,mjvockj+17mj+l o 'Ckmmd)

J
= Z Chryymy - - Ckiflymi—lCkiymi"l‘lckiJrhmiJrl - Crgma-
=1

In particular, the letter vy acts like a right derivation on Q(CP).

Example 4.46. We compute
1, 1,5
chi(027]_) = S€Cq OT O Ho (bg — ibl)bo — bD(b2 — 5[)1)

= S€Cq (bzbo — lebl)

2
1 1 1
= secq (UQU() + 51}%@0 — 5?)21)1 — Zvi{’)

1 1 1
= secy (Czy()’l)() + 501270’00 - 502,00170 — ZC:E’O)

1 1 1 1
=Co1+ 501,101,0 + 501,001,1 - 502,001,0 - ZC’f”O

Definition 4.47. We define the following subspaces of Q(CP)
QY = {f € QUC™) | ren(F) = £},
Q)= = {f € Q)T | (£]Ca0) = (f | Cug) = (£ | Co0) = 0}.
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The spaces bm and bmg can be purely described in terms of the alphabet C"'.

Theorem 4.48. The following holds
bm =~ Lieg(C™) N Q(C")7, bmg =~ Lieg(C"") N Q(C")T.

Proof. By Proposition the primitive elements of (Q(B), conc, A,) are exactly given
by Lieg(V). Applying additionally the Lazard elimination (Proposition [4.42)), one obtains
that U € Q(B) satisfies (¥ | by) = 0 and A, (¥) = ¥®@1+1®@ V¥ if and only if ¥ € Lieg(C").
Furthermore, by the construction of the map 7omi, U satisfies 7(Ilp(V)) = IIp(¥) if and
only if ¥ € Q(C)7. So by definition of the space bm (Definition , we obtain then
bm ~ Lieg(C"") N Q(C)".

For each k > 1, Cj is the unique word in Q(C"), which contains the word by (when
rewritten in the alphabet B according to Definition . Thus, ¥ € Q(B) satisfies
(¥ | by) = 0 for k = 2,4,6 if and only if (¥ | Cy) = 0 for k = 2,4,6. This shows the
second isomorphism. O
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4.7 The structure of bm,

We will explain the conjectured Lie algebra structure of bmg. In particular, we will describe
the expected generators and relations in bmg and present a systematic list in small weights.

Let (mq,{—,—}4) be the g-twisted Magnus Lie algebra (Theorem [3.20)), where {—, —},
denotes the g-Thara bracket. Then as a refinement of Conjecture m (i), we expect the
following.

Conjecture 4.49. The space bmg is a weight-graded Lie subalgebra of (mq,{—,—},).

Example 4.50. As obtained in Example the following two elements are contained
in []m[)

1 2
5(0) = by, €(1> = bobg — bpba + bi1bs — boby — b%bg + byboby.
We compute
{f(?) »5(5)} = — bybgbg + 2bgb1bg + 2b9b1bg — babgbi — b1babg — bobaby + 2b%b0b1
q

— bbb} — b3by — biby + 2b1byby — bob?

€ bmg.
The elements in bmg as well as the formula for the g-IThara bracket {—, —}, are quite
complicated, but it is checked with computer assistance that Conjecture holds up to

weight 9. Moreover, the space bmg is isomorphic to the space BARIL > of bimoulds
(Corollary , which is also expected to be a Lie algebra (Conjectﬂre . The g-
Thara bracket and the conjectural Lie bracket on BARIE?;V’V%I) are compatible with this
isomorphism (Theorem . Finally, the associated depth-graded space to bmg embeds
into a Lie algebra (Iq,{—, —}qD) (Theorem , where {—,—}{]D is exactly the depth-

graded Lie bracket to the g-Thara bracket {—, —},.

If one could show that the g-IThara bracket {—, —}, preserves the primitive elements of
(Q(B), conc, A,) and T-invariance, this would give a proof for Conjecture Since the
primitive elements of (Q(B), conc, A,) are exactly the elements in Lieg(V), the invariance
of the primitive elements under {—, —}, should follow from a closed formula for the g-Thara
bracket or the derivation d, (Definition in terms of the alphabet V.

Example 4.51. With some computer assistance, one computes the following.
(i
(i

) For all w € Lieg(V), we have di (vg) =0
)

(iii) For all ¢ > 1, we have d_(v;) = [v2, v;] — [v1, v{]
)

For all w € Lieg(vp, v1) and ¢ > 0, we have d¥ (v;) = [w, v;]

(iv) We have

df, o) (V1) = [[v0, v2], v1] = [[vo, v1], vo] + %[[Ul, [vo, v1]], v1],
1 1

dl, o (v2) = [[v0, v2], va] — [[vo, v1], vs] + g llvis [vo, ], ve] + S llvn, [vn, [vo, v1]]], 1]
o 00 (v3) = [[v0, v2], v3] — [[vo, v1], va] + %[[vl, [vo, v1]], vs] + T12[[vl’ [v1, [vo, v1]]], v2]

+ Lo, [, oo, o] o]
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By (09) = [[o0,v2) 4] = [[o0, 02, 5] + 5{[01, [o0, o) o] + 5[l o, e, ) v
+ 55 lon, (o, foo, vl vl + 5l o, oo, vl o]
— coslon o, fon o, oo, ], o]
(v) We have
a1, (v1) = o5, 1] — 2o, va] + o, v3] + [, v2] 1]
1, (v2) = (v, va] — 2z, va] + [on, ] + S lon, 0], 2] + G o, o, ) )
1 (v3) = (v, vs] — 2z, va] + [on, 28] + S lon, 0], 5] + G o0, o, ] )
+ gl [fon, v 0]
1, (00) = [08,01) = 200, v5] + [or, ] + 5 lo1, 02 ] + [, on, 2] ]
+ gl o, vl o) + 512, o1, wal) 2] = sl o, o, [, ) o)
1, (v5) = (v, v5] — 2z, ve] + [on, vr] + S lon, 0], 5] + o0, o, ) )
+ glo, lfoa, v, val) + [l o, val) ] + ez, (o1, wal, )]
— spllen o, o v, walll ] = 5o o o, o, o), )
- ﬁ[’vh [o1, [[or, [or, 2], vall] = g5 [on, [[og, [o1, [or, v2]]], v2]]

All values of the derivation d, in the previous example are contained in Lieg(V), which
means primitive elements of (Q(B),conc, A;) get mapped to primitive elements in these
special cases. It is not clear how to find such a general formula for the derivation di
on Lieg(V), which allows deducing the invariance of the primitive elements under this
derivation.

Furthermore, one easily checks that the g-Thara bracket does not preserve 7-invariance in

general, this holds only true for 7-invariant primitive elements in (Q(B), conc, A;). But it
is not clear, how to prove this property of the g-Ihara bracket {—, —}, in general.

Finally, we want to give an insight into the expected structure of (bmg, {—, —},) as shortly
stated in Conjecture At the end of this subsection, we will systematically present
the generators and relations of bmg in low weights.

We expect that bmg has besides the generator & ((1)) = by one generator & (]8) in each odd
weight & > 3, which lies in the image of the embedding 6 : dmg — bmgy (Theorem .
Moreover, there should be a derivation on bmg, which increases the weight by 2. We
denote the m-th derivative of the element ¢ (’8) by & (kjnm) Conjecturally, the elements
& (::L), k>1, m >0, k4+ m odd, provide a complete generating set for the Lie algebra
(bmg, {—, —}¢). In particular, denote D(z) = =3 and O1(z) = 1, then the coefficient
of D(z)O1(x) at % would be equal to the number of generators of bmg in weight w.

Remark 4.52. Since an element in bmg must be contained in Lieg()) and 7-invariant on
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Q(B)", the depth-graded part grp, £(*) of the generator £(”) must be given by

k k
m m

k—1

grDst;) = (—ad(bo)) " (b) + (~ad(b))  (bms1):

These elements should provide a complete set of generators for the associated depth-graded
Lie algebra to bmg in depth 1.

In contrast to the case of the double shuffle Lie algebra dmg related to multiple zeta values
(Conjecture , we do not expect that bmg is a free Lie algebra. More precisely, we
conjecture that the generators of bmg described above satisfy exactly dim(Sk(SL2(Z))) +
dim (M (SL2(Z))) independent relations in weight k and also derivatives of these relations.
The relations between the generators of bmg corresponding to the Eisenstein series are
given by the following.

Proposition 4.53. If (bmg, {—, —}4) is a Lie algebra (Conjecture[{.49), then we have for

all k >1 odd
k 1
(o) <G)f,
q

Proof. For k = 1 the equation holds trivially, thus we assume k& > 3. Then by definition,
the element & (’8) is an element in the image of the embedding 0 : dmy — bmy (Theorem

4.25). Let w € Q(B) be a word, such that the coefficient of w in &(}) is nonzero. Then
due to the construction of the map 6, this means that w consists of the letters by, by or
does not contain the letter by. In the first case, we obtain from Lemma (i) that

{w,§<(1)> } — d8,(by) — d (1) — [w, by] = [1,b] — 0 — [w, y] = 0.

Since the g-Thara bracket preserves the subspace of Q(3) spanned by words, which do not
contain the letter by, we obtain from the previous calculation that {¢(),&(})} does not
contain the letter by. We assumed that (bmg,{—,—},) is a Lie algebra, so in particular,
the element {f(g),{(é)}q must be 7-invariant. By definition of the map 7 any 7-invariant
element, which does not contain the letter by, must consist of powers of by. Since {—, -},
is homogeneous for the weight (Lemma (ii)), we deduce

k 1
5( >5<>} = At for some \ € Q.
{ 0 0/J, 1

The bracket {€(5),&(0)}q is contained in bmg and hence is an element in Lieg(V). Since
Vit ¢ Lieg(V), we deduce A = 0 and therefore

lo) <o)y, =

Derivatives of the Eisenstein relations given in Proposition [£.53] should be of the form

S e e e
mi-+mo=m my mi ma q

mi,m22>0
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It is not clear how to describe the relations between the generators of bmg corresponding
to the cusp forms S;(SL2(Z)) in general.

We expect that the previously explained described structure determines (bmg, {—, —}4)
completely. Thus by (A.11.1]), the Hilbert-Poincare series of U(bmg) should be given by

2 1

Hyy(omg) (%) = wzgodim(@ U(bmg) @z = D0, T DR (4.53.1)
where
D)=t Oie)= g, Rl@)= Y dim (Su(SLa(2))2Mx(SLa(2)))) "

k>4

We expect an algebra isomorphism Z({ ~ Z,, thus Theorem should also lead to a
decomposition -
Z, ~ MY(SLy(Z)) @ U(bmg)".

Applying Lemma E one obtains that this decomposition of Z, as well as the dimension
conjecture (4.53.1)) and the dimension conjecture for Z, are compatible. Even more,
the dimension conjectures (4.53.1]) and |1.21{should be equivalent.

We want to investigate bmg systematically in small weights. More precisely, we will list
the Lie algebra generators in each weight and also linearly independent Lie products.
Both together will give a basis for bmg in these weights. Moreover, we will give the non-
trivial relations between the Lie algebra generators, which means we will only consider
relations not induced by the anti-symmetry or Jacobi’s identity for the g-lIhara bracket.
The elements will be described in the alphabet CP1, since this gives the shortest expression.

weight 1

Generators:
f(é) =Cip

Relations:  —

weight 2
Generators: ——
Relations: S

weight 3
Generators:

3 3

5(0) =C30+Cia— 5[01,& Ca0] = [C11, Cro]
2 ].

§<1> - 0271 + [01,07 02,0] + 5[0171’ CLO]

Relations: _

weight 4
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Generators: ———

Lie products:
2 1 1
{5(1) ) g(o)} = [02,17 Cl,O] - 2[01717 CQ,O] - [01,07 [CLO, 0270]] — 5[[01717 0170]7 Cl,[)]
q

Relations:

<o)<y, =0

weight 5

Generators:

f(g) =C50+Cra— 2[01,0, Cu0] + 5[C2,0,C30] — 2[C1,3,C1 0] — %[01,27 Cya
_ %[[01,07 Cy.0], Ca.0] + 2[[C1 .2, C10], Cro]
_ 3[01,1, [C11,C10]] — Z[Cﬁ,o, [C1,0, [C10, C20]]] = [[[C1,1, Ch,0], Ci 0], Chol

5
+ E[CLO; [C1.0,C30]]

f(?) = Cy1+ Co3+ [C10,Cup] — 2[0270’ Cs0] + %[01,1, Cs0] — S[CLO, Cs.1]
- 3[02,17 Ca] + %[01,3, C10] + [C12, Ca] 4 [C1,1, Co1] + 2[C1 0, Ca 2]

o Z[CLO’ [C10,C30]] = ZHCI,Oa C20], C2,0] — %[Cl,h [C1,0, C2,0]]

+ g[CLo, [C1.1,C20]] + [C10,[C1,0,C21]] — %[[CL% C10],C10]

- %[01,0, [C1.,0,[C1,0,Capl]] — %[[[01,1701,0]7Cl,O]aCLO]

f(g) =039 — ;[03,1, Ci0) + [C21,Co0] — %[CLQ? Cy0] — [C10,Ca2)]

1
+ 5[01,07 [C1,0, C30]] + [[C1,0, Co0], Ca0] + [C1,1, [Cr0, Ca,0]]

3 3 1
o Z[Cl 0, [Cl,la Cy OH - Z[Cl,()a [CI,O> 02,1]] - ﬁ[[CLQ, 01,0], Cl,O]
1 1 1
+ 5[01717 [01:17 0170“ + 1[01,07 [01,07 [01,07 CQ,O]H + Z[[[CLl, CLO], CLO]’ CLO]

Lie products:

{{f(?) f(é) }q f(é) } = 3[C11, [C1,0, C20]] + [C1,0, [C10, C2,1]]

1
+ [C1,0,[C1,0, [C1,0, Cal]] + 5[[[(71,1, C1.0], C1.0), C1.0)

Relations: S

weight 6

Generators: ———

Lie products:
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Relations:

S
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N~ 7~ N
< S
W,
S
—
R R — >
= - O ———
—_—— —— SN— P
M~ W, — O
— o — - ~—
= o <
v v N "
—~ wr —_——
™ ™ ' —
T 2= =
~_
—— —— Y
T s
——
- - - N
S — O
}}\IJ} N———
TN TN @ A/~ “s
— O AN — O -
~ N —T ~
w w w w —
\'7/\'7/ 7q ﬂ'O/
O N KA T = ~—
N———" ~——— I S W,
N N iy -
— —— o
W, HIO/ —
. ~_ —
— ¥ =
L2 A e
— N N2 —
~—_ = v s
s s < ——
S — A
))41 up N NI
" v “w

9 B Y e — —— Y—— S Y~~~ Y—




4.8 The depth-graded balanced g-shuffle Lie algebra

We study the defining equations for bmg modulo higher depth. This leads to a g-analog
of the linearized double shuffle Lie algebra [s (Definition [B.36)).

Consider the usual shuffle coproduct Ay, on Q(B) (Example [A.62)), i.e., set
Ayb)=b;®14+1®b;, >0,
and extend this with respect to the concatenation product.

Definition 4.54. Let [q be the vector space given by all non-commutative polynomials
U € Q(B) satisfying

@D (¥lbo) = 0,

(i) Ap(y) = IR1+1VY,

(iii)  7(Ho(¥)) = Iy (W),

(iv)  (Ulbkdby) = 0, k + m even.

By Corollary condition (ii) is equivalent to ¥ € Lieg(B).
Definition 4.55. Denote the associated depth-graded space to bmg by
b = grp bmg.
Proposition 4.56. There is an embedding of vector spaces
b — Iq.

Proof. Let ¥ € bmy. Then evidently the associated depth-graded element grp ¥ also sat-
isfies (grp ¥ | bg) = 0 and we also have 7(Ily(grp ¥)) = p(grp V), since 7 is homogeneous
in depth. Furthermore, we have grp A, = A, thus grp ¥ is primitive for the coproduct
Ay. Finally, by Proposition we have (U | bibi") = 0 for all £+ m even, and therefore
the same holds for the associated depth-graded element grp . O

In contrast to the case of multiple zeta values, it turns out that the associated depth-graded
space Ib is not isomorphic to Iq.

Example 4.57. The following element of weight 8 and depth 2 is contained in [g, but not
in [b:

b3bobaboby — babobsboby + b2bobob3bo — b3bobob2bo — bobob2b3bo + bobob3zb2by + bobab3bobg
— bobsbabobo — bobob3boba + bobob2bobs — bobabobobs + bobsbobobo.

Definition 4.58. For a word w = by"0by, by ... by, by'® in Q(B), define the derivation d%”
on (Q(B),) by

dP (1) = d%P (bo) = 0,
d%P (be) = dg41(wha) — 01 (bawr)

klz:l kdz:l (kl — 1> <k7d - 1) (_1)l1+"'+ld

L=0  13=0 la
™y m m,
) [bo bk, 1,00 " -+ biog—1,b0 5 bitly ot |

where a > 1.
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The operator d; is given in Definition [3.§]
Definition 4.59. For f,g € Q(B), the depth-graded g-Thara bracket {—, —}qD is given by

{f.9}0 = d%(g) — d2P(f) - [f. 9.

We obtain from the definition of the derivations d%” (Definition |4.58) and d% (Definition
3.12) that {—, —}qD is exactly the associated depth-graded to the g-lThara bracket {—, —},
(Definition 3.16)).

Theorem 4.60. The pair (Iq,{—, —}?) is a bi-graded Lie algebra.

Proof. The proof relies on the comparison of the space [q and a Lie algebra consisting of
bimoulds, thus see Corollary O

Since the associated depth-graded space [b to bmy is a subspace of Iq and {—, —}é) is exactly
the associated depth-graded Lie bracket to the g-Thara bracket {—, —},, Conjecture m
would imply the following.

Conjecture 4.61. The space b is a bi-graded Lie subalgebra of (Iq, {—, —}2).

Remark 4.62. We expect that [b is generated by two Lie sub algebras § and ©, where §
is generated in depth 1 (by the elements given in Remark and ® is generated in depth
4. The generators of the Lie algebra § satisfy some relations in depth 2 related to (tensor
products of) modular forms and the generators of § and © satisfy some relations in depth
5. This should determine [b completely. We will study this in detail in the commutative
approach involving bimoulds (Subsection .

Next, we equip the Lie algebra (lq, {—, —}qD ) with a derivation.

Proposition 4.63. (Lazard elimination, [Re93, Theorem 0.6]) The Lie algebra Lieg(B)
s generated by the elements by and

(—ad(0))" (o) = ... [lok. bol. o], bo], k> 1, m >0,

Definition 4.64. Define the derivation (with respect to the concatenation product) ¢ :
Lieg(B) — Lieg(B) by

m—+1

5((—ad(bo)) (bx)) = (—ad(bo))  (bxsa):
Note that the derivation § increases the weight by 2.
Proposition 4.65. The tuple (Iq,{—, —}é), d) is a differential Lie algebra.

Proof. To shorten the notation, set Dy, ,, = ( — ad(bo))m(bk). Since both maps {—, —}7

and ¢ are Q-linear, we can assume f = Dy, ;... Diym, and g = Dy, ... Dy, .. We
compute straight-forwardly

, e bzl Rl ka—1 ke,
S(df9) =o( X X (D
i=1k=0  k,=0 ki &

n;
"Dy - Di_yni s ( - ad(b0)> ([Dklfk'pml s Dkd*k&,md’ Dli+k/1+---+kél70})

’ Dli+11ni+1 v Dleme)
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e ki— kg—1
1 d

=1K=0 k=0

5 (Dt Di ) (= 2d(00)) ([Dry g mn - D ttyngs Dissgesro)

) Dli+1,ni+1 s Dle,ne
+ Dy -+ Diyyns ( - ad(bo))ni ( :5(Dk1—k£,m1 s Dkd—k’d,md) ) Dli+k’1+~--+kl’i,0])

. Dli+1’m+1 - Dle,ne
+Diyny - Dty ngy ( - ad(bo))ni ( :Dk1*k’1,m1 - 'Dkd*kfﬁmd? 5(Dl¢+k’1+---+k(’j,0)})

: Dli+17m+1 . 'Dle,ne
+ Dy - Dy iy ( — ad(bo))ni ( :Dkl—k’l,ml .. -Dkd—kg,mw Dli‘*‘kll‘*‘""*‘kﬁszD

. 5(Dli+hm+1 . Dle,ne)>

= dj ) (9) + d}(3(g))-
Moreover, we have
5(1f.91) = [6(£), 9] + £.8(9)].

Combining both formulas, we obtain

5({1.93) = 13(1). 037 +{1.6(0)}7.
O

The depth-graded double shuffle Lie algebra Is (Definition [B.36)) defined for multiple zeta
values embeds into the Lie algebra [q via the associated depth-graded map of 6 (obtained
in Theorem [4.25|).

Theorem 4.66. We have an injective Lie algebra morphism
GD : ([57 {*7 7}) — ([qa {7a *}qD)a
= 0 (¥) + Oy(Ty(4)).
The map 1Ly is given in Definition [B.27

It is expected that [s ~ gr,, 9mg, thus the image of the map #” should be contained in the
associated depth-graded space [b to bmg.

Proof. First, observe that the maps 8y and 8y also give injective Hopf algebra morphisms

Ox : (Q(X), conc, Ay) — (Q(B), conc, Ay)), xo+— by, z1 + by,
0y : (Q(Y),conc, Ay y) = (Q(B), conc, Ayy), yi + b; 7> 1.

Let ¢ € Is. First, deduce from (¢ | ) = 0 that (§” () | by) = 0. Since ¥ is primitive for
Ay, My (2) is primitive for Ay, y and 638%, 0y are coalgebra morphisms, we obtain

A (0P () = Au (6(%) + 0y (TTy(1)))
=10 63"(¢) + 0¥ (¢Y) ® 1+ 1@ y(My(¢)) + Oy(y(¥)) © 1
=1260°@W) + 0P () ®1.
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Applying Lemma [4.17| and observing that Il (Gy(Hy(w))) = 0y(I1y(¢)), we compute

(o (0P (1)) ) = 7 (Mo (03 (©))) + 7 (0T (1)) ) = Oy (Iy(¥)) + Ho(63 (1))
=TI (67 (1))

Finally, we deduce from (¢ | 2§ '21) = 0 that (8P () | b) = 0 for k = 2,4, 6. Altogether,
the map 67 is well-defined and the injectivity follows immediately from the injectivity of
034 and 6. O

Recall that we expect (Conjecture [1.23] (ii))

Hy ) (z,y) = Z dim ¢ (1b) @D gy
w,d>0
? 1

T 1—ai(x)y + ax(2)y? — az(@)y® — as(2)y’ + as(2)y

=
Lemma 4.67. There are numbers g, q € Z satisfying

1
2 3 4 5= [ (1 —avyh)7ome.
1 —ar(2)y + az(2)y® — az(2)y® — as(x)y! +as(x)y® 2,

Proof. Apply [Bou89, p. 140, Lemma 1]. O

~1
If we assume that (1 — a1 (2)y + az(2)y? — az(2)y> — ag(z)y* + a5(:c)y5) is the Hilbert-
Poincare series of U([b), then by Proposition and Corollarywe must have gy, g > 0
<

for all w,d > 1. In particular, Conjecture ii) is equivalent to

Conjecture 4.68. For all w,d > 1, we have

dimg (6D = g, ;.

The numbers g, 4 are computed numerically in [BK20] as

Gwa |1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1

2 0 0

3 2 0 0

4 10 1 0 O

5 3 0 1 0 O

6 0 2 0 1 0 O

7T 14 0 3 0 1 0 O

8 o 7 o0 3 O 1 0 O

9 5 0 8 0 4 0 1 0 O

0 (0 12 0 11 0 4 0 1 0 O

1 /6 0 22 0 14 0 5 0 1 0 0

12 |0 20 0 31 0 17 0 5 0 1 0 O

3 |7 0 47 0 4 0 21 0 6 0 1 0

14 |0 3 0 8 0 58 0 25 0 6 O 1 0 O
Theorem 4.69. For w,d < 13, we have

dim(@ [b(w’d) = Gu,d-

Proof. Take the depth-graded parts from the elements computed in Theorem O
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4.9 Supplement: A variant of the balanced quasi-shuffle Hopf algebra

For multiple zeta values there exists the shuffle Hopf algebra (Proposition, which de-
scribes their product structure and is defined on some finite alphabet X. For the balanced
multiple g-zeta values there exists also such a finite alphabet. More precisely, let Q(p, y)
be the free non-commutative algebra generated by the letters p, y, denote the empty word

by 1, and set Q(p,y)° = Q1 + pQ(p,y)y. By Theorem there is a surjective algebra
morphism

(Q<p7 y>07 |—|—|q) — (ZQ7 ')7 (4691)
pSIy e 'pSly = gq(sl) SRR Sl))

where the product W, is recursively defined by 1 W, w = w W, 1 = w and
(yu) Wg v = u W (yv) = y(u Wg v),

(pu) Wy (pv) = p(u Ly pv) + p(pu Ly v) +

p(ullgv), if uw=ya and v =yo,
else

for all u,v,w € Q(p,y). In this subsection, we will equip the algebra (Q(p,y), ;) with a
graded bialgebra structure and obtain its completed dual. We will see that the Hopf alge-
bra (Q(B), 4, Adec) (Theorem [£.2) embeds into this bialgebra. To give a better description
of the bialgebra structure, we modify the algebra (Q(p, y), LL).

Definition 4.70. Denote by Q(p,c,y) the free algebra over Q generated by the letters
p, ¢,y and define

H = BP0, e, ) oy — Q. .0

In the following, we will identify H; with the space generated by all words in the letters
P, ¢, y, which do not contain the subword py. In particular, if we write pw € ’H;“, then we
always assume w € H\yH,. Moreover, set

He = (HS\yH}) U {0}. (4.70.1)

For a word w € ”H;r, the weight wt(w) is defined to be the number of letters of w, i.e., for
ki,..., kg1 > 1, mo,...,mqg > 0 we have

Wt(ymopklflcyml - ‘pkdflcymdpkdﬂfl) =ki+- - +kg1—1+mo+...mg,
and the depth dep(w) is defined to be the number of ¢’s contained in w, i.e.,
dep(y™op™ ley™ .. pFiTeyMapFanTl) = d.
The notions of weight and depth endow 3'-[q+ with two compatible ascending filtrations.
Definition 4.71. Define the product LU, on 7—[(‘1Ir recursively by 1, w = wil, 1 = w and
yu g v = u W yv = y(u Wy v),
aru g agv = a1(u Wg agv) + az(a1u Wy v) + 6(q; a0),(c,e)CY (U g V),
for all u,v,w € /H; and a1, as € {p,c}.
Proposition 4.72. There is an algebra isomorphism

(N (H(—;’ L) — (Q(p, ), W)

induced by the assignment p — p, y — y and ¢ — py. In particular, (”H;F,Ll_lq) is an
associative and commutative algebra.
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Proof. There is a short exact sequence

0 — Q(p, ¢, y) (py — AP, ¢, ) — Qp, &, y) — Q(p,y) — 0,

where ¥ is the algebra morphism (with respect to concatenation) defined by J(p) =
p, ¥(y) =y and ¢(c) = py. This induces a vector space isomorphism

Y1 Qlp,y).

We show that v is an algebra isomorphism. For u,v € 7—[[;, one obtains by induction on
the weight

P (cu) Wy Y(cv) = pyy(u) Wy pyb(v)
= py(¥(u) Wy py(v) + py(pyt(u) Wy $(v) + py* (P (u) Wy P(v))
= py(¥(u) Wy P(cv)) + py(P(cu) Wy ¥ (v)) + py? ((u) Wy 9 (v))
= pytp(u Wy cv) + pyap(cu Ly v) + pye(u g v)
= ¢ (c(u Wy cv) + c(cu Wy v) + cy(u Ly v))
= 1)(cu Wy cv).

The other cases are verified in a similar way. O

Remark 4.73. There is also a definition of the non-homogeneous product Llgy on H;r
corresponding to the product gz on Q(p, y) defined for SZ multiple g-zeta values (Propo-
sition , such that there is an algebra isomorphism (’H;, Wsz) — (Q(p,y),Wsz). We
will omit the explicit description, since we are interested in weight-graded structures.

Definition 4.74. Let A : H} — H} ® H be the coproduct (with respect to the con-
catenation product) defined by A(1) =1® 1 and

Alaw) = (a® 1)A(w) +1® aw, a=p,c, weH,,
Ayw) = (y ® 1)A(w), we M.
Example 4.75. One computes
A(pey) =pey @1+ p® cy + 1 ® pey,
Apey®) = pey* @ 1+ p @ cy® + 1 @ pey?.

Theorem 4.76. The tuple (K}, Wq, A) is a (weight-)graded commutative bialgebra with-
out a counit.

Proof. By Proposition the pair (7—[2‘, L,) is a commutative algebra, thus we have to
show the coassociativity of A and the compatibility of L1, and A. First, we will show the
coassociativity of A by induction on the weight. Using Sweedler’s notation

A(w) = Zw(l) ® w?
(w)

one obtains for each w € H;

(A®id)o A)(yw) = (A2 id)((y ® DAw)) = 3 Alyw™) & w®
(w)

=we1o)) A ew? =(ye1e1)> v e Aw?)
(w) (w)
= (i[d@A) (Y yuw @ w?®) = ([deA)((y @ 1)A(w))
(w)
= ((d®A) o A)(yw)
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and for a € {p, c}

(A®id) o A)(aw) = (A ®id)((a ® 1)A(w) + 1 ® aw)
—ZAaw ®w(2)+1®1®aw

:(a®1®1 )Y AwY)@w® + 3 1@ aw® @w?® +101®aw
(w) (w)
=@2191)Y wPeAWw?)+1e (D aw ®w? +1® aw)
(w) (w)
= (id ®A)(Zaw(1) 2 w?) +1® Alaw)
(w)
= (id®A) Zaw )@ w® +1® aw)
= ((id®A) f)w)A)(aw).

In both cases, the fourth step follows from the induction hypotheses. Next, we prove the

compatibility of the product W, and the coproduct A by induction on the weight. For
u,v € H;, compute

A(yu) Wy A(v) = ((y @ 1)A(u)) Wy A(v) = Z (y“(l) LWg ”(1)) ® (U(Q) g ”(2))
(), (v)

= >y wgeW) @ w® W, v®) = (y @ 1)(Aw) wy A(v))
(u),(v)

=y 1)A(uwyv) = Ay(uwyv)) = Alyu W, v)

and similarly, obtain
A(u) Wy A(yv) = Au Wy yv).

For a1, a2 € {p,c} and u,v € ”;’-l+ one has

A(aru) Wy Afazv) = ((a1 @ 1)A( ) +1®aru) Wy ((a2 ® 1)A(v) + 1 ® av)
— Z aru™ 1wy agvM) @ (u® w, v?)
(u),(v)
+Za1u mLU ag +ZCL21) ®(a1u|_|_|qv(2))
(v)
+ 1 ® (a1u Wy agv)
= (a1 ® 1) (A(u) W, (a2 ® DA() + Au) W, (18 azv))
+ (a2 ® 1)((a1 ® 1)A(u) We A(v) + (1 ® aru) Wy A(v))

+5(a1 az), (cc)(cy®1)( (u) Wy Av )) +1® (alu g azv)
(a1 ® 1)(A(u) Wy Alagv)) + (ag ® 1) (A(aru) Wy A(v))
+ 5((11 a2),(c, c)(cy & 1)(A( ) ( )) +1® (alu Lqu agv)

= (a1 ® 1)A(u g agv) +1® (al(u L, agv))
+ (a2 ® 1)A(ar1u Wy v) + 1 ® (az(aju Wy v))

+ 5(a1,a2),(c,c) ((Cy ® 1)A(u LLg 1)) +1® (Cy(u Lg U)))
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= A(a1(u Wy agv) + ag(aiu Wy v) + O(a1,a2),(c,0)CY (U g v))
= A(aru Wy agv).

A counit € : H — Q must satisfy ((¢ ®id) o A)(y) =y. Since
(e®id)oA)(y) = (e@id)(y®1) =£(y) -1 € Q1,
a counit cannot exist. Ul

Restricting to #H, (defined in (4.70.1))) yields a Hopf algebra isomorphic to the balanced
quasi-shuffle Hopf algebra (Q(B), *¢, Adec) (Theorem |4.2)).

Corollary 4.77. The tuple (Hq, Wy, A) is a weight-graded commutative Hopf algebra.
Moreover, the map

v oT o (Q(B),*q, Adec) = (Hq, Wy, A),
b Obg, b . b, by s pMacyFaT L pMeyFL T pmo.

where ki,...,kqgr1 > 1 and my,...,mq > 0, is an algebra isomorphism and a coalgebra
anti isomorphism.

In particular, if the coproduct A gets replaced by t o A, where t simply swaps the tensor
product factors (see (A.14.1])), then 1! o 7 0 would be a Hopf algebra isomorphism.

Proof. Evidently, the maps L, and A preserve the space H, and a counit ¢ : H, — Q is

given by
1, ifw=1
cw) = 1 if w
0 else

for each word w € H,. So (Hg4, Wy, A) is a connected bialgebra and hence a Hopf algebra

(Theorem [A.33).

As observed in , the map 7 o0 is an injective algebra morphism. Since ¥ is an
algebra isomorphism (Proposition , also 1~ o7 o4 is an injective algebra morphism.
Clearly, ¥ ~'oroi is also surjective and hence an algebra isomorphism. Thus, we only have
to check the compatibility of the coproducts Age. and A under the morphism ¢! o7 o1.
For a word w = by'"®by, bg" ... by, by, one computes

((wfl 0T 01)® (1/171 oToO z)) 0 Agec(w)

d mj .
— Z (1/1_1 oOTO 7,) (bglobklbgnl . bk].b%)) X (1/1_1 oTO Z) (bgnj_zbkj+1b?j+1 - bkdbgld)
§=0i=0
d mj
— Z picykj—l .. -pmlcykl_lpmo ® pmdcykd—l . pmj+1cykj+1—1pmj—i

J
=to A(pmdcyk‘f1 .. .pmlcyklflpmo)
t

O]

Next, we will determine a completed dual to the graded bialgebra (7—[[;, Wy, A). For any

commutative Q-algebra R with unit, denote HS(R) = H} ®g R. Let Hg (R) be the
completion of H(R) with respect to the weight (Proposition [A.45), i.e.,

Hi(R) = T Hf (R)™,

w>0
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where 1} (R)™) denotes the homogeneous subspace of HF(R) of weight w. The space

’:[}(R) is filtered by weight and depth. Similarly, denote by 7/-[\(](R) the completion of the
vector space Hq(R) = Hqy ®q R.

Definition 4.78. Define the product conc, : 7/-[\J(R) ® 7/{\;(1%) — ?E(R) by

uv, v #yov

concy(u ® v) = {0 olse

for all words u,v € H;r and extend this definition R-linearly to the completion.
Definition 4.79. Define the coproduct A : ’;[}(R) — ?/-[}(R) ® ﬁ\;(R) by

Al(a)=1®a+a®1, a=np,c,
m—1 ) ]
ALY =10y +y" @1+ > ¢ oy™

i=1

m
Al(ey™ =10+ @1+ Y " @cy™,

=1

and extend this definition with respect to the product conc,.

Theorem 4.80. The tuple (H (R),concy, Al) is a complete cocommutative bialgebra
without unit. The pairing

Hi(R) 2o Hi — R,
dRw— (P | w),

where (P | w) denotes the coefficient of ® € ’:[}(R) inw € My, gives a duality between
the weight-graded bialgebra (M}, Wy, A) and the complete bialgebra (Hg (R), concy, AlL).

Proof. We prove the duality of (H;r, LWy, A) and (Hq (R), concy, Afl)) with respect to the

given pairing. Then (Hq (R), concy, All)) is a cocommutative bialgebra without a unit (cf

—

Theorem |A.31)). For f,g € H4 (R) and any word w = ay ...a, € H/, one has

n+1
(coney(f ® g),w) = (f®g‘ Z al...ai_1®a,~...an) =(f®g|Aw)).
i=1

aiy
So conc, and A are dual maps. For u,v € H;r and a € {p, c}, one obtains
(Al(a) |[uv)=(1®a+a®1|u®v)=(a|uw,v).

The last equality holds, since the word a appears in the product u W, v if and only if
u=1, v=a or u=a, v=1. Similarly, one has for m > 1

m—1
ALE™ luov) = 1oy +y" @1+ Y ¥ oy
=1

u®v) = (y" | uwyv),

m
(AL (cy™) |u®v) = (1 Qcy™ +cy" @1+ Z eyt @ey™t
i=1

u®v) = (cy™ | uLwgyv).
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Since Af, is compatible with conc, by definition and we proved that
(AL Tu®v) = (f [ ugv)

holds on the algebra generators of (Hd (R),concy ), the maps Af, and W, are dual. O

The complete dual balanced quasi-shuffle Hopf algebra (R((B)), conc, A,) (Theorem [4.4)
embeds into the dual bialgebra (Hg (R), concy, Ad).

Corollary 4.81. The tuple (7@(}%), conc, Al)) is a complete, cocommutative Hopf algebra.
Moreover, the map

Y roroi: (R((B)),conc,A,) — (’;fl\(](R), conc, Al)),

bo bk, bg™ - b, by pmdcykd_l .. .pmlcykl_lpmo,

where ki,...,kqr1 > 1 andmy,...,mq > 0, is an algebra anti isomorphism and a coalgebra
isomorphism.

In particular, if %(R) is equipped instead of conc with the product conc ot (see ((A.14.1))
for the definition of ¢), then 1! o 7 0 i would be a Hopf algebra isomorphism.

Proof. The product conc, restricted to ’;l\q(R) is simply the concatenation product. In
particular, there is a unit given by 1. So (7f[\q(R), conc, All)) is a connected bialgebra and
thus a Hopf algebra (Theorem [A.33). .

Since (Q(B), *¢, Adec), (R((B)),conc, Ay) and (Hg, Wy, A), (Hq(R), conc, Al) are graded
dual Hopf algebras, Corollary implies that the map ¢! o7 o is an algebra anti
isomorphism and a coalgebra isomorphism. ]
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5 Lie algebras for Z;: Commutative approach

For multiple zeta values there exists also an approach to Lie algebras using Ecalle’s theory
of moulds ([EcI1],[Sc15]), which is presented in Appendix In this section, we will
relate the algebra Z, of multiple g-zeta values to (conjectural) Lie algebras consisting of
bimoulds. A basic introduction to the theory of bimoulds is given in Appendix [C}] We will
end this section by comparing the commutative approach presented in this section to the
non-commutative one given in Section [4

5.1 The space BARI®® and the uri bracket

&swap

A spanning set for the algebra Z, of multiple g-zeta values is given by the combinatorial
bi-multiple Eisenstein series

G( Fiy oo ka ) ki,....kg>1, my,...,mgq>0.
mi,...,Mq

k

m
derivative of the classical Eisenstein series of weight k expressed in its Fourier expansion
(cf Example 1)). In particular, the algebra M@(SL(Z)) of quasi-modular forms with
rational coefficients is contained in Z,.

Consider the bimould & = (&4)4>0 € GBARIP°"24 of the generating series of the combi-
natorial bi-multiple Eisenstein series, so &3 = 1 and

m m,
& Xl?"'7Xd _ G k17"‘7kd Xklflyvl ! Xkd—lyd ¢
i\ y Y, | 2 my ma) L omg! T '
N Ky hg>1 N 1! !
mi,...,mqg>0

For k +m > 2 even, the combinatorial bi-Eisenstein series G() is essentially the m-th

By Theorem [2.46] the bimould & is symmetril and swap invariant. Conjecturally, all
algebraic relations in Z; can be deduced from these two properties of the bimould &

(Conjecture [2.51)).

The main idea to obtain a Lie algebra is to consider the bimould & of the generating series
of the combinatorial bi-multiple Eisenstein series modulo products and quasi-modular
forms.

Definition 5.1. Let Zéw) be the homogeneous space spanned by all combinatorial bi-
multiple Eisenstein series of weight w. Moreover, set

Z _ 2,
2= TV MO(S1L,(2)) 2,
and for each w > 0 denote by §¢(lw) the image of the homogeneous subspace Zéw) in Z,.
Then let Z, = @ ?éw) and define the (Q-algebra
w>1

Uk I‘Vzg-

By construction, the algebra 7, is graded by weight and all products become trivial.

Moreover, the dimension of the homogeneous subspace ’7;(1”) of weight w is equal to the
z . .

number of algebra generators of <9/ MO(SLy (7)) z, in weight w.
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Let G( ¥ ) be the image of the combinatorial bi-multiple Eisenstein series G ( *-ka )

. ml"“’md. . . . mi,..,Md
in 7, and consider their generating series for each d > 1,
m mgq
8, Xi,..,Xq) S G ki,... ka Xk1—1Y1 ' Xkd—lyd
= 1 .
Yl,...,Yd ey g >1 mi,...,Myg ml! d md!

mi,...,mqg>0
Set B¢ = 0, then & = (84)4>0 is a bimould contained in BARIPO¥Ta,
Theorem 5.2. The bimould & is contained in the space

- A is alternil,
BARE?" e — { A ¢ BARIP™™7 | - A is swap invariant,

il,swap
~ Al()éll) is even

Proof. Alternility is symmetrility modulo products, thus we deduce from the symmetrility
of & (Theorem [2.46) that & is alternil. The swap invariance of & gives only linear relations
among the combinatorial bi-multiple Eisenstein series, thus the image & is still swap
invariant. The combinatorial bi-Eisenstein series G( :1 ) for k +m > 2 even are exactly
the coefficients of the odd monomials in ;. On the other hand, these combinatorial
bi-Eisenstein series are essentially the classical Eisenstein series and their derivatives and
hence are contained in M@(SLy(Z)) (Example 1)). Thus their images in 7, vanish

and B, is even. O

Corollary 5.3. Decompose the bimould & as
6 = Z a- &Y
«

where o runs through a vector space basis of Tq. Then any bimould £ is contained in

o o | A )f;éj € QX1,Yh,..., Xa, Yo for alld > 1,
ol, _ oW, 1ye-+y
BARIE,Swap =<(Ae BARIﬁ,swap Xi X, .

- A Yl’ ’Yd % 0 only for finitely many d > 1

Proof. Since & is contained in BARIE:)SVJV’;—;J (Theorem ) and we decompose over a Q-
pow,Q

il swap- Since

vector space basis of T,, evidently, the bimoulds £* are contained in BARI

7, is graded by weight and all homogeneous components 77](1”) are finite-dimensional, the
entries of £€* must be polynomials. Moreover, the depth is bounded by the weight, thus
only finitely many components of £* can be non-zero. O

Example 5.4. There are the following bimoulds in BARIP®? | which should correspond

il,swap’?

to the elements G(5), G(}), G(), G(1), GG). G(igy) €Ty

3 1
5(0) = (X12+Y127 X1_2X2_Y1+Y2> ga 07 )7

2
(1) = an, X+ X -va 0, ),
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9 11 1 1
£® = (Xi+Y}, 2X7 - 3X3 + 5X1X§ - ?X%XQ — 2V — 5Y12Y2 + 51/11/22 + 2V,
s 1o, 1, 11 9 ) ) )
2XT = S X5 = 5 X5 = 5 XaXo + S Xi X+ 2Xp X + 2V — 4YY 4 2V5
3 3
—§Y1Y2+3Y1Y3—§Y2Ka, X1 —4Xo +6X3 —4Xy — Y1 +3Y2 — 3Y3 + Y,
1
-, 0, .
57 ) )7
(1) = (v + X v, —x? X3 SX, X2+ SX2X, — VP - Ov2Ys - Sviv
1) =X IR I HAy = ghidy +oAide = ¥y = oy — ol

—2X1XoY] + X1 XoYs + XoYV1Ys — X1 V1Yo 4+ X2V) — X3Vs 4 2X0Y5 — X1V
3 1 3 1
+ XoV?2 - 2X1 V7 — 2X3Yy, — X7+ §X22 + 5 XX + S X1 Xy = 2X X5 — §X32

3 3
+ Y2 Y+ §Y1Y2 - §Y2YB +6XoY3 —6X1Y3 — 5X3Y] + 3X3Ys + XoYo

+4XoY7, X1 —4Xo+4X35— X4 +Ys —3Ys+Y,, O, ),

3 3 3 1
6(3) = (XBYP XiXa¥ - XY - SXPV + X3V - ViV — XoMYa 4 XY

3 1 1 1 1
— XoY? — 5X2Y22, §X12 - X2+ §X§ + X1 Xo — 2X1 X3+ X0 X3 + 51/22 + 53{3

1 9 7 1 1
+2YoY3 + §X1Y1 —4XoY3 + §X1Y3 + §X3Y1 —2X3Ys — §X2Y2 + §X1Y2

5 7 3 3 5
—§X2Y1, —X1+§X2—4X3+§X4—§Yé+§}%—n, 0, ),

5(%7(1)’(1)) = (0, 0, X1Y1 +3X1Y3 —3XoY1 — 2XpY5 — 3XoY3 + 3X3Y1 + X3V3,
—X14+3Xy —3X35+ X4y — Yo +2Y; - Yy, O, )
pol,Q )(w)

il,swap

The space BARIE?SI‘;% is graded by weight, and the homogeneous components ( BARI
are obtained from ((C.24.1J).

Corollary 5.5. For each w > 1, one has

dimg 7{*) < dimg (BARI;H2 ),

il,swap

Proof. If « is a basis element of E(w), then by Corollary the bimould £¢ is contained in
(BARIpOLQ )(w). In particular, the dimension of the space spanned by the £, where « is

ﬂ,swap
homogeneous of weight w, is bounded by the dimension of (BARIE;IV’V%I) ) ) As the assign-
ment « — £9 is injective, also the dimension of E(w) is bounded by dimg (BARIE?SI"N%D )(w).
]

Conjecturally the space BARIEZI\’N%; has a weight-graded Lie algebra structure and the

dimensions of the homogeneous subspaces are compatible with the dimension conjecture
More precisely, this means

Conjecture 5.6. ([Kii19]) (i) There is a decomposition of graded algebras
'Vl ol, \
2, ~ MU(SLy(Z)) ® U(BARI}Z ).
(ii) For all w > 1, the following holds

dimg 7" = dimg (BARI;EE ) — g,

il,swap

where the numbers g,, are defined in Lemma[].38.
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It is hard to attack this conjecture with the computer even for low weights, since the
occurring polynomials are very large.

The rest of this subsection is devoted to explain the conjectural Lie algebra structure on
the subspace BARIS(;I‘;VQ;I), which was suggested by L. Schneps. This will be done more
generally for some fixed commutative Q-algebra R with unit. In particular, we will always

omit the index indicating the underlying Q-algebra in the following.

Definition 5.7. For any bimould B € GBARI'™, define the automorphism ganit g of
BARI' by

ganity(A)(w)= S = Aar]...a))B([by)... B([by),
al‘:vbff 1 }I)Ole—zlijat:;@

where the flexions are explained in Appendix Moreover, let pic, poc € GBARI™ be
the bimoulds for d > 1 given by

S AN E NS A 1
PAvi, o ve ) T X xy P n, v X1 (X1 — Xa) .. (X1 — Xa)
Example 5.8. For any bimould A € BARI', one obtains

. X1, Xo) (X1, X0 1 X4

ganltpic<A)<n,Y2> ‘A<Y1,Yz> o \nen)

) X1, X9, X3\ [X1,X92,X3 1 X1, Xo
gamtpic(A)<m,1@,1@, ) ‘A<Y1,Y2,Y3 oo n\nnin

+ 1 X17X3 1 A Xl
Xo—X1 \1+Ya, Y3 (Xo—X1)(X3—-X;) \V1+Yo+Y5)’

Y17Y27}/37Y4 H7Y27Y37Y;1 X4 _X3 Y17Y27Y3+Y4
+ 1 A XlaX27X4 + 1 A XlaX37X4
X3 — Xo Y1,Yo+Y3,Y) Xo— X4 Y1+Y5,Y3 Y,

n 1 A X1, Xo 1 X1, Xy
(X3 —X2)(Xy — Xo) \V1,Yo+Y5+Y) (Xo —X)(X3—-X1) \V1+Yo+Y5.Y)

1
ganitpiC(A)<X17X27X37X4> :A<X17X2>X3aX4>+ A( X17X27X3 >

n 1 A X1,X3
(XQ—Xl)(X4—X3) Y1+Y27Y3+}/4

) | y X,

(Xo—X1)(X3— X)Xy — X)) \Y1+Yo+Y34+Y,)’

. X17X2 _ X17X2 1 Xl
gamtpoc(“”(m,n) A(Yl,n) %o X \Vi+vs)

. X1, X0, X3\ _ (X1, X2, X3\ 1 X1, Xo
gathOC“’( Vi, Y2, Yy ) - A( V%Y ) T X - X ML Ye + Y

1 X1,X3 | 1 y X,
Xo—X1 \1+Ya, Y3 (Xo—X1)(Xo—X3) \V1+Yo+Y5)’
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. X1, X0, X3, X4\ [ X1, X9, X3, Xy 1 X1, X9, X3
gamtpoc(A)< Y. Yy Y. Vi ) —A< A

V1,Y,Y3, Ve | Xy— X3 \W1,Y2,Y3+Y)
b XXXy, 1 X0 X Xy
X3_X2 Yla}/Q_FY.?nn X2-X1 Y1+Y2,Y3,n

_ 1 A X1, Xo _ 1 X1, Xy
(X5 —X2) (X3 —Xy) \V,Yo+Y3+Yy) (Xo—X1)(Xo—X3) \V1+Y2+Y3,Y)

N 1 A X1, X5
(XQ—Xl)(X4—X3) Y1+Y2,Y3+Y21

_ 1 A X1
(Xo—X1)(Xo— X3)(X3—Xy) \1+Yo+Ys+Yy)"

Proposition 5.9. ([Baulj, Lemma 4.37, Proposition 4.38]) The map ganit ;. restricts to

a vector space isomorphism

pic

ganit,;, : BARI], — BARIY".
The inverse map is given by ganit,. ]

In Remark it is explained how to extend the definition of alternality and alternility
to the space BARI.

L. Schneps suggested the following definition for a Lie bracket.

Definition 5.10. For bimoulds 4, B € BARI", define the uri bracket as

uri(4, B) = ganit ;. (ari (ganitpoc(A), ganitpOC(B)>).

al »

Since (BARIfL ari) is a Lie algebra (Theorem |C.24)), one obtains from Proposition

the following.
Theorem 5.11. The space BARI% equipped with the uri bracket is a Lie algebra.

We are interested in a polynomial expression of the uri bracket, since this would prove
that the uri bracket preserves the space BARIP®Y. More precisely, we define the following
analog of the derivation arit (Definition |C.20)).

Definition 5.12. For two bimoulds A, B € BARI?®Y and d, e,r > 1 define uritB(A)(d’e’r)
to be the bimould, whose only nontrivial component is in depth d + e 4+ r and is given by

X1,..., X
uritg (A (d,e,r) 1y y Xdt-etr
B( ) Yl’.--,Yd+e+7,

e
_ ZA X1, X1, Xy Xivivdyr, - Xdgerr
- e
Y17 '-7}/%71;}/;+"'+Y;+d+7‘7}/;'+1+d+7"7---7Yd+e+r

i=1

. Z H 1 B, Xitr — Xitsy ooy Xitdtr—1 — Xits
0<s<r—10<k<r—1, k#s (Xith = Xits) Yigr, ooy Yivdra

or or
s=d+r  k=d+r, k#s

S 1 Xi—l—l—H“ - Xi—i—s; s 7Xi+d+r - Xi—i—s
> 1] ——Bu .
o Kivk — Xiss) Yivior, o Yivdsr

k#s
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Then we define the bimould uritg(A) by

X1, X, _ X1, X, _ (X1, X
uritB(A)<Yi’ ’Y ) :arltB(A)<Y1 Y, >—|— Z urit 3 (A)(&e )<Yi v )
N e i N
d,e,r>1

Example 5.13. Let A, B € BARIP?Y, then one obtains
. X1, X2\ . X1, X2
uritp(A) < Vi, ) = aritp(A) ( Vi Y ) ,

. X1, Xo, X , X1, Xo, X
urltB(A)< Y}l Y; Y33> :arltB(A)< 5}1 Yj Y;)

+A X1
YiI+Yo+Y; X3—X1

A Xi
Yi+Yo+Ys XQ—X]_

uritB(A) <X17X27X3a X4> _ aritB(A) <X17X27X3a X4>

o) uy)
/N
£< Eﬁ
| |
E< E<
N——— ~~—
| |
oy oy
TN TN
[aB
X
s
N—— ~—
N——— ~~—

E?Y27Y37Kl }/17Y27Y37Y;1

X1, Xy 1 X — X1
A ’ — | B - B
" <Y1+1@+Y3,Y4> [Xg—)ﬁ( ( Y )
X1, Xo 1 X3 — Xy X3 — X4
A — | B - B
" (Yl,Y2+1@,+Y4> [X4—X2< ( Yy Ys

A X1 1 p(X2— X1, Xz — X1 o Xo— Xy, X3 — Xy
Y1+}/2+Y3+Y21 X4—X1 YQ,Y?, Y27Y3
o1 p(Xs— X1 Xa— X1 (X3~ Xp, Xy — X
X2 — X3 Y3, Yy Y3, Yy
+ A Xl 1 B X3—X1
Y1+Y'2+Y3+Y21 (XQ—Xl)(X4—X1) YE),
1 X3 — Xy
+ B + B
(X1 — X2)(Xy — X3) < Y3 ) (X1 — X4)(X2 — Xy) < Vs >]

—A Xl 1 B X4—X1
Yl "‘)/2 +Y3 +Y21 (XQ —Xl)(Xg _Xl) Y'4

1 X4 — X9 1 X, — X5
+(X1—X2)(X3—X2)B< Yy >+(X1—X3)(X2—X3)B< Y >]

Proposition 5.14. For all A, B € BARI?®Y, one has uritp(A) € BARIPV.
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Proof. By [St99, Example 7.4.], for some commutative variables aq,...,a, the following
holds

S attad! ZH (5.14.1)

it gr=m+1 S )
Jisenjr21 k#s

Let B € BARIP®Y be a bimould. Without loss of generality, assume that

Bd (Xl, .o 7Xd> _ X{cl—l o Xstd—lylml o Ydmd

Yia s aYd
for some ki,...,kg > 1, mq,...,mg > 0. Then we obtain for each 7 > 1
Zr: ﬁ 1 B, Kititr — Xigsy ooy Xitdr — Xits
=ico (Kivk — Xits) Yiti4r, - Yigdsr

k#s

VeV Y ( | S
h=0  1;=0 d
(l1,--10)#(0,...,0)

k1—1l1 1 kg—lg—1 li+-+lg
Xigier - Xidadr ZH 7)X’L+S
im0 (Kt — Xits
k#s
ki—1  kg—1
m m1 mq kl -1 kd -1 li4-Flg+r
YH—H—T Yz-i-d—i—r Z Z : l (_1)
d
11=0 14=0
(ll7 ald);é(o’ )0)
k1—1 ]. kd ld 1 j1 1 ]r+1 1
Z X’L+1+r Xz+d+7' X@ Xerr .
Jitet 1=+ +lg+1
J1yeeesdr+121

A completely analogous calculation shows that also the poles in the first sum in the
definition of uritp (Definition [5.12]) cancel out. O

Definition 5.15. For bimoulds A, B € BARIP°Y, define the bimould preuri(4, B) €
BARIP™ by
preuri(A, B) = urit4(B) + mu(B, A).

We expect that preuri is exactly the pre-law for the uri bracket, which means
Conjecture 5.16. For all bimoulds A, B € BARIP®Y the following holds
uri(A, B) = preuri(A4, B) — preuri(B, A).

In particular, Proposition [5.14] would imply that the uri bracket preserves the space
BARIPOY.

Proposition 5.17. (i) For depth d < 6 Conjecture holds, in particular for depth
d < 6 the space BARIP®Y is preserved by uri.

(ii) For depth d < 3, the Lie bracket uri preserves the swap invariant bimoulds in BARIﬁOW.

Proof. (i) This was calculated explicitly with the computer algebra system Maple.
(i) is obtained in [SK]. O
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Example 5.18. From Example[5.13] one can easily obtain explicit formulas for uri in low
depths. E.g., we obtain for A, B € BARI®®Y that

. X1, X2, X3\ . X1, Xo, X3
ur1(A,B)< Vi Yy Vs ) ar1(A,B)< Vi Y. Vs )

+B

(v
o

+Y2+Y3> X3 — X4

Y +Y2+}/3> XQ*Xl

A 1
Yi+Yo+Y3) X5— X,

X1 1 X3 — X1 X3 — Xy
A — | B - B .
" <Y1+Y2+Y3>X2—X1< ( s ) ( Ys
It is conjectured in [SK] that uri is well-behaved for alternility and swap invariance in all

depths, in particular, this leads to the following.

Conjecture 5.19. ([SK|) The space BARIY  is a Lie algebra with the uri bracket.

il,swap

In particular, if Conjecture|5.19|holds, then the subspace BARIll swap equipped with the uri
bracket would be a weight-graded Lie algebra. As stated in Proposition [5.17] the conjecture
is proven up to depth 3 in [SK].

IPol

alal (introduced

The space BARIP®  can be seen as a bi-version of the Lie algebra AR

il,swap

in Theorem |B.45|).

— BARDI given for each

il,swap

Theorem 5.20. ([SK|]) There is a map Oy : ARIIa’ﬁ}ll
d>1 by

Xi,..., X
QBIMU(A) ( Yi Ydd> = swap(A)(Xl, - ,Xd) + A(Yl, - ,Yd) +Cy

where C'4 denotes the unique constant bimould, such that swap(A) + C4 is alternil.

The image OBy ( ARIal*ll) is a Lie algebra for the uri bracket. In particular, if Conjecture
[5-19 holds, the map Opivu is an embedding of graded Lie algebras. O
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5.2 The Lie algebra BARIP*:Y

al,swap

We study the depth-graded behavior of the bimould & of generating series of the combi-
natorial bi-multiple Eisenstein series modulo products and quasi-modular forms.

Definition 5.21. Denote by M, the associated depth-graded algebra to 7, (Definition
5.1), so

(d) (w)
o w,d w,d) __ Fil (T )
M= @ M, et = T
w,d>1 q
In particular, M, is a bi-graded algebra with respect to weight and depth. Moreover, the
dimension of Mf;”’d) equals the number of algebra generators of grp Z/ MQ(SL2<Z)) z in

weight w and depth d.
Denote by grp G F1-kd

mlmd) the image of the combinatorial bi-multiple Eisenstein series

G( Ki,....ka ) in M, and consider their generating series in any fixed depth d > 1,

mi;...,,Mqg

s le"‘7Xd ral klu“'vkd k’lflylml k’d—lydmd

grDesd< ); > grDa< b e Y

Yl,...,Yd ey g >1 mi,..., Mg 1- :
mi,...,mq=>0

Let grp B = 0, then grp, & = (grp &4)aso is a bimould in BARIP®"Ma,
Theorem 5.22. The bimould grp, & is contained in

- A is alternal,
BARIEIO ;Nvi,ﬁ;lq ={ A e BARIPOVMa | . A is swap invariant,
N - Al()éll) is even

Proof. By Theorem the bimould & in contained in BARI?°Y'7. The definition of

Llyswa‘p‘
alternility considered modulo lower depth is just alternality and the swap operator is

homogeneous in depth, thus the bimould gry, & is alternal and swap invariant. Moreover,
&, is an even function, thus the same holds for grp ®. O

Corollary 5.23. Decompose grp, & over a vector space basis of My,

gngz Zﬁ'gfpﬁﬂ-
B
Then any bimould grp, €7 is contained in

.Ad<X1""’Xd € Q[X1,Y1,...,Xq, Yy foralld > 1,

Q) » w,Q Yi,....,Y,
BA ngﬁs ap € BARISES ap by |
) Ad<y’ ’ g % 0 only for finitely many d > 1
Tyevesy Y

Proof. As in Corollary this follows immediately from the weight-grading of M,. [

Example 5.24. For each k > 1, m > 0 and k + m odd, the elements
k m m —m— —m—
grD§<m> = (XPY™(xyTh eyl o, L)

are contained in BARIY, lgap. They should correspond to the elements gry, é(:;) € M,.
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The space BARIP:C g bi-graded by weight and depth, and the homogeneous components

al,swap
(BARIpOl’Q )(w’d) are given in (C.24.2)).

al,swap

Corollary 5.25. For all w,d > 1, the following holds

dimQ Mngd) < dimQ (BARIpol,Q )(w,d).

ilvswap

Proof. Apply the same arguments as in Corollary [5.5 O

Equality in Corollary is not expected, this will be explained in the following.

Theorem 5.26. ([SS20, Theorem 3.1, Proposition 3.4 + 3.5]) For each commutative Q-
algebra R with unit, the space BARI&O l’vlfap equipped with the ari bracket (Definition |C.22
s a bi-graded Lie algebra. N

Proposition 5.27. Let R be a commutative Q-algebra with unit and assume that the pair
(BARIZ°ME ri) is a Lie algebra (Conjecture|5.19). Then the map

ﬂ,swap’

grp : (BARIPME uri) — (BARIPORE  ar),

il,swap? al,swap’

0,...,0,A, Art1,...) = (0,...,0,A4,,0,...)
is a Lie algebra morphism.

Proof. Since the swap operator is homogeneous in depth and the map grp maps alternil
bimoulds to alternal bimoulds (Proposition [C.19), the map grp is well-defined. By def-
inition, the associated depth-graded map to ganit,;. and ganit,. is simply the identity.
Thus, the associated depth-graded to the uri bracket (see Definition is just the ari
bracket. O

The map in Proposition [5.27]is not surjective, for example, one has

®)
dimg gy (BARI;AZ ) =7 < 8 = dimg (BARIY LY )™, (5.27.1)

il,swap al,swap
In accordance with Conjecture the following is expected.

Conjecture 5.28. ([Kiil9
(i) The space grp, BARI?MC s g proper bi-graded Lie subalgebra of BARIPC-Y

il,swap al,swap-

(ii) For all w,d > 1, the following holds

(w)
dimg grfy) (BARIZNE ) = dimg M{™? = g4,

il,swap
where the numbers gy, q are defined in Lemma[4.67

Evidence for the dimension part of this conjecture was computed by U. Kiihn up to
weight 26 and depth 4. The example in ([5.27.1]) together with Conjecture explains
why equality in Corollary is not expected.

The Lie algebra BARIP®"2 can be seen as a generalization of the Lie algebra ARIPOHE of

alswap al/al
moulds (introduced in Theorem [B.53).
Proposition 5.29. ([SK/) Let R be commutative Q-algebra with unit. Then the map
000 (ARIPOHE ari) — (BARIPVE ari) given by

al/al ’ al,swap’

X1,.... X
GQIMUM)(Yi Yj) = swap(4)(X1,. ... Xa) + A(Yi, ..., Ya)

is an embedding of bi-graded Lie algebras.
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Proof. By definition of the space ARI;O/l;, the bimould #&,;(A) is alternal. Moreover,
one computes directly

X1 X
SW&PW@IMU(“‘))(Q Yj)
= SW&p(A)(Yl 4+ 4+Yy... .1+ YQ,Yl) + A(Xd,Xd,1 —Xgy, X1 — XQ)
— A(Vh, . Ya) + swap(A) (X1, ., X)

X, X
:H]QIMU(A)<Y1 Ydd> :

Thus 055 (A) is contained in BARIP*M for all A € ARIP°"". Finally, obtain for

al,swap al/al *
pol,R
A,B € ARIY):

. X1,..., X
arl(egIMU(A)a H]QIMU(B)) ( Yi . Yj)
= ari(swap(A),swap(B))(X1,...,Xq) +ari(4, B)(Y1,...,Yy)
= swap (ari(4, B))(Xy, ..., Xq) +ari(4, B)(Y1,...,Yy)

Xq,..., X,
:HD . A,B 1, s Ad
BIMU(ar1< ))<Y17---,Yd>

The first equality follows from ari(A,swap(B)) = 0, which is proven in [SK], and the
second equality is a consequence of [Sc15, Lemma 2.4.1, 2.5.5.]. O

At the end of this subsection, we will explain the conjectured structure of the Lie algebra
(erp BARIEOSI‘;%I), ari) and relate this to the depth-graded dimension conjecture [1.21} In
the following, we will work over the field Q for simplicity, but everything holds also for an

arbitrary commutative Q-algebra R with unit.

An immediate consequence of [Eclll eq (2.79)] is the following parity result.

Proposition 5.30. If w,d > 1 and w % d mod 2, then one has

(BARIFLS,)™ = {0}, -

Proposition 5.31. ([Ki19]) The Lie algebra (BARI&?;’(V%I), ari) is equipped with the deriva-
tion § : BARIP®2 s BARIP®:C  given by

gl,swap Ql,swap
X1,..., Xy X1,..., Xy
d(A = (XY +-+ XgYg)A .
( )<Y1,...,Yd> ( 1 d d) (Yl,...,Yd O

Definition 5.32. Denote by § the Lie algebra over QQ generated by the elements

grD€<§> = (Xf‘1 +YF1 o, ) k>1odd,
and their derivatives

5m gng<’8> = ((lel)m(xf—l + Y, o, ) k> 1 odd, m > 0.
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For each A € grp BARIﬁ(ﬁWQ;p the component A; must be even and swap invariant. Thus,

erp BARI?®?  and § must coincide in depth 1

il,swap

(1) BARIPOLQ g(l)

il,swap

In particular, if gr, BARIP®® s a Lie algebra, then § is a Lie subalgebra of gr ) BARIF:2

il ;swap il,swap"”

By Proposition [5.29] there is a Lie algebra embedding

1 1,
QBIMU ARI lo/a(l@ - BARIstgap

For k£ > 3 odd, the elements grp ¢ (’8) lie in the image of HBIMU, since their preimages
are exactly given by the generators grp &(k) = (XF71, 0, ...) of ARIE{)};I@ in depth 1 (cf
Definition [B.59). In particular, § contains the images of the ekma moulds obtained for

multiple zeta values,
O (€) C 3.

Lemma 5.33. The number fy, of generators of V) is given by

3 fur" = D(@)01(x) = ar (a),

w>1

where D(zr) = 1= a:2> O1(z) = —~5.

11—z

Proof. The generators grp & (]8), k > 1 odd, are counted by the term Oj(x) and their
derivatives are counted by the term D(x). O

Theorem 5.34. ([Kiil9]) The number r,, of independent relations in 2 of weight w is
given by

Z rypz’ = D(x) Z dim(M,(SLa(Z)))%2" = as(x),

w>2 k>4

where D(x) = 1= and My (SL2(Z)) is the vector space of modular forms of weight k.

Sketch of pmofﬁ Due to the shape of the ari bracket in depth 2 (Example and
the generators of §, the number r,, is exactly given by the dimension of the space R,
spanned by all homogeneous polynomials P € Q[X1, X2, Y1, Y2] of degree w — 2 satisfying
the following relations

X1, X9 Xo, X1 — Xo X9 — X1, Xy
P P P —0,
<Y1,Y2> " <Y1+Y2,Y1 ) " (Yz,Yl+Y2 )
X1, X5 X27X1 —0
Yla}/Q Y2>Y1 -
X1, X9\ in,Xz _p X1, £Xo
Y1, Yo +Y1,Y2 ) \Y,£Xe )
X1, X2\ Yl,Xz _p X1,
Y1, Y, X1,Y2 O\, Xy )

The space R, can be decomposed as

P

"

P

Ry = ker A G 6(Ry—2),

“More details can be found in [Con22]
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where A = 0x, Oy, +0x,0y, denotes the symplectic Laplacian. Following an idea of Zagier,
the space ker A can be identified with the space of all symmetric tensor products of even
or odd period polynomials. This identification allows counting the dimensions of ker A
and one obtains the claimed formula. O

The relations in F? can be divided into two families. On the one hand, one obtains for

all k> 1 odd
ari (grD§<(1)> ,grD§<IS>> =0 (5.34.1)

0" ari (grD§<(1)> ,grD£<§>> =0 for all m > 0. (5.34.2)

These relations are called the Eisenstein relation. On the other hand, there are the well-
known period polynomial relations in (ARISIO;;Q)@) (Proposition [B.60). Applying the

and hence also

embedding HgIMU (Proposition ) leads to period polynomial relations between the
generators grp §(§) for £ > 3 odd. For example, one has in weight 12

O ) R O ) R

There are also derivatives of these period polynomial relations.

The Eisenstein relations and the period polynomial relations induced by 9]]3DIMU intersect
in depth 3. More precisely, consider any period polynomial relations induced by GSIMU,

> ki gy aTi (ng § <%> ,8rp € (%2>> =0.

Then applying Jacobi’s identity yields

ari (grD§<(1)> »ZAliw ari (grD§<IB1> ,grD§<lB2>>) =
o) (5 )
. ko . 1 k1
+Z)‘k1,k2 ari (grD§<O> ,ari (grD§<0> ,grD§<0)>> ,

and the right-hand side consists of Lie products of the Eisenstein relations. Evidently,
there also exist derivatives of these intersections of relations. Denote by i,, the number of
this kind of intersections in §®) and weight w.

Lemma 5.35. The following holds

Ziwznw = D(z)xS(x) = a3(z),

i>3

where D(z) = ﬁ, S(x) = %
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Proof. The series S(x) is exactly the Hilbert-Poincare series of the cusp forms S(Sly(Z))
and thus counts the number of period polynomial relations induced by HQIMU (see Propo-
sition . Since the intersections of relations occur when considering the Lie product of
these period polynomial relations and grp E(é), the series S(z) needs to be multiplied by
x. Finally, there exist derivations of the intersections of relations illustrated above, this is
encoded in the term D(x). O

It is expected that there exist no new relations or intersections of relations in F*) for
w > 3. So the computations in Lemma Theorem and Lemma lead to the
following Hilbert-Poincare series of U(gF).

Conjecture 5.36. ([Kul9/) The Hilbert-Poincare series of the universal enveloping alge-
bra of § is given by

. i) )
Hyz)(z,y) = Y dimgU(F) @ PDavy? =

w,d>0 1 —ai(2)y + az(2)y* — as(x)y®’

This conjecture is verified by U. Kiihn up to weight 27 and depth 6.
In depth 4, the homogeneous subspace ) is properly included in grg) BARIS‘;IV’VQ;I). We

will explain now a construction how to find these additional generators of grg) BARIE;{’EP,
we call this Ecalle’s construction (cf [Ecll Section 7.3, 7.7]). N

If (BARIP®2 uri) is a Lie algebra (Conjecture [5.19)), then (grp BARIPY ari) is the

Ll,swap’ Ll,swap’

associated depth-graded Lie algebra (cf Proposition [5.27). Thus, any relation in the Lie
algebra § C grp BARIE®? can be lifted to BARIE" For example lifting the period

il,swap il,swap"

polynomial relation induced by 05, given in (5.34.3) to BARI®?:? | one obtains

il,swap’

() (3) () 0)

where €4 € BARIE®'Q is an element of depth > 4. In general, lifting any relation in §®

il,swap

to a relation in BARIF®'? | the depth 2 part must vanish by construction and the depth

Ll,swap’
3 part vanishes by Proposition m Thus any relation in §® gives rise to an element
in BARI?"? of depth > 4. Then apply the morphism in Proposition [5.27] to obtain a

il,swap

(possibly trivial) element in grg) BARIP°LC

il,swap*

Definition 5.37. Let ® be the Lie algebra generated by the elements in gr%) BARIF?-Q

ﬂ,swap
induced by the relations in 2 in the above explained way.

By construction, the Lie algebra ® contains the images of the carma moulds obtained for

multiple zeta values (Definition | under the map HgIMU (Proposition ,
Oy (€) C D.

Not all relations in 2 produce non-trivial generators for ®, for example, the Eisenstein
relations given in (5.34.1) should lift to proper relations in BARIE®? | More precisely,

Ll,swap‘
the following number of generators and relations in D is expected.

Conjecture 5.38. ([Kil9]) The Lie algebra © is a free Lie algebra and the Hilbert-
Poincare series of its universal enveloping algebra is given by

1
Hy o) (2, y) = dimg U(D)wdgwyd — 1
U®) w%g Q e

125



where ag(x) = 1_1952 k;Q dim(sk(SLz(Z)))ka-

Finally, we want to investigate the relations between the two Lie algebras § and ®. Similar
to the case of the ekma moulds ([5.34.1]), one obtains for any carma mould C € €

6™ ari (grD§<(1)> ,GQIMU(C)> =0, m>0. (5.38.1)

Conjecture 5.39. ([Kiil9])

(i) The two Lie algebras § and ® generate the whole associated depth-graded Lie algebra
gr, BARIP®HQ

li,SW&p'
(i) There are no relations between § and © expect for the ones given in ([5.38.1)).

Theorem 5.40. Assume that Conjectures [5.30, [5.38, [5.39, and hold. Then the

Hilbert-Poincare series of the universal enveloping algebra of grp BARIEZI‘;V%) is given by

1

H T 1- a1 (2)y + az(z)y? — asz(x)y3 — ag(z)y* + as(x)y®’

u ( grp BARIPCLQ

il,swap

)(.T,y)

where a;(x), i =1,...,5 are defined in Conjecture m
In particular, Conjecture would hold.

Proof. By Conjecture and [5.38] one has

: 1
) H x, =
1— a1 (x)y + as(z)y? — az(z)y3 u@)(@,y)

H, = T aroi

u) (z,y) a0y
The number of generators of € in weight k is expected to be given by dim Si(SLa2(Z))
(Conjecture |B.64). Thus, the number of relations in (5.38.1)) is given by D(z)zS(z) =
as(x) (as before, the term D(x) counts the derivations) and evidently, the relations in
(5.38.1) are generated in depth 5. Since we assume that there are no further relations

between § and ® and both together generate grp, BARIEHQ (Conjecture|5.39), we deduce

il,swap

1
T 1—ar(w)y + ax(2)y? — as(@)y® — as(2)y’ + a5 ()P

Hu ( grp BARIPOMC ) (@)

il,swap

By definition of the numbers g, 4 (Lemma [4.67)), we immediately deduce Conjecture

(w)
dimg gr'? (BARIPOL@ ) = Jud-

il,swap

O

il,swap’

depth-graded dimension conjecture (ii) for the multiple g-zeta values.

In particular, the expected structure of (grD BARIPMY ari) is compatible with the
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5.3 Symmetries of bimoulds related to balanced multiple g-zeta values

To compare the two approaches to Lie algebras related to multiple g-zeta values (Section
and Subsections , we have to explain some terminology. In Definition and
[2.66], we introduced g-symmetral and g-symmetril bimoulds. In order to obtain Lie algebra
structures, we will consider these properties modulo products. In the following, we will
work over some fixed commutative Q-algebra R with unit. Moreover, we only consider
bimoulds with polynomial or power series components. In particular, we will drop both
indices in the notation in the following.

Definition 5.41. A bimould A € BARI is called g-alternal if there is a Q-linear map
o Q(B)? — R satisfying ¢, (uwv) = 0 for all u,v € Q(B)°\Q1, such that for all d > 1

X,..., X _ _
Ad< b d) = Y b byt b by XY L X Y
o k1,..,kg>1

mi,...,mq>0
In this case, we refer to the map ¢y, as the coefficient map of A.

The space of all g-alternal bimoulds is denoted by BARI, ;.

From the definition, we obtain that a bimould A € BARI is g-alternal with coefficient
map ¢, if and only if for all 0 < n < d

X1,..., X, Xpits .o s Xg
w L w = 0. 5.41.1
P <PB( )<YI’7Yn> PB( )<Yn+17---aYd ( )
Here pg(WV) denotes the generating series of words in Q(B)" as introduced in (2.64.2)).

Definition 5.42. A bimould A € BARI is called g-alternil if there is a Q-linear map
¢x, : Q(B)? — R satisfying ¢, (uxqv) = 0 for all u,v € Q(B)°\Q1, such that for all d > 1

X,...,X _ _
Ad(Yi Yj) = Y e, (b by b by XYL XSy
e k1, kg>1
mi,...,mgqg>0
As before, we will refer to ¢, as the coefficient map of A.

By BARI,_jj we denote the subspace of all g-alternil bimoulds.

A bimould A € BARI is g-alternil with coefficient map ., if and only if for all 0 <n < d

Xi,.... Xy Xoat,-o . Xa) ) _
Psq (pB(W)<Y1,...,Yn> *q pB(W)<Yn+1,---aYd =0. (5.42.1)
As in the case of alternality and alternility (Proposition |C.19)), g-alternality can be seen
as the associated depth-graded symmetry to g-alternility.

Proposition 5.43. Let v > 1 and A = (0,0,...,0,A,,A,11,...) € BARI,.i. Then
grp A=(0,0,...,0,A4,,0,0,...) is a g-alternal bimould.

Proof. By Proposition the explicit formulas for g-alternality (5.41.1]) and g-alternility
(5.42.1)) differ only by terms of lower depth, this directly implies the claim. In particular,
grp A is a g-alternal and g-alternil bimould at the same time. O
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Definition 5.44. We define the following subspaces of BARI,

- A is g-alternal,
BARI, .- = ¢ A€ BARI | - A is 7-invariant, 5
o : A()}fll) is even

- A is g-alternil,
BARI, i = A€ BARI | - A is 7-invariant,
o . A()S(,ll) is even

The elements in BARI,_; , also satisfy a condition related to the product *,. More pre-
cisely, we will state a version of Proposition [2.70] modulo products.

Proposition 5.45. Let A € BARI,.qi -, and ¢., : Q(B)° — R be the coefficient map of
A. Then we have for all0 <n <d

X1, Xp KXnt1s--Xa |\ _
o (srom (5 e mom (3 5) ) =0
Proof. As obtained in the proof of Proposition we have %, = 7 ox,0(7,7). Thus, we

obtain the claim from the 7-invariance and the g-alternility of A. O

We relate the spaces BARI; a1 and BARI, i+ to the known spaces BARIy swap and

BARI) swap (introduced in Theorem 5.22)).

Theorem 5.46. We have two vector space isomorphisms
#y : BARI@,T — BARIQI,SW&p) #y : BARILH,T — BARIﬂ,swap .

Proof. The proof consists of the same arguments as the proof of Theorem [2.74] just set
the products to be zero. Observe that #y is the identity in depth 1, thus the condition
that the depth 1 component of each bimould is even is preserved. O

Definition 5.47. For a bimould A € BIMU, denote

A#X Xl?"'7Xd :A Xl+”'+Xd7X2+”‘+Xd7"'7Xd
Yi,.... Yy Yi,....Yy '

Note that we have by definition #x = 7o #y o T.

Corollary 5.48. We have two vector space isomorphisms
T O #X : BARILaLT — BARIaistap, TO #X : BARILH,T — BARIﬂyswap .

Proof. Since 7 o #y o1 = #x, any 7-invariant bimould A € BIMU satisfies 7(A#X) =
7(A)#Y = A#Y. Thus the claim is obtained from Theorem O
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5.4 Bimoulds and bm,

We will associate to each element in the space bmg (Deﬁnition a bimould in BARI®P°!
(the general procedure is explained in Subsection . Since the space bmg can be de-
scribed in terms of three different alphabets, there are three different possibilities for the
association. Each one yields bimoulds with different symmetries, which we will elaborate
in detail in the following. These studies were an important part of finding the explicit
formula of the g-Ihara bracket (Subsection . We state all the obtained detailed results
here for further reference.

The alphabet B. We start with the most natural translation of the space bmgy into
bimoulds, this means we consider the alphabet B.
Definition 5.49. Consider the Q-linear map

PB - @<B>O — Q[X17H5X27Y27 .. ']7
b, b0 . by b s Xy x ke lyma

Let (@<B>0)(d) the homogeneous component of Q(B)? of depth d and for each f € Q(B)°
denote by f(@ the homogeneous component of f of depth d. Then to every f € Q(B) we
associate a bimould ps(f) = (p5(f)a)aso € BARIP?LQ by

X1, X
PB(f)d(YL . ,Yj) = pB<Ho(f)(d)), d>1.
Note that the map (Q(B),conc) — (BARIP®*Q mu), f — pg(f) is not an algebra mor-

phism. This is only the case if we restrict to Q(B)°.

Theorem 5.50. For every f € bmg, the bimould pp(f) is g-alternil and T-invariant. More
precisely, there is a vector space isomorphism

bmy = BARIiL@ f e ps(f).

-il,7

The space BARIE?}{? is introduced in Definition [5.44

Proof. First observe that there is an isomorphism <Q<B>0\Q1> — BARIPYC £ p(f).

By definition a bimould pz(f) € BARIP®'Q is q-alternil with coefficient map Q(B)° — Q,
w — (f | w) if and only if

(fluxqv)=0 forall u,ve Q(B)°\Q1.

On the other hand, the duality given in Theorem implies that an element f € Q(B) is
primitive for A, if and only if

(f lvxqw) =0 for all v,w € Q(B)\Q1.

Furthermore, if f is primitive for A,, then f is contained in ker(dp). In particular, by
applying the map sec, one can uniquely recover f from the projection Ily(f) (Proposition

. This shows that there is an isomorphism Prim(Q(B)) — BARIP%C, 1 pB(f).

q-il >
Next, observe that a bimould pg(f) € BARIP®MQ is r-invariant if and only if the coefficient
satisfy

(f lw) = (f | 7(w)) for all w € Q(B)°.
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This follows immediately from the definition of 7 (Definition [2.12)) and the observation in
(2.64.1). On the other hand 7 : Q(B)° — Q(B)° maps words onto words, thus T(Ho(f)) =
IIy(f) is equivalent to

(f | w) = (f | 7(w)) for each word w € Q(B)°.

Therefore, an element f € Q(B) satisfies T(HO( f)) = Iy(f) if and only if the bimould

pg(f) is T-invariant.

Finally, f € bm satisfies (f | b2) = (f | ba) = (f | bg) = 0 if and only if (f | brby") = 0
for any k + m even (Proposition . Equivalently, the coefficient of X flelm in pg(f)
vanishes for all k +m even, which means that pg(f); is even. Altogether, we have shown
that bmg — BARIg?ill’g, [+ pg(f) is an isomorphism. O

Corollary 5.51. There is an isomorphism of vector spaces

bmo = BARIE®Q £y pp(f)#r.

Ll,swap

Proof. The isomorphism can be obtained immediately from Theorem and Theorem
5.46] O

The pre-law s for the q-Thara bracket (Definition D corresponds to the pre-law preuri
(Definition [5.15)) under the above isomorphism #jy o pg. To prove this, we restrict to the
subspace Prim(Q(B)) of primitive elements in (Q(B), conc, A,).

Theorem 5.52. For f,g € Prim(Q(B)), one has

pi(3(0)) " = preuri (ps(H)* . pis(9) ).

Proof. Define the auxiliary letters

Dim = ((—ad(bo))" (b) = [ [[br.bo], bo] -+ bo]). &> 1,m >0,

By rewriting the letters v; in terms of the alphabet B in Proposition m (according to
Definition [4.26]), we see that any element in Prim(Q(B)) is a Q-linear combination of words
in the letters Dy, ,,,. Consider the Q-linear map

PD - Prlm(@<8>) - Q[Xla}/i7X27}/év . ']a

k1—1xmq kqg—1y mgq
Diymy -+ Diymy — XP 7ty xha=lyma,

Let Prim(Q(B))@ be the homogeneous subspace of Prim(Q(B)) spanned by all words in
the letters Dy, of depth d and for each f € Prim(Q(B)) denote by f (@) the homogeneous
component of f of depth d. We associate to each f € Prim(Q(B)) the bimould pp(f) =
(pp(£)a) 4o € BARIPVQ by

Xi1,...,Xq B (d)
pD(f)d(Yl,...,Yd>_pD<f >, d>1.
For some word w = Dy, m, ... Dy, m, and each d > 1 compute
mo mgq
Mo(w) = by, by (= ad(bo))  (b,) . (—ad(bo)) " (bx,)

ma my
= Z .. Z (:;) o (md> (_1)n2+---+ndbk1 bgl1+n2bk266ng—n2+n3 o bkdbgnd_nd

no=0 ng=0 N
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and thus

;w(w><§§;:" ) DS (””) ..<"”>(—1yw+“+"txf1“.xjf*

o no= =0 ng=— 0 nd
mi+ngy ma2—n2+n3 mqg—ng
Lyt LY

= XPot xRy v, v (Y - Vo)LL (Y — Y™
_ oo(w) X1, Xy
PP\ YL Ye =V Y = Ve Yo — Ya
We deduce pg(w)”Y = pp(w). Therefore, it is enough to show that

pp(s%(9)) = prewi (pp(f), pp(9)),  f,g € Prim(Q(B)).

Since all maps are Q-linear, we can assume that f = Dy, 1, ... Dy mys 9 = Diypy - Dy e -
By definition, we obtain

e ki—1 kg—1
]{71_1 kd—]. oy /
=D 0D S Sl v B L [
d

=1K=0  K,=0
n;
: ( - ad(bo)) ([Dkrk/l,ml o bk mg Dl¢+k’1+---+kél,0})Dliﬂni“ . Dy,
ki+-tkg—d e  ki—1 kdlk_l Lo—1 ) )
T S Vb St Sl (v Y Lva B
d

=1 k{=0 k=0
(klv 7kl)3‘£(07 7)

Z Dl1,n1 ce Dli717ni71 ( - ad(bo)>nZ (Dli—i-jl—l,ODjz,O ‘e Djr,O

g1t grp1 =k 4R L
j17"'7j7‘+121

: |:Dk1—k/1,m1 e Dkd—kéymd’ Djr+1,0] )Dli+17ni+l e Dleyne'

On the other hand, observe that we have for 1 <7< j <d

Xi,..., Xy
(}/’i+".+Yj)pD(Dklyml"'Dkdamd)<Y'17.."Yd>

J
_ k1 k:d—l mi ms 1vms+1 ms+1 mq
=3 xh L xRty ymeetymetly ey

J
Xi1,..., X4
= pD(ZDk’l,ﬂh -e Dk’s—hms—lDks,ms+1Dks+1,ms+1 .- 'chhmd) (YI, LYy >

= pD (Dk1,m1 . Dk,‘i—lymi—l< - ad(bo)) (Dkivmi e ij7mj)ij+17mj+1
X1,...,Xy4
..-Dkd,md> <Y17..-,Yd> ’

where the last step follows from the observation that —ad(bg) acts as a derivation on the
letters Dy, ,,. Iteratively we get for each n > 1

(5.52.1)

X1, X
(}/l + e+ Yj)np'D(thnH . Dkd,md)< ! d)

Yi,....Yy
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= PD (Dkl,ml e Dki—l,mi—l ( — ad(bo)) (Dki7mi . ij,mj)ij+1,mj+1

Xi,..., X4
...Dkd,md)<Y1 ...,Yd>'

Y

With (5.52.1)) compute
i X1,y Xdve
arltpD(f) (pD(g)) < Ylv o 7Yd+e

= ipD(g) X17;Xl—laXZ+d7Xz+d+1,,Xd+e
i=1 Yl""’YFl’Yi+"'+n+da1/i+d+1,...,Yd+e

Xi—Xivdy- s Xivd—1 — Xita
pp(f)( Yi.o o, Yira

- ZG:PD(Q) Xipoo Xic1, Xy Xigag, -+, Xdgee
i=1 Yl""ayg—layvi"i‘"'+}/;+d,}/;+d+1,_..7yd+e

Xig1 — Xy, Xipa — X
pD(f)( Yi"!‘la "7Yi+d

€

_ I1—1 lic1—=1 -l l ni i—1 (v n; v Ni+l n

=D XX T X e X Y Y (Y 4 Yid) Y Y
=1

. (X?i

iea(Xi = Xir )" 7 (X — Xapa)™ Y™ Y

i+d—1
— XX = X)L (X g — Xk Tty Ly
i i1 i i+d i i+l Yigd
e
_ lhi—1 lim1—=1 5 liv1 le ny ni—1 /v, - \n L Ne
=D XX T X XY YT (Y Y)Y Y
=1

ki1—1 kqg—1
LSSl G Y s
k1 ka

K=0 k=0

li+k/1+"‘+k:i klfkllfl kd_k:i_l mq mgy
) (Xi-i-d Xi "'Xi-i-d—l Yz "'Y;—f—d—l

lb+k/1++k:i k1,k£,1 kd_k:i_l mi mq
- X’L Xi+1 te Xi+d }/ti-f—l te 1/;+d

e ki—1 kq—1 kl 1 kd 1 y y
- pD<Z Z Z ( ki ) ( kfj >(_1) e dDh,m “'Dliflanifl

i=1K=0 k=0

n;
: ( - ad@o)) ([Dkl—k;’l,ml co Dygy— it mg Dli+k’1+~--+k;1,0])Dlm,mﬂ
X1y ooy Xage
...D .
l67n6> ( Y17 . 7Yd+e
Moreover, with ([5.14.1)) and (5.52.1)) we obtain for » > 1

urit (de,r) 1y-++s Xdtetr
relf) (pD(g)) < Yiv cee 7Yd+e+r
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:ze:pp(g) Xl""7Xi_17Xi7Xi+1+d+7’7"'7Xd+e+'r‘
i=1 Vi,ooYien, Yoo+ Yigar, Yivasdars -5 Yaretr

. Z H 1 PD(f) X’H—’I‘ - Xi+87 s 7Xi+d+7'71 - Xi+8
0<s<r—10<k<r—1, k';éS (XZ+]€ - XZ+8) }/'L"i’T? e 7}/:i+d+T—1

or or
s=d+r  k=d+r, k#s

_ET: ﬁ 1pD(f)<Xi+1+r _Xi+8>-~-7Xi+d+r—X¢+s>1

=imo (Kivk — Xits) Yiti4r, - Yigdtr
k#s

e

_ -1 l;—1 l7,'+1—1 le—1 n1 Ni—1 g g ng

=) XU XX e X Y YT (Y Yidasy)
i=1

Mi4+1 Ne
) Y;‘+1+d+r S Yd+e+r

ki—1 k-1
: [ DIREEDY <k1k’ 1) <kdk, 1)(_1)T+k’1+---+k& 3
k=0 k=0 ! d Jr g1 =k 4 k41
(K} yeeesk!))#(0,...,0)

Cyii—1 21 Jr—1 yk1—ki—1 ka—ky=1 g jri1—1y,my mg
Xi Xi+1 ce Xi+r—1Xi+r s Xi+d+r—1Xi+d+7’ Y;'—I—'r ce Y;—l—d—l—r—l

kil kg1 B B
SIS (k:lk/ 1) <kdk’ 1)(_1)r+k’1+---+k; 3

k=0 k=0 ! d i 1=k ek 1

(K- ) #(0,...0)

Cyii—lyga—1 Jr1—1 g h1—ky—1 ka—ky=1y,my mg
Xi Xz’—i—l c 'Xi+r Xz‘+r+1 c 'Xz‘+d+r Yi+r+1 o 'Y;-l—d—l—r

d k-1 kg—1 ky — 1 kg — 1 y y
:pD<Z Z Z ( 1 ) < 1 )(_1)7’+ T4tk Z
i=1 k=0 K,=0 1 d Jube 1=k kL

. Dl17n1 .. Dlz‘717n¢71 ( — ad(bo))ni (DliJrjl*l»ODj%O ... DjT,O |:Dk1—k,17ml

le s 7Xd+e+7’>

Dy D DD. ...D
kq—Ek,mqg> jr+1,0 lit1,miq1 le,ne Y17-~-7Yd+e+r

, Xi,0 X\
urltpwf)(/’l’(g))()fi Yn> = arity, () (pp(9))

. e,n—d—e X,..-,Xn
+ urit,,,, 1) (pp(9)) "¢ <Yi Yn>7

comparing the computed formulas yields
pp(d4(9)) = writ, () (pp(9))-
Moreover, the map (Prim(Q(B)),conc) — (BARIP®’Q mu), f — pp(f) is an algebra

morphism. For two elements f,g € Prim(Q(B)) the homogeneous component of fg of
depth d (with respect to the letters Dy, ,,) is given by

d—1
(Fg) @ =" fg' 0.
=1
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Thus, we obtain pp(fg)1 = mu(pp(f), pp(g9))1 = 0 and for each d > 2
d—1
X1, X4\ X1, X; Xist,- s Xa
pD(fg)(Yi,,Yd) - ;PD(JC)(YI"YZ)PD(Q)<YH1’7Yd>
B X1, ..., Xy
= mu (pD(f)apD(g)) ( Yi,.. 'aYd> :
We deduce that for all f,g € Prim(Q(B))

po(s3(9)) = po(@}(0)) + p(0f) = writyy s (0(9)) + mu (po(a). o ()

= preuri (pp(f)va(g))-
]

Due to Theorem [5.52] and Corollary [5.51 Conjectures [5.16] [5.19} and [£.:49] can be summa-

rized as follows.

Conjecture 5.53. There is a Lie algebra isomorphism
~ 1, .
(bmo, {—, —}4) = (BARIELZ i), £ ps(f)*.

The alphabet V. Consider the alphabet V and recall that by Corollary the space
bmy is contained in Lieg(V).

Set dep(vg) = 0 and dep(vg) = 1 for £ > 1, this defines an ascending filtration on Q(V).
Note that the notions of depth for Q(B) and Q(V) induce the same filtration under the

identification given in Definition Let Q(V)Y be the subalgebra of Q(V) generated by
(

all words, which do not start in vg. Moreover, we denote by (Q<V>0) D the homogeneous

component of Q(V)? of depth d.
Definition 5.54. Consider the Q-linear map
Py - Q<V>O — Q[X17Y17X27Y27 .. ‘])

m mq ki1—1ym kag—1y-mg
Vg Vg v VU = XY XY

To each f € Q(V), associate a bimould py(f) = (py(f)a) ;- € BARIP?LQ by

d>0

Pv(f)d<)g’:::’;id> = oo(Mo(N@),  d>1,

where f(@) ¢ (Q(V}O)(d) denotes the homogeneous component of f of depth d.

Note that the map (Q(V),conc) — (BARIP®*Q mu), f — py(f) is not an algebra mor-
phism.

Proposition 5.55. For an element f € Lieg(V) the bimould py(f) is g-alternal. More
precisely, there is a vector space isomorphism

{f € Licg(V) | (f | v0) = 0} = BARIP%E, £ = pu(f).
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Proof. There is an isomorphism (Q(V)O\Ql) — BARIP?Y? £ py(f). By definition a
bimould py(f) € BARIP?'Q is g-alternal with coefficient map

QB = Q, b, by .. g b = (f | vk o™ - v, vp)
if and only if
(f | uwv) =0 for all v,w € Q(V)"\Q1.

On the other hand, an element f € Q(V) is contained in Lieg(V) if and only if it is
primitive for the shuffle coproduct Ay, : Q(V) — Q(V) ® Q(V) (Corollary |A.40). By
duality (Example |A.62)) being primitive for Ay, is equivalent to

(f | vww) =0 for all v,w € Q(V)\Q1.

In particular, for f € Lieg(V) the bimould py(f) is g-alternal. Moreover, we have by
Proposition and Proposition [4.44] (i)

{1 € Lieg(V) [ (£ | v0) = 0} = ker(n).

Thus the map sec, associates to every element in Q(V)" a unique element in Lieg (V) with
vanishing coefficient at vg. Thus, the isomorphism (Q(V}O\Ql) — BARIPYQ £ py(f)

restricts to an isomorphism from {f € Lieg(V) | (f | vo) = 0} to BARI;’(_’;’IQ. O

Let f € Q(V) and r be the smallest number, such that f has a non-trivial component of
depth r. Then by definition of the alphabet V (Definition [4.26)), the following holds

X, X0\ X1,..., X,
pV(f)(y'l”Y'T) —PB(f)<Y1”YT> :
So by Theorem the component py(f), is 7-invariant for f € bmg. We want to
investigate the 7-invariance of some f in terms of the bimould py(f). Therefore, we will

explain the translation of the alphabet V into the alphabet B (Definition [4.26]) in terms
of bimoulds.

Definition 5.56. Let A € BARIP®YQ bhe a bimould. For 1 < i < j <d, we define

A X X (X X Xa
Yl,-..,}/;‘_l,}/j,yj-i,-l,..-,Yd

(—1)7— (X X Xy Xty X
Y —Y A 9 9 9 9 J 9 9
j—i+1;]£[i( s = ¥i) Yi,...,Yi 1,5, Y0, Y
k#s

and let ty g(A) be the bimould given by
4 : : -
Xla'--aXd [XO]{lv[X']J’Q 17"'7[)(']]'7 1
tV,B(A)< ) - Z Z A( it Jr—1+
Vi Ya) T Y Y., Y,

Extend the definition of the operators [—]z by distributivity, to evaluate several of them
at the same time.

We call a bimould A € BARI?®'Q quasi 7-invariant if the bimould ty,B(A) is T-invariant.
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Lemma 5.57. The following equality of bimoulds holds for each f € Q(V) = Q(B)

(tv,B Opv) (f) = ps(f)-

Proof. Let w = vpvf*. Then the component w(? € Q(B)° of depth d is given by (Definition

1.26)

(_1) m
w@ = — ST bj.byby

and thus we deduce with (5.14.1))

X1, X4 (-1t -1 -1
pB(w) ( Y, Yd> =0 >oooX{T XY
Y Jittja=k

J1yenja>1

(-t &L 1yk—1
= > I =X~y

Thus, we have for any word w = vg, vy ... v, vy"" and d > r that

X1, Xq\ (X (X2 s [
<Jr<ee<jr=d Jir =2 Ir

X1, .. X
= (tV7B Opy)(m)(yiu.’Ydd) .

Extending the arguments by linearity to all elements in Q(V)?, we obtain the claim.

Definition 5.58. Define the following subspace of BARIP?MQ

- A is g-alternal,
BARIPLC = { A € BARIP?'Q | . A is quasi 7-invariant,

q-al,quasi-T
— X1\
. A(Yl) is even

Theorem 5.59. There is an isomorphism of vector spaces

bmo = BARDGM L f e pu(f).

Proof. By Proposition we have a vector space isomorphism

{F e LiegV) | (f |v0) =0} > BAREZGE, £ py(f).
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By Proposition an element f € Q(B) lies in Lieg()V) is and only if f is primitive for
A,. Thus f € Q(B) satisfies the defining conditions (i) and (ii) of bmg (Definition {4.21) if
and only if py(f) is contained in BARIP:C. Moreover, by Theorem and Lemma

q-al
an element f € Q(B) satisfies 7(Ilo(f)) = Ho(f) if and only if ty gopy(f) is T-invariant.
By definition, this is equivalent to py(f) being quasi 7-invariant. Finally, by Proposition
an element f € bm satisfies (f | b2) = (f | ba) = (f | bs) = 0 if and only if we have
(f | bibg') = 0 for all £+ m even. By definition of the alphabet V, this is equivalent to
(f | vvg?) = 0 for all k 4+ m even, which means py(f); must be even. O

The alphabet C'. Finally, we consider the alphabet CP. Recall that by Theorem m
the space bmg can be purely described in the alphabet C",

bmg =~ Lieg(C") N Q(C)T.

Set dep(Ck.m) = 1, this defines an ascending depth filtration on Q(C™). Denote by
Q(C")(@ the homogeneous subspace of depth d. The notions of depth for Q(B), Q(V),
and Q(C") induce all the same filtration under the identifications given in Definition
441

Definition 5.60. Consider the Q-linear map
Pchi - Q<Cbl> — Q[Xl, Yl, XQ, YQ, .. .],

k1—1y m1 kq—1y,mq
Ck17m1"'0kd7md'_>X1 Yi "'Xd Yd .

To every f € Q(C") associate the bimould pevi(f) = (pevi(f)a) ;o € BARIPOLQ by

d>0

X1 X
pCbi(f)d<Yi7“"Ydd> = Pcpi (f(d))7 d > 1’

where f(@) ¢ Q(Cbi>(d) denotes the homogeneous component of f of depth d.

Lemma 5.61. The map (Q(CP)\Q1, conc) — (BARIPC mu), f i peni(f) is an algebra
morphism.

Proof. For two elements f, g € Q(C")\Q1, the component of depth d of the product fg is
given by

d—1
(Fg)' @ =3 fOg0.
i=1
Thus we deduce for each d > 2 that
d—1
‘ Xi,...,Xq) ‘ Xi,...,X; A Xit1,.-.,Xq
pCbl(fg)<Y1’.“7Yd> - ;pcbl(f><yh.”7y;>pCbl(g)<Y;‘+1,.“’Yd

= mu(pevi (f), peri(9)) ( Yi, , Yy

and moreover pevi(fg)1 = mu(pevi (f), pevi(g))1 = 0. O
Lemma 5.62. For f € Q(C™), one has

peni (f) @1:::::%‘) = (o ()Y (?jjjjjéﬁ :
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Proof. Tt is enough to proof the equality for words in Q(CP"), thus let w = C, m, - - - Chymy-
Then we obtain

I (w) = vk, v ( - ad(vo))m2 (V) - - - ( - ad(vo))md(vd)

mq
ma mq _
= Z Z ( > < )(_1)n2+ +ndvklvgn1+n2vkzvgb2 n2tng Uk, Ug"bd nd
no=0 ng=0 n2 nd

and thus

Xi,..., X, A < (m m I _ _
pv<f><yi yj>= S ( 2)( d>(_1> et il ke

no=0 ng=0 na nd
. Y1m1+n2 Y2m2—n2+n3 o Ydmd*nd

= XPot xRy v, v (Y - Y™

— pon(a) X1, X4
PV Y, - Y, Yy = Y

o ) #1 Xl,...,Xd
_pCbl(w) Y (Y'l’.‘.’yd>’

Proposition 5.63. For f € Lieg(CP), the bimould pewi(f) is alternal. More precisely,
there is a vector space isomorphism

Lieg(C*) = BARIPMC £ s poni(f).
Proof. By Lazard elimination (Proposition |4.42)), we can identify
{f €Lieg(V) | (f | vo) = 0} = Lieg(c™).
Thus, by Proposition there is an isomorphism
Lieg(C™) — BARIZL®, f— py(f).

O

Theorem shows that #y induces an isomorphism
#y : BARIPU — BARIPYYC,

q-al
Thus we deduce the claim from Lemma O

Recall that #y maps a 7-invariant bimould to a swap invariant bimould (Theorem .
Thus, by Lemmawe have for a 7-invariant element f € Q(C") that the component of
pevi(f) of lowest non-trivial depth is swap invariant. We want to investigate, what kind of
relation the 7-invariance of some f € Q(CP') induces on the bimould pei(f) in arbitrary
depths.

Definition 5.64. For a bimould A € BARIP*'Q define tevi g(A) by

Xi,...
tcbilg(A 1’

/‘\

d , , )
= Z 3 A( (X1t (Xl g, (Xl ) |
r=10<j1 < <jr=d Yi+-- +}/}'17}/}1+1—i—-.-—|—Y}~2,...,Y3~T71_‘_1_|_...+er

is given in Definition m

We say that a bimould A € BARIP®'Q is g-swap invariant if the bimould tevi g 1S swap
invariant.

where the operator [—]f
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Lemma 5.65. The following equality of bimoulds holds for f € Q(CP) c Q(B)
(tcbi,B OPcbi) (f) = pa(£)*.

Proof. For a bimould A € BARIP*Q, compute
-N#Y [ Xq,..., X, -1 Xq,..., X
#1 1, b # 1, y d
wa () (3 ) = () (4 9L
d j j jr
= Z Z A#;l [XO}]ll’ [XO];'?+D R [X°]§7.71+1
— J Yl_|_..._|_le7Y1_|_..._|_Y}27._.7Y1_|_..._|_er

d . . .
=>. > A( (X1 [Xeljpas - (Xl )
r=10<j1 <-<jr=d it + Y, Yyt Y Y e £

Thus, we get

-1
tebi g Opebi = #y © ty B oF#yT 0 pevi = #y oty opy = F#y o pg,

where the second equality follows from Lemma and the third equality from Lemma
O

Definition 5.66. Define the following subspace of BARIP?H@

- A is alternal,
BARILY ;gwap = { A € BARIP'Q | . A g-swap invariant,
N . A()éll) is even

Theorem 5.67. There is a vector space isomorphism

bmo = BARIP®C £ poni (f).

al,q-swap’

Proof. By Proposition there is a vector space isomorphism
Lieg(C) — BARIZM ) £ s poui (f).

Furthermore, one has f € Q(CP)T if and only if 7(IIo(f)) = Ho(f) and (f | Cko) = 0 for
k =2,4,6 (Definition . By Corollary [5.51| the first condition is equivalent to pg(f)*
being swap invariant. By Lemma m this is equivalent to (tcwi 5 operi)(f) being swap
invariant, so by definition that pevi is g-swap invariant. Finally, we have (f | Cro) = 0
for k = 2,4,6 if and only if (f | Ckm) = 0 for all k +m even (cf Proposition [£.22), which
is by definition of peui(f) equivalent to pevi(f)1 being even. From the description of the
space bmg purely in the alphabet CP! (Theorem , we obtain the claim. ]

Summarizing the results in this subsection, we have the following commutative diagram
of isomorphic vector spaces

BARIPOLQ s BARIP:Q

q-il, T q-al,quasi- T

py
rpx /
bmo

H#y #y
%‘
pol,Q pol,Q
BARIﬂ,swap T BARIQI,q—swap
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The composition #y o pp should be a Lie algebra isomorphism for the g-Ihara bracket
(Definition [3.16) and the uri bracket (Definition |5.10)). It is not clear how to find a closed
formula for a Lie bracket on the other spaces (resp. in terms of the other alphabets).
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5.5 Bimoulds and [q

We want to relate the space lq (Definition 4.54) to bimoulds via the map pg (Definition
5.49) and investigate the obtained properties. This will give the proof that the pair
(lg, {—,—}P) is a Lic algebra (Theorem [4.60).

Theorem 5.68. For an element f € lq, the bimould pgp(f) is g-alternal and T-invariant.
More precisely, there is an isomorphism of vector spaces
lq = BARIPMC £ pg(f).

q-al,m’

The space BARIZ(_);’I(% is given in Definition |5.44

Proof. There is an isomorphism Q(B)°\Q1 — BARIP*Q f — pg(f) and by definition a
bimould pg(f) € BARIPVC is g-alternal with coefficient map Q(B)? — Q, w — (f | w) if
and only if

(f | uwv) =0 for all u,v € Q(B)°\Q1.

By duality (Example |A.62)) an element in f € Q(B) is primitive for A, if and only if
(f | uwv) =0 for all u,v € Q(B)\QL1.

Thus for any primitive element f € Q(B) (with respect to the coproduct Ay,) the bimould
pB(f) is g-alternal. On the other hand, the primitive elements of (Q(B), Ay,) are exactly
the elements in Lieg(B) (Corollary[A.40). So similar to the map sec, (Proposition [£.44) we
can uniquely recover each element f € Lieg(B) satisfying (f | by) = 0 from its projection
IIy(f). Thus we get an isomorphism

{f € Lieg(B) | (f | bo) =0} — BARILZ, [ > ps(f).

As in the proof of Theorem f € Q(B) satisfies 7(Ilp(f)) = o(f) and (f | brdg*) =0
for all k + m even if and only if pg(f) is T-invariant and pp(f); is even. O

Corollary 5.69. There is a vector space isomorphism

lq = BARIPYQ - f oy pa(f)#Y

ﬂvswap,
Proof. This is an immediate consequence of Theorem [5.68 and Theorem [5.46] O

Since the associated depth-graded space [b to bmg (Definition 4.55)) is a proper subspace
of Iq, we get embedding of vector spaces

(b — BARIPMC ¢y pp(f)#Y.

al,swap’

Recall that BARIP' equipped with the ari bracket is a Lie algebra (Theorem |5.26)).

a;LSVVap
Thus the ari bracket induces a Lie algebra structure on [q under the isomorphism #y o pg.

Proposition 5.70. For all f,g € Q(B), the following holds

pB ({f, g}qD)#Y = ari (PB(f)#YmB(g)#Y)-

The depth-graded g-Thara bracket {—, —}qD is introduced in Definition m
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Proof. Considering the calculations in Theorem modulo higher depth leads to

o (43P (0)) " = arit, gy (@), ps(Fa)® = mu (ps(HP . ps(9)*)

for all f,g € Q(B). Thus, we obtain

o5 ({£:92)"" = ps(@P(g) — d3P(5) — fg+ 9f)"

= aityy e (25(0)5) = arityy e (pa(N)
— mu (Ps(f)#yvps(g)#ﬂ + mu <PB(9)#Y7PB(f)#Y)

= ari (ps(/)*, ps(9)*" ).

An immediate consequence of Corollary and Proposition [5.70] is the following.

Corollary 5.71. The pair (I9,{—, —}2) is a Lie algebra and there is a Lie algebra iso-
morphism

<[q7{_7 _}qD) — (BARIi?igapvari)v f — pB(f)#Y_
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6 A result towards Bachmann’s conjecture in terms of the
algebra Q(B)"
By construction of the balanced multiple g-zeta values (Subsection , one obtains
Z, = spang{(y(s1,---,51) | s1 > 1, s2,...,5 > 0},
2, = spang{(y(s1,...,81) | s1,...,8 > 1}.
Moreover, define the subspaces of bi-brackets (Definition [2.27)

+ 1 s vd
Z, = spang {g(mh'”,md) ’ ki >mq,... . kg > md},
2323 = spang {g(k1,...,kq) | k; € {1,2,3}}.
By definition, there are inclusions
123 o +
2,7 CZ,CZ] C 2

In [BK20] it is conjectured that all these inclusion are equalities. In this subsection, we
will focus on the inclusion Z; C Z,;, which was already conjectured by H. Bachmann to
be an equality ([Bal9, Conjecture 4.3]).

Let Q(B)=! ¢ Q(B)" be the free algebra generated by all words in the letters b;, i > 1.
By Theorem [2.58 we have a surjective algebra morphism
(Q<B>Zl7 *q) - (Zga ')7
bkl .. 'bkd — Cq(kla'-- ,kd).
Therefore, a reformulation of Bachmann’s conjecture Z, = Z; is given by the following.

Conjecture 6.1. There is a surjective algebra morphism

(Q(B)=!,%g) = (Z4,-)
bk1---bkd l—><q(]{?1,...,kd).

Since we expect that all algebraic relations in Z, are a consequence of the balanced
quasi-shuffle product formula and the 7-invariance of the balanced multiple g-zeta val-
ues (Conjecture , those two properties should be sufficient to prove the surjectivity
in Conjecture [6.1

Remark 6.2. 1) According to the observations on p. et seq., the algebra (Q(B)=1, x,)
is isomorphic to the usual stuffle algebra (Q()), %) via the identification b; — y; for i > 1.
Therefore, Conjecture would imply the following commutative diagram of algebras

0 —— (Q), %) — (Q(B), %) — (Q(X),w)) —— 0

& L6
-

¢) — (24 0 0

0 — (

2) There are some partial results towards Conjecture proven in terms of the bi-brackets
(Definition [2.27)). In [Bal9, Proposition 4.4] Conjecture[6.1]is proven in depth 1 and there
is also obtained a partial result towards the depth 2 case. Moreover, in [VI20] Conjecture
is shown for depth 2 and odd weight by taking advantage of the fact that any bi-bracket
of depth 2 and odd weight is a linear combination of (products of) bi-brackets of depth 1.
Finally, there is an approach to Conjecture by B. Brindle, which uses the SZ multiple
q-zeta values (Definition [2.9)).
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Definition 6.3. For any word w = by, by" ... by, by'? € Q(B)Y, let
b(w) = min{ky + -+ + kg —d,m1 +--- + mq}.

By definition, a word w € Q(B)" satisfies b(w) = 0 if and only if w is contained in Q(B)=1
or only consists of the letters by, b;. One obtains

T(blbg“ e blbz)nd) = bmd+1 e bm1+1

for all mq,...,mgq > 0. Therefore, applying the r-invariance of the balanced multiple
q-zeta values shows that (,(w) € Z7 for any word w € Q(B)Y satisfying b(w) = 0.

Theorem 6.4. Let w € Q(B)? be a word satisfying b(w) = 1, then ¢y (w) € Z;.
In particular, any balanced multiple g-zeta value of the form

Colk, . ki, 0, ki, .. ka), ki,....kq>1, 1€ {1,...,d},
is contained in Z.

Proof. We use induction on the depth. Let w € Q(B)? be a word of depth 1 satisfying
b(w) =1, i.e., we have w = by,+1bg or w = babfj® for some m > 1. Since T(by+1bo) = babf’
and the balanced multiple q-zeta values are T-invariant, it is enough to show that (,(w) €
Z, for w = boby'. Compute

biby' g b1 =Y bbby + bIbg" + baby'.

=0
Since ¢, : (Q(B)°, *,) — Z, is an algebra morphism (Theorem [2.58)), we deduce
Ca(w) = Cabrbg")Cq(br) — D Ca(brbhbrby ™) — Cq(bT07").
=0

Any word u contained in the right-hand side satisfies b(u) = 0 and hence is contained in
Z;. Therefore, we have (,(w) € Z.

Assume that for all words w € Q(B)" of depth d > 1 satisfying b(w) = 1, the element
(q(w) is contained in Z7. Let n,my,...,mq > 0, then for i = 1,...,d, one obtains

b1 *q by 41 - - - bmi+1b0bmi+1+1 ce bmd

7
= Z bm1+1 e bmj+lbn+1bmj+1+1 e bmi+1b(]bmi+1+1 e bmd
7=0

d
> b1 -+ by 100041 - - By 10ng 1By 11 - - - By
j=i

mod depth <d.

By the induction hypothesis, we have (q(bn11)Cq(bmy+1 - - bm+100bm;s i1 - - - bmy) € Z;.
Moreover, all words w of depth < d appearing in these products also satisfy b(w) = 1,
thus they are also contained in Z; by the induction hypothesis. We deduce

d i
> ( > Ca(brmyt1 - - biny+10n410m, 141 - - - b 1b0bms 141 - - - by (6.4.1)
i=1 \j=0

d
+ Z Cq(bm1+1 . bmi+1b0bmi+1+1 . bm]-+lbn+1bm]-+1+1 . bmd)> S Z;.
j=i
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On the other hand, we obtain for 7 =0,...,d that

by *q b1by'@ ... b1y T bybbiby L. bibyt =
Ej: bibg' .. biby T bbby 7 . biby T babg biby Tt L by byt
=1
+ blbgld ... blbgwrlbgbgblbg% ... blbgll
+ Ed: bibg ... biby ol biby Tt L biby T bybbiby .. by
i=j

mod words w satisfying b(w) = 0.
Since all words w € Q(B)? satisfying b(w) = 0 are contained in Z, we obtain
Ca(b)Cq(brbgd .. brby " biblbiby 7 .. b1b™) € 2
and thus by applying the 7T-invariance of the balanced multiple g-zeta values
J

d
> (Z Ca(Bmy1 - - by 41006y 141 - - - by 4100 10my 141 - - - bngs1)
7=0 \1=1

+Cq(bm1+1 S bmj+lbn+lb0bmj+1+l ce bmd-i-l) (6.4.2)

d
+ Z Cq(bml-‘rl . bm]-+1bn+1bmj+1+1 . bmi+1b0bmi+l+1 . bmd—I—l)) S Z;.
i=j

The two expressions given in (6.4.1) and (6.4.2) are equal up to the additional term
Cq(bn41b0bm, 41 - - - byny+1) appearing in (6.4.2)), therefore we get by subtracting them

Cq(bn+1b0bm1+1 Ce bmd—H) S Z;. (6.4.3)
Next, let nq,ng,mq,...,mg_1 > 0. Then compute all products
bn1+1bn2+1 *q bm1+1 e bmi+1bObmi+1+1 PN bmd_1+17 1= 1, ey d—1. (6.4.4)

As before, by the induction hypothesis each product gives a linear combination of balanced
multiple g-zeta values contained in Z;. Similarly, for 0 < j; < j2 < d —1 compute the
products

by g biby @t biby 2 b, biby 7t L biby T b b by by 2 L by (6.4.5)

Since the words w appearing in the products satisfy b(w) = 0, we obtain as in the previous
case linear combinations of balanced multiple g-zeta values contained in Z;. Again we ob-
tain that the sum of all expressions obtained from equals the sum of all expressions
obtained from except for some additional terms (appearing in (6.4.5))), explicitly
we get

Cq(bny +1bny41000my 1 - - - by +1)
d—1

+ ) Ca(bny4100bm; 41 - - - by 11bny10m 1 - by 1) € 2
7=0

From the first case (6.4.3) we get C4(bny+1000my+1 - - - by +10ng+10m 141 -+ - bmy_ +1) € 27
for each j =0,...,d — 1 and thus, we deduce

Cq(bn1+1bn2+1bgbml+1 . bmd_1+1) S Z;.
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Iterating this process shows that any balanced multiple g-zeta value of the form

Cq(bm1+1 - bmi+lb0bmi+1+1 c bmd+1+1)’ i1=1,....,d+1,

is contained in Z7. Applying the 7-invariance of the balanced multiple g-zeta values shows
that also

Co(brbg™ .. biby P boby P biby T L biby ), i =10,...,d+ 1,

is contained in Z. Since any word w € Q(B)° of depth d + 1 satisfying b(w) = 1 has one
of the above given two shapes, we have (,(w) € Z; for all words w € Q(B)° of depth d +1
satisfying b(w) = 1. O

Example 6.5. We will illustrate the idea of proof explicitly in depth 4. In particular, we
assume that any word w € Q(B)? of depth < 4 with b(w) = 1 satisfies ¢,(w) € Z;.

Let n,my, mo, mg > 0. We compute

bn+1 *q by +1000my+10ms+1 = Ont10my +1000my+10ms+1 + Omy +1004+1000my+10ms+1
+ by +1000n410my+10ms+1 + by +1000mg+10n+10ms+1
+ by +1000my+10ms+10n+1  mod depth < 4,

brt1 *q by +10my+1000ms+1 = bnr1bm; +10mu+1000ms+1 + Omy +100+10my+100bms+1
+ by +10ma+100£1000ms +1 + by +1bmy 110005+ 16mg 11
+ by 415t 1D0bmg 4 10ns1 mod depth < 4,

Bt *q by +10mg 4 10ma+100 = Brot 1By 10 +10my 4100 + by 4101+ 1bmg 4 1bmg 1 100
4 by 415y 41510100 + brry 41Dy 1D+ 10ms 160
+ by +10mo+10ms+1bn+100 mod depth < 4.

All appearing words w of depth < 4 satisfy b(w) = 1, so by assumption, those are contained
in Z7. Moreover, also the products are contained in Z7 by assumption, thus by summing
up the three equations, we get

Cq(bn+1bm1+1b0bm2+1bm3+1 + Cq bm1+1bn+1b0bm2+1bm3+1 + Cq bm1+1bObn+1bm2+1bm3+1
+ Cq(bm1+1b0bm2+1bn+1bm3+1 =+ Cq bm1+1bobm2+1bm3+1bn+1 + Cq bn+1bm1+1bm2+1bobm3+1
+ ¢y(b b b

(b b b
(b b b

)
)
m1+10my+1000n+10mg+1)
+ Cq(bm1+10ma+100bms+10n41) + Cq(bnr10my+10ms+10ms1100) + ¢4 1 +10n+10my+10ms+100)

)

)+ Gl ) (
) ( )+ Gl
1 4+100410my 11000m3+1) + Cg(Omy 4+10my 1100410005 11) + (4
) ( ) + Gl
) ( )+ Gl

+<q m1+1bm2+1bn+1bm3+1b0 +<q m1+1bm2+1bm3+1bn+1b0 +Cq m1+1bm2+1bm3+1bn+1b0
c Z;’ (651)

146



On the other hand, we have

by %q b1bT3b bbb by = byb bbby b by bl + by b babl by b by b
by by bbb by b + bbby b2 by b bybl
mod words w satisfying b(w) = 0,
by g bbT by b2 BEbL b = byb by b2 by bR b + by babl by bbb
+ by b3 b bobRby b + bbby b2 by blbobi
mod words w satisfying b(w) = 0,
by g bbby bl by B2 b b = bybby bbb by b + by bablby b2 by b
4 by by bbb b b + bbby b by b2 bybl
mod words w satisfying b(w) = 0,
b1 %4 b1bgb1by 2 b1b( "2 b1by™ = babybibi?b1by 2b1bi™ + bibgbabi ™ biby 2 b1by™
by BT bobT2by b 4 by bbb by bbb
mod words w satisfying b(w) = 0.

For all words w € Q(B)? satisfying b(w) = 0, we have (,(w) € Z¢. In particular, all
products are contained in Z7. Therefore, by summing up the four product expressions
and applying the 7-invariance of the balanced multiple g-zeta values, we obtain

S
+ ¢
+ ¢
+ ¢
+ ¢y
+ ¢y

br+10my +10ma+10ms+100) + Cq(bn10my +10ma11000ms41) + Cq(bnr10m; +1000my+10ms 41

bn+100bm1 +10ma+10ms+1) + Cq(bmy+10n+10my+10ms+100) + Cq(bmi+10n4+10ma+1b00ms+1

/\/\/\/—\

m1+1bm2+1b0bn+1bm3+l +Cq m1+1b0bm2+1bn+1bm3+1

) ( )

) (b )

by +100bn+10my +10ms+1) + Cg(bmy+10may+10n410ms+1b0)
by +10my 410011000, +1) + G ) (b )
) (b )

b1 +10ma+10ms+10n4100) + C4(bmi+10ma+10ms+1000n41) + Cg(bmy+10ma+100bms+1bn+1

/\/—\A/—\A/—\

)

)
bmy+16n+1000my+10ms+1) + G

)

)

)

m1+1b0bm2+1bm3+1bn+1 S Z;. (652)

The expressions in (6.5.1) and [6.5.2 only differ by the term (4 (bn+100bm1+1bmo+1bma+1)s
in particular subtracting (6.5.1]) from ([6.5.2)) yields

Cq(bn+1b0bm1+1bm2+1bm3+1) € Zg. (6.5.3)

Next, let n1,n9, m1,ms > 0. Again we compute

by 4100541 *q by +1000my+1 = by 4100, 1100, +1000m,+1 + by 10y 4100, 110000 11
+ bny+10my 110000, +10my 11 + by 110m; 11000y £ 100511
+ bmy+16n1+10n541000ms 41 + by 160, 410000y 410ma 41
+ by 4160, +1000my 1100541 + by 110000, 1100y 1 10my 11
+ by 4100001 +10my 1100541 + by +1000my 1100, 1100y 11
mod depth < 4,
bry +10n5+1 *q by +10my+100 = bny 1100, 410my +10my 1100 + by +10im; +1005+10m,+1b0
+ by +10my +10ma 110054100 + by +10my +10my+1b0bn, 11
+ by +16n1416n5410mo+100 + by 4100, +10my41bns+1b0
+ by 4100, +10ms 410000541 + by +10m 4100, 41005100
+ by +10my+100, 410000541 + iy +10my 410000, 4100511
mod depth < 4.
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Then by the completely same argument as before, we deduce that

Cq(bny+1bns+10my +100bms 1) + Cg(bny +10my 41005 +1000ma11) + Cq(bny+10m1 4100000 +1bms 11
+ G (bny+10my +1000my+10n5+1) + Cq(bmy +10ny +10n54+1000m,y+1) + Cq(bimy +1bny +100bny +1bmsy+1

( )
(b )
"‘Cq m1+1bn1+lb()bm2+1bn2+1 +€q m1+1bObn1+1bn2+1bm2+1 +Cq( m1+1b0bn1+1bm2+1bn2+1)
(b )
+ Cq(Ony+1bm1 +10ma410n54+100) + Cg(bny+10my +10ma11000n5+1) + Cq(bmy 160, +10n5+10my41b0)

)

(b ) + ol )

(b )+ Cq(b )

(b )+ Cq(b )

+ Cq(bmy+100bmy 4100, +100541) + Cg(bny +10n5410my +10my+100) + Cg(bny +10my +10n5+1bm,+100

(b )+ Cq(b )

+ Cq(bmy+16n,+10ms+1bn,+100) + Cg)bmy +1bn, +10m,+100bns+1) + Cg(bimy +10m, 4100, +10n, 410
(b )+ Cq(b )

+ Cq(bmi+10my+1bn, 110000y 11) + Cq(bmy +1bmy+1b00n, 4100, 11) € Z7. (6.5.4)

On the other hand, we compute

b1 %q biby 2 b1by  bibi2bibyt = babi'?b1by ™ biby2bibyt + biby *baby ™ biby?b1by*
+ blbgm blbng b2b82 blbgl + blbgLQ blbgnl b1b32 bgbgl
mod words w satisfying b(w) = 0,
b1 %q b1by"2b1by?b1by " b1by" = baby2b1by2b1by  biby* + biby 2 baby*b1by' biby!
+ b156n2 b1b82 bgbgllblbgl + blbgw b1b6L2 blbngbegl
mod words w satisfying b(w) = 0,
by %4 b1bi2b1by 2 b1bg  bibyt = bab(2biby 2 b1by " bibgt + b1by?baby 2 biby' byby*
+ b1bg2biby 2 baby  bibit + biby?b1by 2 bibg' baby*
mod words w satisfying b(w) = 0,
by %q biby 2b1by2b1byt biby't = babi'?b1by?b1by biby't + bi1by"*baby?bibyt biby'™
+ blbgm blbgz bzbglblbanl + [)1()812 61682 blbgl bgbgll
mod words w satisfying b(w) = 0,
b1 #q b1by?b1by 2 b1by  biby™" = baby?b1by 2b1by biby™ + b1by?baby b1by  biby"
+ bleQ blbgL2 bgbgl blbgnl + bleLQ blbgnz blbgl beng
mod words w satisfying b(w) = 0,
by #q b1b(2b1by  b1by 2 b1bi"t = bab(2b1by  b1by 2 bibi"t + b1by?baby  biby 2 b1by"™
+ b1b(2b1by  baby 2 b1bg™t + biby?b1by  bibg 2 baby'
mod words w satisfying b(w) = 0.

Again using the same arguments as before and applying the T-invariance of the balanced
multiple g-zeta values yields

Cq(Ony+10n4+1bmy +16my41b0) + C(bny+10n5+10m, +1000ms+1) + Cq(bny +1bn541000m, +10m,+1
+ Cq(bny +1000n5+10m +10my+1) + Cq(bny+10my +10n5+10my+100) + Cq(bny +10my +10n5+100bmy +1
+ Cq(bny+10my +100bny+10my+1) + Cq(bny +1000m, +1005+10ma+1) + Cg(bny +10my +10my 100,410

+ Cq(brmy +100bn1 11005110y 11) + Cg(bmy+10n1 +10ms+10ny+100) + Cq(brmy 41001 +10my +1b0bn, 11

( )
( )
( )
+ Cq(bny+1bm1+10my 110000, +1) + Cq(bny+10m1+100bms+10n,1+1) + Cq(bry +1000m, +1bms +1bn, 41
( )
( )
+ Cq(bmy +1bn14+1000my+10n511) + Cq(brmy 1100001 110my +10n541) + Co(bmy +10my 1160, 1160y 1100
)

( )+ Gl )
(b )+ Cq(b )
(b )+ Gq(b )
(b )+ Gq(b )
+ Cq(bmi+1bn1 41005 +10my+1b0) + Cq( 141001 +10n,+1000my+1) + Cq( my+10n1 +1000n5+10my+1)
(b ) + Gq(b )
(b ) + Gq(b )
(b )+ Cq(b )

+Cq(bm1+1bm2+1bm+1b0bn2+1 ‘|‘Cq m1+1bm2+1b0bn1+1bn2+1 +Cq m1+1b0bm2+1bn1+1bn2+1
€ 22 (6.5.5)
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Subtracting (6.5.4]) from (6.5.5)) then yields

Cq(bny+160bn5+16m1 +10ma+1) + Cg(bny +100bm, +10n5+10ma+1) + Cg(bny+1000m, +10my+1b0n+1)
+ gq(bn1+1bn2+1b0bm1+1bm2+1) S Z;

Applying the result from the first case (6.5.3) then gives

Ca(bry+1bny+1b0bm,; +1bmyt1) € Z4 (6.5.6)

Next, let nq,n9,n3, m > 0. As before, we compute

B 1Dy +10ms 41 % Dt 100 = iy 15rmy 410 1Dt 100 -+ Broy 104 1D 1b1g 4100
+ by +10m 100y 110051100 + b 100 1100y 110051100
+ by 41005 +10m 100005 +1 + by +10m 1100y +100bng 11
+ bm+10n1 110054100005 +1 + bny +10m 110005, 1100541
+ b 160, 410061541005 +1 + b 100br, 416054100541
mod depth < 4

and deduce
Cq(bn1+1bn2+lbn3+1bm+1b0) + Cq(bn1+1bn2+1bm+1bn3+1b0) + Cq(bn1+1bm+1bn2+lbn3+1b0)
+ Cq(bm+1bny +1bny+10n5-+100) + Cg(bny +10n5+10m+100bng+1) + Cg(bny +10m+1bny+1b0bns+1)
+ (g (bm+1bn1+10n0+1600n541) + (g (bny+10m+100bn5+10n541) + (g (bm+10n1 4100005 +100541)
+ Cq(bm+1b0bn, 1100y +1bng+1) € 2] (6.5.7)

On the other hand, we have

by g bibT by b3 by bbb = bybby b by bl2by b + by bl babls by b2 by b
+ by b by b bobl2by bR + by byby b by bbbt
mod words w satisfying b(w) = 0,
by g bbb b DR bt = byb3bybbybi2by b —+ by b bobl by b2 by b1
+ by b by BT babl2 by b + bbby by bbb
mod words w satisfying b(w) = 0,
by g bOIS b DR bbb DR = bobbybl2by b by bl + by bl bybl2by b b b1
by b B2 babT by b+ bbby b2 by b bobl
mod words w satisfying b(w) = 0,
b1 %4 b1b2b1by?b1by b1bgt = baby®b1by?b1by bibg' + b1by®babi?b1by  b1by'
by b by b2 bob by BT + bbby bbb bybl

mod words w satisfying b(w) = 0.
Therefore, we deduce by applying the 7-invariance of the balanced multiple g-zeta values

Cq bn1+1bn2+1bn3+1bm+1b0) + Cq bn1+1bn2+1bn3+lb0bm+l + Cq bn1+1bn2+1b0bn3+lbm+l
n1410n0+10m110n54100) + Cq(bny +10n5+10m11000n, 41
+ (g

( (
+ Cq(bny+160bny 41603 +10m 1) + G4
( (
+ Gy (
(
(

) + G )
b b ) (b )
by +10n54+1000m+1bng41) + Cg(bny +100bn5+10m41bng+1) + Cq(bny +10m+1bn,110n54+100)
b b ) + Cq(bny+1b0bm410ny41bns41)
+ Cq(bm+1bny 4100, 4+10054100) 4 Cq(bny +10m410n, 4100005 4+1) + Cq(bny+10m+100bn,+1bn541)

)
)
1 4+10m4 10051100005 +1) 4 Cg(bny+10m 16000y +16n5+1) + G4
)
) € Zg. (6.5.8)

+ Cq bn1+1b0bm+1bn2+1bn3+1
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Subtracting (6.5.7)) from (6.5.8]), we obtain

Cq(bny+160bns+16n3+10m11) + Cg(bny +100005+10m+10n5+1) + Cg(bry +100bm+1b0n,+1bn5+1)
+ Cq(bn1+1bn2+lb0bn3+1bm—i—l) + Cq(bn1+1bn2+1b0bm+lbn3+1) + Cq(bnl—l—lbng—i—lbng—i-lbObm—H)
€ Z,.

Applying the results from the first case (6.5.3) and the second case (6.5.6|), we deduce
Cq(bny+1bny+1bn54100bm11) € 2. (6.5.9)
Finally, let nq,n9,n4,n4 > 0. We calculate

by g bbb bIBb b2 by b = bbby bI3by bbb + by b bobli3 by b2 by bt
bbb IS babl2 by b + by b by bR by 2 bkt

mod words w satisfying b(w) = 0.
Thus by applying the 7-invariance of the balanced multiple g-zeta values, we deduce

Cq(bn1+1bn2+1bn3+1bn4+1b0) + Cq(bn1+1bn2+lbn3+lbobn4+1) + Cq(bn1+1bnz+1b0bn3+1bn4+l)
+ Cq(bny +100bny+1bng+1bny 1) € 2.

Together with the results in the previous cases (6.5.3)), (6.5.6]), and (6.5.9)), this shows

Ca(bri4+1bng41bns+1n,41b0) € Zg.
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Appendix A Introduction to the algebraic framework

This section provides an introduction to Hopf algebras, quasi-shuffle algebras, and affine
group schemes. In the following, let R be a commutative Q-algebra with unit. Note that
we assume any algebra to be associative by definition.

A.1 Graded algebras

We introduce graded algebras and their Hilbert-Poincare series. Proofs for the provided
results are given in [Bou89], [Foi], [Ok15], or [Re93].

Definition A.1. An R-module M is graded if there is a family (M *));>¢ of free submod-
ules of M of finite rank, such that

M=FMD.

>0

The elements in M® are called homogeneous of degree i. Moreover, the Hilbert-Poincare
series of M 1is given by

Hy(z) = Z rank (M),
>0

Lemma A.2. Let M, N be graded R-modules. Then also the R-modules M & N and
M ® N are graded via

MaoN)D=MOpND — (MaN)D = M eNO.
a+b=1

In this case, the following holds

Hyen(x) = Hy(z) + Hy(2), Hygn(w) = Hy (o) Hp (). -

Definition A.3. A unitary R-algebra (A,-,1) is graded, if A = ;> A is a graded
R-module and
A@D . A6 — A+,

If (A,-,1) is a graded algebra, then 1 € A,

Example A.4. Let M = @,;5o M be a graded R-module and M(®) = {0}. Then the
tensor algebra T (M) = @,,50 M®" (with M*° = R) is graded via

TONHO =R,  TOMD =MD ... ¢ M)D, §> 1.

Proposition A.5. Let (A,-,1) be a unitary, commutative, free, graded R-algebra satisfy-
ing rank A(©) = 1. Then, one has

Hy(x) = H(l —zh) 79,

i>1
where g; denotes the number of algebra generators of A of degree 1. ]

Definition A.6. Let M be an R-module. Then the symmetric algebra of M is given by

S(M) = T(M)/J, where J is the ideal generated by the elements mi ® mo — mo ® m; for
all mi,mo € M.
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For example, if M is a free R-module of rank r, then one obtains S(M) ~ R[x1,...,z,].

Let M= M M be a graded R-module and M©) = {0}. Then the ideal .J in Definition
is graded, i.e., one has

J=@P I =PTOM)D NI

i>0 i>0

and hence also S(M) is graded via

The symmetric algebra S(M) is a commutative, free R-algebra generated by a basis of M,
thus Proposition implies the following.

Corollary A.7. Let M = @;>0 M ) be a graded R-module and M) = {0}. Then the
Hilbert-Poincare series of S(M) is given by

i\ran (@
Hsry(z) = H(1 — gtyrankr(MT)

i>1
Next, we want to investigate non-commutative graded algebras.

Proposition A.8. If (A,-,1) is a unitary, non-commutative, free, graded R-algebra over
some countable set Z, then the following holds

= (1- Z xdeg(Z))—l

2€2 ]
An important class of non-commutative algebras is given by the following.
Definition A.9. A Lie algebra over R is an R-module L equipped with an R-linear map
[,]:L®L— L,
such that the following holds for all z,y,2z € L

(i) Anti symmetry: [z,z] =0,

(ii) Jacobi’s identity: [[x,y], z] + [[y, 2], ] + [[2, 2], y] = 0.
The map [+, ] is called the Lie bracket.
A Lie algebra (L, [-,]) is graded, if L = ;> L% is a graded R-module and one has for
all i,7 >0

[L(i),L(j)] c LD,
Example A.10. Let (A, -, 1) be an R-algebra and define the commutator bracket by
[a,b] =a-b—10-a, a,be A

Then the pair (A, [—, —]) is a Lie algebra over R.

Definition A.11. Let (L, [-,-]) be a Lie algebra over R. Then the universal enveloping

algebra of L is given by U(L) = T(L)/K where K is the ideal generated by the elements
r@y—yQx—[z,y| for all z,y € L.
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Let (L, [-,-]) be a graded Lie algebra over R and L(® = {0}. Then the ideal K in Definition
is a graded ideal, and thus also the universal enveloping algebra U(L) is graded via

()

/)
Assume that the generators in the Lie algebra L only satisfy independent relations. Since
U(L) is a non-commutative R-algebra, Proposition implies

Hyry(x) = (1= gie' + rah) 7, (A.11.1)

i>0 i>0

U(L)(i) _ T(V)

where g; denotes the number of algebra generators of L() and r; denotes the number of
independent relations in L.

At the end of this subsection, we will explain how to obtain a basis for some free Lie
algebra and hence also its universal enveloping algebra and symmetric algebra. Clearly,
the number of basis elements yields a formula for the Hilbert-Poincare series.

Definition A.12. Let A be an ordered set. Denote by (R({A),conc,1) the free non-
commutative algebra over R generated by .4 and call the monic monomials in R(A) words.
Extend the ordering lexicographically to all words in R{A).

(i) A word w € R{A)\R1 is called a Lyndon word if for every nontrivial decomposition
w = uv one obtains w < v.

(ii) For a word w € R(A) the standard bracket y(w) contained in the free Lie algebra
Lier(A) generated by A is recursively defined as

o If we A, then set y(w) = w.
o If w consists at least of two elements in A, then write w = wv with u,v Lyndon
words and v as long as possible and set y(w) = [y(u),y(v)].

As a special case of [Re93, Theorem 4.9 (i)] the following holds.

Theorem A.13. Let L = Lieg(A) be a free Lie algebra generated by some ordered set A.
Then the set of all standard brackets is a basis for L. O

Example A.14. Let L = Lieg(fi, fo,...) be the free Lie algebra over R generated by
f1, fay. ... Set deg(f;) =i and extend this to a grading on L, i.e., set

deg(fil fzn) =11+ + 1y

The universal enveloping algebra of L is the free non-commutative algebra generated by
fi, fay .., so U(L) = R(f1, fa,...). The algebra U(L) inherits the grading of L and thus
one obtains from Proposition

1

HM(L)(m):l—x—xQ—xfi—...'

We also want to compute the Hilbert-Poincare series of the symmetric algebra S(L), since
this algebra also inherits the grading from L. It is well-known that the symmetric algebra
is a free polynomial algebra in any basis of L, thus we have to determine a basis of L.
According to Definition we have to compute the Lyndon words (with respect to the
ordering f; < f; iff i < j). For example, the Lyndon words of degree < 6 are given by

fi, fas fs, fifes S, fifs, fififes  fs, fufa fofs, o fufifs, fifefe,
fifififes fe,  fifse  fofa,  fififa,  fifefs, fifsfes fufififss fififefe,
fifififife.
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and the corresponding standard brackets are

fi. fos fa, U fel, S U fal U U flls s, [fs fal, [fes f3),
L, [ £l (s fols fol, U U U follls feo Lfas S5l [fes fal, o [, [, falls
i U2 f3ll, (U1, fals fol, U s U A8l U [ fels ol L U L U FlD)

By Theorem the standard brackets form a basis of L. Thus by Proposition we
have to count the number of standard brackets (or equivalently the number of Lyndon
words) to obtain the Hilbert-Poincare series of the symmetric algebra S(L). This gives

Hgpy(z) = (1 —z)(1 - 22)(1 - 2321 — 2M)3(1 - 2°)5(1 — 29)Y.. ..

Actually applying Mo6bius inversion, one obtains an explicit formula for the number N (d)
of Lyndon words in degree d (cf [Re93, Corollary 4.14]) and then gets

Hsy(w) = [T (1 = aHN@.
d>1

A.2 Hopf algebras

This subsection gives an introduction to Hopf algebras. We start by introducing algebras
and coalgebras as dual structures. Then we will provide the notion of bialgebras and Hopf
algebras. In particular, we will define the set of grouplike elements, primitive elements,
and indecomposables and present their additional structures and relations between them.
We will end by introducing the concept of completion of Hopf algebras. All presented
results can be found in [AB80], [Ca07], [Foi], [Man06], or [MMG65].

Algebras. We will reformulate the usual definitions for algebras in terms of linear maps
to motivate the definition of coalgebras.

Let (A, -, 1) be a unitary R-algebra. Then the product - can be considered as an R-linear
map
m:AQA— A, a1 ®as > ay - ao.

Then associativity is equivalent to requiring that the following diagram commutes

AQARA ™Y Ao A

won)| |

AA —" 5 A
Similarly, the unit 1 can be considered as an R-linear map
n:R—A, MA— AL

Then the axiom of a unit is given by the commutativity of the following diagram

RoA -9 404 AqR
Rm%
A

In this diagram, the following canonical isomorphisms of tensor products are used

RA S A A®R,
AR@ar—= da—a® A
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A submodule B C A is a subalgebra of A if m(B ® B) C B and n(R) C B. Similarly, a
submodule I C A is an algebra ideal if m(A® [ +i® A) C I.

Define the R-linear map
t:ARQA—-ARA, a1 ® ag — ag  aj. (A.14.1)
Then an R-algebra (A, m,n) is commutative if m ot = m.
An R-algebra A is graded if A = ;> A is a graded R-module (Definition and
m(A(i) ® A(J')) C A(H—j)7 i,j>0.
In this case, one has n(R) C A©),

The axioms of an algebra morphism ® : (4,m,n) — (A’,m/,n’) can be rephrased as
commutativity of the following diagrams

A A 222 Arg A R—"s 4
J{m J{m’ 9 %Jfb
A—2 L u B

Lemma A.15. Let (A,m,n) be an R-algebra. Then the tensor product A @ A equipped
with the maps

mg: (ARA)R(ARA) — AR A,
(a1 ® a1) ® (a2 @ ay) = m(a1 @ az) @ m(aj ® ay),
Ne: R— A® A,
A= Aln(1) @ (1))
is again an R-algebra. O
In the following, we will use both notions for an algebra, either we give the product and
the unit directly or we define the product and unit maps.
Coalgebras. By reversing the arrows in the previously given new description of algebras,

we obtain the concept of coalgebras.

Definition A.16. An R-module C equipped with two R-linear maps

A:C—-C®C,
e:C— R,

is called a coalgebra if the following diagrams commute
c—2—Cac
A @A (coassociativity),

CoC 2% coceC
\ A / (counitarity).
id id
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A submodule D C C' is a subcoalgebra if A(D) C D ® D. Similarly, I C C' is a coideal if
A(I)CI®C+C®I and (1) = {0}.

An R-coalgebra (C,A,¢) is cocommutative if ¢t o A = A, where ¢ permutes the tensor

product factors (see (A.14.1))).

An R-coalgebra (C,A,¢) is graded, if C' = @;>¢ C® is a graded R-module (Definition

and '
ACD)yc S cmgem, >

m-+n=i
One has then £(C®) = {0} for each i > 1.

An R-coalgebra morphism is an R-linear map ® : (C,A,e) — (C’, A’,¢’), such that the
following diagrams commute

c—2%* C —=>5 R

N - |

CoCc 2% o'ec
The tensor product of coalgebras can also be equipped with a coalgebra structure.

Lemma A.17. Let (C,A,¢e) be an R-coalgebra. Then the tensor product C @ C' together
with the maps

Ag: CeC—(CeC)e(Cx0),

(c1®c) — (Id® t®id)(Ac1) @ A(ez2)),
eg: C®C — R,

€1 ® cg > e(er)e(ea),

is also an R-coalgebra. O

Duality. We will introduce the concept of dual modules and dual graded modules with
respect to a pairing and explain dual maps. We will see that the structures of algebras
and coalgebras are dual in this sense. Moreover, we will obtain the dual structure of Lie
algebras.

Definition A.18. Two R-modules M and N are dual, if there is an R-linear map
(]):M®N — R,
such that

(i) if (m | n) =0 for all n € N, then m = 0,
(ii) if (m | n) =0 for all m € M, then n = 0.

In this case, (- | -) is called the duality pairing of M and N.

Let M and N be graded R-modules. If there is a duality pairing (- | ) : M ® N — R,
such that ' A
(MO | NOY =0 for all i # j,

then M and N are graded dual. In this case, we say that (- | -) is a graded duality pairing.
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Example A.19. (i) Let M be a free R-module of finite rank. Then the usual dual module
is defined by
M* = HomR_hn(M, R)

The modules M and M* are dual in the sense of Definition the duality pairing is
given by

(]): M*"®M — R,
f@m— f(m).
(ii) Let M be a graded R-module (Definition [A.1f). Then its usual graded dual is defined
by
MY = @Dy,

>0

The modules M and MV are also graded dual in the sense of Definition the graded
duality pairing is given by

MY ® M — R,

fi<mj)7 =7,

(where f; € (M®)*, mj € M)y,
0 else

fz’®mj'—>{

Proposition A.20. (i) Let M, N be dual free R-modules of finite rank. Then one has
rankp(M) = rankp(N).
(ii) Let M, N be graded dual R-modules. Then for each i > 0, the following holds

rank (M) = rankp(N™). 0

Definition A.21. Let M;, N; be dual R-modules for the pairing (- | -)1, M2, N2 be dual
R-modules for the pairing (- | -)2 and f : My — My be an R-linear map. The dual map to
f is the unique R-linear map g : Ny — N; satisfying

(f(m),n)2 = (m,g(n)) for all m € My, n € N».

Lemma A.22. Let M,N be (graded) dual R-modules for the pairing (- | -). Then also
M & M and N @ N are (graded) dual R-modules, the (graded) duality pairing is given by

(m1 ®@ma | n1 @na2)g = (ma [ n1)(ma | n2)
for all my,mo € M and ni,no € N. ]

Theorem A.23. (i) Let (A,m,n) be a (graded) R-algebra. If C' is an R-module (graded)
dual to A, then C equipped with the dual maps of m and n is a (graded) R-coalgebra.

(ii) Let (C, A, €) be a (graded) R-coalgebra. If A is an R-module (graded) dual to C, then
A together with the dual maps of A and € is a (graded) R-algebra. O

There is also a dual notion for Lie algebras (Definition [A.9)).

Definition A.24. A Lie coalgebra over R is an R-module E equipped with an R-linear
map
0:E—>FEQFE,

such that
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(i) Anti symmetry: tod = —6
(ii) Cocycle condition: (§ ®id)od = (id® d)od+ (Id® t)o (0 ®id) 0 d
The map ¢ is called the Lie cobracket of E. Moreover, the map t is given in (A.14.1)).

Proposition A.25. (i) Let (L,[—,—]) be a Lie algebra over R. If E is an R-module
(graded) dual to the module L, then E equipped with the dual map of the Lie bracket [—, —]
is a Lie coalgebra over R.

(ii) Let (E,d) be a Lie coalgebra over R. If L is a graded dual R-module to E, then L
equipped with the dual map of d is a Lie algebra over R. ]

Bialgebras. We are interested in modules, which are equipped with the structure of
an algebra and a coalgebra at the same time and satisfy certain compatibility conditions.
This leads to the notion of bialgebras.

Definition A.26. If an R-module B is equipped with an algebra structure (B, m,n) and
a coalgebra structure (B, A, ¢), such that the maps A and e are algebra morphisms (or
equivalently, such that m and 7 are coalgebra morphisms), then (B,m,n,A,¢) is called
an R-bialgebra.

The algebra and coalgebra structure on B ® B is explained in Lemma

A submodule B’ C B is a subbialgebra if B’ is a subalgebra and a subcoalgebra. Similarly,
a submodule I C B is a biideal if it is an algebra ideal and a coalgebra ideal.

An R-bialgebra (B, m,n, A, ¢€) is graded if it is graded as an algebra and as a coalgebra.

An R-bialgebra morphism is an R-linear map ® : (B,m,n,A,e) — (B',m/,n', A’ &),
which is simultaneously an algebra and a coalgebra morphism.

Theorem A.27. Let (B,m,n,A,e) be a (graded) R-bialgebra. If B' is an R-module
(graded) dual to B, then B’ equipped with the dual maps of m, n, A and ¢ is also a
(graded) R-bialgebra. O

Proposition A.28. Let (B,m,n,A,¢) be an R-bialgebra. Then Homp 11y (B, B) equipped
with the product
frg=mo(f®g)oA

and the unit
i:B— B, b—e(b)n(l)

is an R-algebra. This algebra is called the convolution algebra of H. ]
Hopf algebras. With the previously given background, we are able to define Hopf
algebras. Those are a subclass of the bialgebras with particularly nice behavior.

Definition A.29. A Hopf algebra over R is a bialgebra (H, m,n, A, ), where the identity
admits an inverse S in the convolution algebra (Homp 1, (H, H), *,7) (given in Proposition
IA.28]). The inverse S is called the antipode.

A submodule H' C H is a Hopf subalgebra if H’ is a subbialgebra and S(H') C H'.
Similarly, I C H is a Hopf ideal if I is a biideal and S(I) C I.

A Hopf algebra (H,m,n, A, ) over R is graded, if it is graded as a bialgebra and
S(HYC HY — i>o0.
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In the following, we sometimes just give the product and coproduct map for a Hopf algebra,
since the other maps are often clear from the context. The same also applies to algebras,
coalgebras, and bialgebras.

Proposition A.30. Let (H,m,n,A,e,S) and (H',m',n/,A', &', S") be Hopf algebras over
R. Then for any R-bialgebra morphism ® : (H,m,n,A,e) — (H',m/,n',A’,€"), one has

Sod=d0S8.
O

Due to the previous proposition, a Hopf algebra morphism is simply defined to be a
bialgebra morphism.

Theorem A.31. Let (H,m,n,A,e,S) be a (graded) Hopf algebra over R. If H' is an
R-module (graded) dual to H, then H' equipped with the dual maps of m, n, A, € and S
is also a (graded) Hopf algebra over R. O

Proposition A.32. Let (H,m,n,A,e,S) be a Hopf algebra over R. Then the antipode S
18 an anti-morphism, i.e., the following holds

Som=moto(S®S). ]

Recall that ¢ simply permutes the tensor product factors (see (A.14.1))).

Theorem A.33. Let (B,m,n,A,¢e) be a graded R-bialgebra. If B is connected, i.e., one
has rankp B) = 1, then B is a Hopf algebra over R. O

Example A.34. (i) Let M be a graded R-module with M(?) = {0}. The tensor algebra
T (M) (Example equipped with the coproduct A (m) = 1® m +m ® 1 and the
antipode S(m) = —m for all m € M is a graded, cocommutative Hopf algebra over R.
Note that A, is an algebra morphism and S is an algebra anti morphism, so both maps
are determined uniquely by its images on M.

(ii) Consider the symmetric algebra S(M) = T(M )/J (Definition [A.6|). Since J is a Hopf
ideal of 7 (M), the symmetric algebra S(M) is a graded, commutative, and cocommutative
Hopf algebra.

(iii) Let (L, [-,-]) be a graded Lie algebra over R with L(®) = {0} and consider the universal

enveloping algebra U(L) = T(L)/K (Definition |A.11)). Since K is also a Hopf ideal, the
universal enveloping algebra U(L) is a graded, cocommutative Hopf algebra.

Proposition A.35. Let L be a graded Lie algebra over R and L\©) = {0}. Then there is
an algebra isomorphism

UL)Y ~ S(LY). -

The usual graded duals LY and U(L)" are defined in Example (ii). Proposition
implies the following for the corresponding Hilbert-Poincare series.

Corollary A.36. For any graded Lie algebra (L,[-,-]) over R satisfying L) = {0}, one
has

Hsp) () = Hyr)().

So by Corollary and (A.11.1), one obtains two different expressions of the Hilbert-

Poincare series of a symmetric algebra or universal enveloping algebra.
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Definition A.37. Let (H,m,n,A,¢,S) be a Hopf algebra over R. An element z € H\{0}
is called grouplike if
Alx) =z Q.

The set of grouplike elements in H is denoted by Grp(H). An element x € H is called
primitive if it satisfies
Alz)=1®z+z 1.
By Prim(H) we denote the set of all primitive elements in H.
Theorem A.38. Let (H,m,n,A,¢e,S) be a Hopf algebra over R.

(i) The set Grp(H) equipped with the product and the unit of H forms a group. For an
element x € Grp(H), the inverse element is given by S(x). Moreover, each grouplike
element v € H satisfies e(x) = 1.

(i) The set Prim(H) equipped with the commutator bracket [x,y] = m(z®y)—m(y®x) is
a Lie algebra. Furthermore, one has for each primitive element x € H that (x) = 0
and S(z) = —x. ]

Theorem A.39. (Cartier-Quillen-Milnor-Moore) Let H be a graded cocommutative Hopf
algebra over R, such that rank Hg)) = 1. Then there is a Hopf algebra isomorphism

H ~U(Prim(H)). 0

Corollary A.40. Let (R{A),conc, 1) be the non-commutative free algebra over R gener-
ated by the set A. Define the coproduct Ay, by Ay(a) =a®1+1®a foralla € A (and
extend this with respect to concatenation), then (R({A), conc, Ay,) is a cocommutative Hopf

algebra. One has
Prim(R(A)) = Lier(A). ]

Definition A.41. Let (H,m,n,A,¢,S) be a Hopf algebra over R. The space of indecom-
posables of H is defined as

Q(H) = ker(g)/ker(s)Q'
If (H,m,n,A,¢,S) is a graded algebra with H = @~ H®_ then from the observations
on p. one obtains ‘
ker(e) = @ HY.
i>1

Let (C, A, ) be an R-coalgebra. Then define a corresponding Lie cobracket ¢ to A by

d=({Ad—-t)o A:C - C®C, (A.41.1)
where ¢ simply permutes the tensor product functors (see (A.14.1])).

Proposition A.42. Let (H,m,n,A,¢e,S) be a Hopf algebra over R. Then the correspond-
ing Lie cobracket to A defined in (A.41.1)) induces a Lie coalgebra structure on the space
Q(H) of indecomposables. O

This Lie coalgebra structure is closely related to the Lie algebra structure on the primitive
elements (Theorem [A.3§] (ii)).

Theorem A.43. ([MMG65, Proposition 3.10]) Let (H,m,n,A,e,S) be a graded Hopf al-
gebra over R. Then there is an isomorphism of Lie algebra over R

Prim(H"Y) ~ Q(H)". 0

The usual graded duals HY and Q(H)" are defined in Example (ii).
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Completed Hopf algebras and the exponential map. We will introduce the concept
of completions with respect to a filtration. This will lead to the notion of completed Hopf
algebras, for which we will obtain a bijection between the grouplike and primitive elements.

Definition A.44. (i) Let M be an R-module equipped with a descending filtration, i.e.,
there is a chain of submodules

M=FilOM>FIY M >FIP M >FI® M > ... .
The completion M of M with respect to this filtration is defined by the inverse limit

M =1im M6 -
J

IfM=M , then M is called a complete R-module. The completion M of M is also a

filtered R-module via ,
Fil

. )
Fild) 87 = lim " M 00

k>j
Proposition A.45. Assume that M = @, M is a graded R-module. Then M admits
a descending filtration given by Fil?) M = Di>; M® _ Since M/Fﬂ(j) M= @{;& MO,
the completion of M is . v A
T T |
J i>

The completion M is filtered by Fil¥) M = [Ti>; MO,

Proposition A.46. Let M, N be two graded R-modules. Then the tensor product M @ N
is also graded (Lemma and for the completion MON one has

M&N =] ( P m@ ®N<b>) :

120 \a+b=t

Moreover, there is a canonical embedding M @ N — M®N. We denote the image of
m®n € M® N under this embedding by m&n.

Definition A.47. Let (H,m,n,A,&,5) be a graded Hopf algebra (resp. bialgebra/ coal-
gebra/ algebra). By extending the maps m,n, A e, S of H to the completed module H,
one obtains the completed Hopf algebra (resp. bialgebra/ coalgebra/ algebra) of H.

The completed Hopf algebra (f[, m,n, A, e,5) is filtered, i.e., one has for all i > 0

m(FlY HeFilY ) c Fil g, AFLDH)c Y Fi™ HeFIL™ H,

m+n=i

SEFiID H) c Fil® H.

Definition A.48. Let M be a filtered R-module. Then the associated graded module
gr M is defined by

Fil0) M
M= Ve
Jj=0

One has gr M = gr M. In particular, if M is a graded module, then gr]/\I =M.

If M is a filtered R-module and all quotients M/Fﬂ(j) M are free modules of finite rank,
then the module gr M is graded in the sense of Definition
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Definition A.49. Let (H,m,n,A,e,S) be a filtered Hopf algebra over R. Then the
associated graded Hopf algebra is the R-module gr H equipped with the induced maps by
m,n,A,e and S.

Similarly, the associated graded for bialgebras, coalgebras, and algebras is defined.

Definition A.50. Let H be a graded Hopf algebra and denote by H = II;>0 HU) its
completion. For an element x € [[;5, H G cH , define
L ;
eXpH(x) = Z 7“7: )
=t

where 2! means applying the product map exactly (i — 1)-times to z®*.

The map exp provides a bijection between the primitive and grouplike elements of a
completed Hopf algebra.

Theorem A.51. Let H be a graded Hopf algebra. Then there is a bijection

Prim(H) = Grp(H),

x — expy(x).
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A.3 Quasi-shuffle algebras

This chapter provides an introduction to a special type of Hopf algebras, the quasi-shuffle
Hopf algebras. All results are taken from the articles [Hof00] and [HI17]. In the following,
R is some arbitrary fixed commutative Q-algebra with unit.

Let A be an alphabet, this means A is a countable set whose elements are called letters.
By RA denote the R-module spanned by the letters of A and let R(A) be the free non-
commutative algebra generated by the alphabet .A. The monic monomials in R({A) are
called words with letters in A, the set of all words is denoted by A*. Moreover, let 1 be
the empty word.

Definition A.52. Let ¢ : RA x RA — RA be a commutative and associative product.
Define the quasi-shuffle product *, on R(A) recursively by 1 %, w = w %, 1 = w and

au xo bv = a(u *, bv) + blau %, v) + (a o b)(u *, v)
for all u,v,w € R(A) and a,b € A.

Note that the quasi-shuffle product *, can be equally defined recursively from the left and
from the right, since both product expressions agree.

Example A.53. 1) Define a ¢ b = 0 for all a,b € A, then we get the well-known shuffle
product, which is usually denoted by L. Choosing the alphabet X = {z¢, z1}, the shuffle
product occurs for multiple zeta values (Definition [B.13)).

2) Let YV = {y1,92,y3, ...} and define on RY the product y;©y; = yi+;. The corresponding
quasi-shuffle product is known as the stuffle product or harmonic product and is usually
denoted by #, it arises in the context of multiple zeta values (Definition [B.17)).

3) Consider the alphabet B = {bg, b1, b, ...} and define on RB the product b;og7b; = b;y;.
We will refer to this quasi-shuffle product as the SZ stuffle product, since it appears for
the SZ multiple g-zeta values (Definition [2.11)), and denote this by *gz.

4) On the alphabet B define another product by

b'+'7 if i,j =1,
bi g bj = {OZ ’ else .

This quasi-shuffle product occurs for balanced multiple g-zeta values (Definition [2.57]) and
will be called the balanced quasi-shuffle product, it is denoted by *,.

5) Consider the bi-alphabet Y™ = {yjn | k > 1, m > 0}. There are numbers )\fl”” € R,
such that one obtains an associative and commutative product

ki1i+ko—1

K1,k
Yk1,my © Ykamo = Yky+ka,mi+me T Z >‘j1 Zyj:mlerz' (A.53.1)
j=1
In the context of bi-brackets ([2.31.1)), an explicit choice of the numbers /\?1’]€2
the corresponding quasi-shuffle product is denoted by *py,.

6) Another possible choice in [A.53.1|is A¥1-*2

; =0 for all j, k1, ko > 1, the obtained quasi-
shuffle product is called the g-stuffie product and is denoted by *. This should be seen as
a bi-version of the stuffle product on R()’) given in 2). It appears in the context of the
combinatorial bi-multiple Eisenstein series (Definition .

is given, and
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Proposition A.54. The pair (R{A),*,) is an associative, commutative algebra. O

For the shuffle algebra (R(A), ) there is an explicit generating set. Choose a total
ordering on the alphabet A, then the lexicographic ordering defines a total ordering on
the set of all words A*. Recall that a word w € A*\{1} is called a Lyndon word, if we
have for any nontrivial decomposition w = uv that w < v (Definition .

Theorem A.55. ([Re93, Theorem 4.9 (ii)]) The shuffle algebra (R({A),L1) is a free poly-
nomial algebra generated by the Lyndon words of A. ]

We will see that all quasi-shuffle algebras are isomorphic, in particular, the previous the-
orem holds for all quasi-shuffle algebras.

Definition A.56. Let (R(A), ;) be a quasi-shuffle algebra. By a composition of a positive
integer n we mean an ordered sequence I = (i1,...,%,), such that iy 4+ --- 4+, = n. Let
w=aj...ay, € A* be a word and I = (i1,...,4,) a composition of n, then define

Iw] = (a1 0+ 0ai; )(Ai 410+ 0 Qiypiy) - - - (Aot 41 O 7+ - O )

and

log,, (w) = ) CUT )

T=(i1,..yir) composition of n *
Theorem A.57. ([Hof00, Theorem 2.5]) The map exp,  is an algebra isomorphism
exp,, : (R{A), ) = (R(A), o).
The inverse map is given by log,. . O

From Theorem and one deduces the following.

Corollary A.58. Any quasi-shuffle algebra (R{A), x,) is a free polynomial algebra gener-
ated by the Lyndon words of A.

Next, we equip the quasi-shuffle algebras with a Hopf algebra structure. Define the decon-
catenation coproduct Agec : R(A) — R(A) ® R(A) and the counit map ¢ : R(A) — R for
a word w € A* by

Adec(w) = 3 u®@u, e(w) = {1’ fw=1 (A.58.1)

N/ 0 else

Theorem A.59. ([Hof00, Theorem 3.1, 3.2]) The tuple (R(A),*o,1, Agec,€) is a com-
mutative Hopf algebra. ]

The antipode Sy, : R(A) — R(A) is on a word w = ay ... a, in A* given by

Sy, (w) = (=)™ Z Ianan—1...a1).

I=(i1,...,ir) composition of n

The map exp,  in Theorem is compatible with the Hopf algebra structures, explicitly
the following holds.
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Theorem A.60. ([Hof00, Theorem 3.3]) The map exp,  is a Hopf algebra isomorphism

exp,, : (R(A), 1,1, Agec, &) = (R(A), %o, 1, Adec, €). -

We want to determine a completed dual of the quasi-shuffle Hopf algebra (in the sense of
Definition [A.18). Define a degree map on the letters in A, such that deg(a) > 1 for all
a € A. This induces a grading on the quasi-shuffle Hopf algebra (R(A), %, 1, Adec, &) by

deg(ay ...an) = deg(ay) + - - - + deg(ay), ai,...,an € A.

Denote by R((A)) the completion with respect to this grading (see Proposition |A.45)).
There is a pairing
() : R((A)) @ R(A) = R, (A.60.1)
¢@w e (6] w),

where (¢ | w) denotes the coefficient of ¢ € R((A)) in w € R(A). On R((A)) define the
coproduct A, : R{((A)) — R({A)) ® R({A)) by

M) = T (@luser) udw.
u,veEA*

Moreover, denote the concatenation product by conc.

Theorem A.61. The tuple (R{{A)),conc,1,A, ) is a complete cocommutative Hopf
algebra. It is dual to the quasi-shuffle Hopf algebra (R(A),*s,1, Adec,€) with respect to

the pairing (- | -) given in (A.60.1]). O

Example A.62. For the shuffle product L given in Example 1), the dual coproduct
is given by
Ay(a)=a®1+1®a  forallaec A

So (R((A)), conc, Ay)) is a cocommutative Hopf algebra (cf. Corollary |A.40).

Let exp,/ the algebra endomorphism on (R(({A)),conc) defined by
epoo(a) = Z —ai...an
a1 oan=a n.

for all letters a € A. Then by duality, the following holds

Corollary A.63. ([Hof00, Theorem 4.1]) The map expy, gives a Hopf algebra isomor-
phism
expy, : (R((A)),conc, 1, A, ) = (R({A)), conc, 1, Ay, €). 0
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A.4 Generating series and quasi-shuffle products

For a quasi-shuffle algebra (Q(.A), *,) we want to study its symmetries in terms of gener-
ating series. In all our given examples the quasi-shuffle algebra (Q(A), *,) will be filtered
or graded. Define the generic diagonal series of Q(.A) by

W(A) = Z w R w.

weA*

We want to apply Q-linear maps to the first factors, usually denoted by ¢, or to the
second factors, usually denoted by p, of W(A) to get generating series of different kinds
and describe the resulting properties.

More precisely, given a depth map dep : A* — Z>¢, denote by (A*)(@) the set of all words
in A* of depth d and by Q(A)@ the space spanned by (A*)(@. Then in the following, we
will explain the following picture

weA* ww
/ N’
( p(w)>
’UJE(A* (d) dZO .
We begin with an abstract discussion and later a more detailed explanation in special
cases is given.

wGA*

D

we (A*)(@)

Definition A.64. Let p4: Q(A) — Q[Z1, Zs,...] be a Q-linear map having the following
properties with respect to the depth map

(i) For each d > 1, the restriction of p4 to Q(A)@ is an injective Q-linear map

pAlgay@ QA — Q[zy, ..., Zd).

(ii) For n > 1 denote by pEZ} the Q-linear map obtained from p 4 by shifting the variables
Z; $0 Zpyi, SO pEZ] (Q( y(d ) C Q[Zn+1,- -+, Znta)- Then, one has

paluw) = paw)ply (v),  uweQA™, v e QA).
Definition A.65. Let pg : Q(A) — Q[Z1, Z2,...] be a Q-linear map as in Definition
The (commutative) generating series of words in Q(.A) associated to p4 are given
by pa(W)o =1 and for d > 1 by

pA(W)d(Zl, ceey Zd) = Z wp(w) S Q<A>[[Z1, ceey Zd]]

we(A*) (D)
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For simplicity, we will usually omit the index d and just write pa(W)(Z1, ..., Zy) for the
generating series of words in depth d.

Extend the concatenation product defined on Q(.A) to Q(A)[[Z1, Z2, .. .]] by Q[[Z1, Z2, .. ]]-
linearity and denote it by -. Then there is an explicit expression of the concatenation
product on the generating series of words p4(WV).

Proposition A.66. Let pg : Q(A) — Q[Z1,Za,...] be a Q-linear map as in Definition
[A26], Then for 0 <n <d , one has

paAWN 21, Zn) - paAWV)(Znss -5 Za) = paAW) (24, - - -, Za).

Proof. For n = 0,d the formula is obvious. For 0 < n < d, compute

pAVN(Z1, - Zn) - paOV) (Zngr,s - Za) =Y 3 wop () ()
u€(A*) (1) ye(A*)(d=n)

= Z Z uvp(uv) = Z wpa(w) = paW)(Zy, ..., Zg).
u€(A*) (M) pe(A*)(d=n) we (A*) () -

Extend also the quasi-shuffle product %, on Q(A) to Q(A)[[Z1, Z2, .. .]] by Q[[Z1, Z2, .. .]]-
linearity. Then by definition of the quasi-shuffle product *,, we have that for all 0 < n < d

AV Z1, - ) %0 paAOV) Zirs -+ Za) € QUAY[ 21, .., Zal.
In some special cases, this expression can be described explicitly by a recursive formula.

Consider the alphabet Y = {y1,y2,...}. For a word in Q()) define the depth as

dep(ykl...ykd):d, kl,...,deL
and let py be the Q-linear map defined by
Yky + - - Ykg — X{Clil .. .X[I;d_l.

It is obvious that the map py satisfies the properties listed in Definition and the
associated generating series of words are given by py(W)p = 1 and

py(W)d(Xl,...,Xd) = Z ykl...ykdel_l...XSd_l, dZ 1.
ki,....kg>1

Proposition A.67. (i) Let (Q()),w) be the shuffle algebra, i.e., W is the quasi-shuffle
product corresponding to y; oy; =0 for all i,5 > 1 (Ezample 1)). Then we have for
all0 <n <d that 1 W pyW), = pyW), W1 = py(W), and

pyW)(X1,. .., Xp) W pyW) (Xt - - - Xa)
= pyW)(X1) - (py (W) (X, Xa) W py V) (Kt -, X))
+ pyW) (Xng) - (py(W)(Xl, LX) Wy OV (X, - - ,Xd)).

(ii) ([Ih07, Proposition 8 (i)]) Let (Q(Y),x*) be the stuffle algebra, i.e., x is the quasi-
shuffle product with y; o y; = yiy; for alli,j > 1 (Ezample[A.53 2)). One obtains for all

167



0 <n<d that 1% pyWV), = pyW)n * 1 = py(W),, and

= pyV)(X1) - (py W) (X, Xa) 5 pyOV)(Knia, - X))

YY) (Xng1) - (pyOV) (X1, X) % py (V) (Xnga, -, Xa))

N py(W)(X1) — py(W)(X2)
X1 — Xo

py(W)(le ce ’Xn) * py(W)(Xn+1, s 7Xd)
(

+
A

oy M) (Xa, -, X0) 5 pyW) (X, - X))

Proof. We only prove (ii). Part (i) follows then from (ii) by applying the same calculations
and arguments modulo lower depth. First, restrict to the case d = 2 and compute directly

py(W)(X1) xq py(W)(X2)

= Y (e ru) X TXP T = Y (yklykz + Yk Yk +yk1+kz)Xfl_1X§2_l
k1,k2>1 k1,k2>1
pyW)(X1) — py(W)(X2)
X1 — X ’

= py(W)(X1, X2) + py(W) (X2, X1) +

where
py(W)(X1) — py(W)(X2)
X1 — Xo

ki1 yko—1
Z yk1+/€2X1 X2 -
k1,ke>1

follows from a simple power series manipulation. Since the stuffle product as well as the
above generating series formula are given recursively, we obtain the claim in arbitrary
depth by applying induction and the same arguments as before. ]

Next, consider the alphabet X = {xg,z1} and let h' be the subalgebra of Q(X) spanned
by all words ending in z1. For a word in h' define the depth as

dep(xlgl_l:cl...xgd_laﬁl) =d, ki,...,kqg>1,
and let px be the Q-linear map defined by

px bl = Q[X1, Xy, .. ],

k1—1 kg—1 k1—1 kg—1
S S AR IS D, D, G

The map py satisfies the properties in Definition and the generating series of words
associated to py is given by pxy(W)o = 1 and

px(W)d(Xl,...,Xd) = Z xlgl_lxl ...Jigd_lxlX{Cl_l...de_l, dZ 1.
klr"vkdzl

Proposition A.68. ([Ih07, Proposition 8 (ii)]) Let (h', 1) be the shuffie algebra, i.e., L
is the quasi-shuffle product with x;ox; =0 fori,j € {0,1} (Example 1)). We obtain
forO<n <dthat 1 WpxW)p =pxW)p W 1 =px(W), and

px(W)(Xl, - ,Xn) LL p/\/(W)(Xn_H, ceey Xd)
= px V) (X1 + Xpi1) - (pX(W)(XQ, LX) Wopr V) (Xt - - ,Xd))

+ pxW)(X1 + Xni1) - (px W) (X1, X)) W px (V) (X, - X))
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Proof. First, restrict to the case d = 2 and obtain

px(W)(X1) = 1—1950)(1 21, (A.68.1)
=11 + onpx(W)(Xl). (A.68.2)

Thus, compute
px(W)(X1) W pa(W)(X2)
= 21 W1+ W (50 Xapr(W)(X2)) + (20 X1px(W)(X1)) W
+ (20X1pxW)(X1)) W (20 X2pae (W) (X2))
= 203 + 1 50 Xopa (W) (Xa) + a0 - (21 W (Xope(W)(X2)) ) + a1 20 Xapar (W) (X1)
+ a0 (Xipx W)X wan ) + a0 ((Xipx (W))W (w0 X2px (W) (X2)))
+ 20 ((20X1px (W) (X)) W Xapa (W) (X2))
= 203 + a1+ (px(W)(X2) = 1) + 20+ (21 W (Xap(W)(Xa)))
+ o (prWV)(X1) = 21) + 20+ (X1 (W)(X1) war ) )
((Xrpx (X)) W (2 (W) (X2) = 1))
+ 20+ (P (W)(X1) = 1) W Xapr (W) (X2))
pr(W)(Xa) + 21 - pr(W)(X1) + 2o(X1 + Xa) - (px (W) (X1) W px (W) (X)),

where the first equality follows from (|A.68.2)), the second equality is just applying the
definition of Ui, the third equality is again obtained from (A.68.2)) and the fourth equality
is simple cancellation and reordering. Together with (A.68.1) and Proposition one
deduces

P (W) (1) W e (W) (Xz) = 3 = ) (71 2OV + 1 o () (X))

= px(W)(X1 + X2) - px(W)(X1) + px (W) (X1 + X2) - px(W)(X2)
= pax(W)(X1 + X2, X1) + px (W) (X1 + X2, X2).

This is exactly the claimed formula for the generating series in depth 2. Since both the
shuffle product and the generating series formula are defined recursively, the claim in
arbitrary depths follows from induction. O

Remark A.69. Consider the isomorphism of vector spaces

1 ki—1 ky—1
wx Q) —=b, Yk Yk, Tyt T xgt 1

and extend it to Q(V)[[X1, X2,...]] by Q[[X1, Xo,...]]-linearity. As obtained in [IKZ06]
one has for all 0 < n < d that

(px W)X (X1, ., X)) W (o W)X (Xt -, Xa) (A.69.1)
= 1y (pyW)(X1,. ., X0) W py(W) (X1, -, Xa)) T
Here the right-hand side is explained in Proposition m (i) and we denote
(P W)*X (X1, Xa) = pa V) (X1 + -+ Xa, Xo + -+ + Xy, -, Xa).
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By variable substitution, one shows that the formulas in :A.69.1) and in Proposition m
agree. For example, for n = 1, d = 3 the formula (A.69.1: reads

px (W) (X1) W pa(W)(X2 + X3, X3)
= 1y.x (py(W)(X1, X2, X3) + py(W)(X2, X1, X3) + py(W)(Xa, X3, X1))7X
= pxW)(X1 + Xo + X3, Xo + X3, X3) + px V) (X1 + Xo + X3, X1 + X3, X3)
+paW)(X1 + Xo + X3, X1 + X3, X1).

Substituting X7 — X1, Xo — X9 — X3, X3 — X3 this equation is equivalent to

px(W)(X1) W px (W) (X2, X3) = px(W)(X1 + Xo, Xo, X3)
+px W) (X1 + X2, X1 + X3, X3) + pa (W) (X1 + X2, X1 + X3, X1),

which is exactly the formula in Proposition [A.68 for n =1, d = 3.

As a second step, we apply a Q-linear map ¢ : Q(A) — R into some commutative Q-
algebra R with unit to the first component of such a generating series of words p4(W).
In other words, we consider the image of the generic diagonal series W(.A) under ¢ ® p4.

Definition A.70. Let p4 : Q(A) — Q[Z1, Zo, .. .| be a Q-linear map as in Definition
R be a commutative Q-algebra with unit and ¢ : Q(A) — R a Q-linear map. Then the
generating series with coefficients in R associated to (¢, p4) are given by (¢®p4)(W)o =1
and

(e@pAW)a(Z1,. . Za) = Y p(w)pa(w) € R[Zy,.... Z4)), d>1.
we(A*)(d)

As before, we will usually drop the depth index and simply write (¢ ®p4)WV)(Z1,. .., Zq).
Later, we will refer to the sequences (¢ @ p4)(W) = ((g@ ® pA)(W)d)d>0 as moulds or
bimoulds (cf Section |C)). -

Definition allows relating a quasi-shuffle product defined on Q(A) to a symmetry
among a sequence in [[;~g R[[Z1,. .., Z4]].

Definition A.71. Let R be a commutative Q-algebra with unit. A sequence M =
(Ma)aso € g0 Rl[Z1, ..., Z4]] is called (¢« , p.a)-symmetric if there is a Q-algebra mor-
phism ¢, : (Q(A), ;) = (R, -) and a Q-linear map p4 : Q(A) — Q[[Z1, Z, .. .]] satisfying
the conditions in Definition such that for all d > 0

Mg = ((P*o ® PA)(W)d-

Let M = (Ma)a>0 € [14>0 R[[Z1,-- -, Zd]] be such a (px,, p.4)-symmetric sequence. Then,
one obtains immediately from the definition that for 0 < n < d

My(Z1, ... Zn))My—n(Znst, - .., Za) (A.71.1)
= 01 (PAVI(21; - Z0) %o AV aen(Zuts - Za))-

The right-hand side is an element in Q(A)[[Z1,..., Z4]], so we need to extend the map
s, : Q(A) — R by Q[[Z1, Z2, . . .]]-linearity to apply it to this expression.

170



Example A.72. Recall that the map

py 1 Q) = QX1 Xo, ..,
Yky -+ Yky — Xfl_l .. .ng_l.

given in (A.66.1)) satisfies the conditions in Definition m

1) A sequence M = (Mg)g>0 € R[[X1,...,Xq4]] will be called symmetral if there is an
algebra morphism ¢y, : (Q(Y),Ww) — R, such that M is (g, py)-symmetric. So M is
(¢w, py)-symmetric if and only if we have for all 0 <n < d

My (X, Xn)Mg_n(Xny1, ..., Xa)
= P (py(w)n(Xlu s 7X'rl> L P)J(W)d—n(Xn—f—h RN Xd>)7
where the right-hand side is explicitly described in Proposition m (i).

2) A sequence M = (Mg)q>0 € R[[X1,...,Xy]] will be called symmetril if there is an
algebra morphism ¢, : (Q()),*) — R, such that M is (¢, py)-symmetric. In particular,
M is (¢x, py)-symmetric if and only if we have for all 0 < n < d

My( X1, oo, Xn)Mg—n(Xng1, ..., Xg)
= o (pyW)n(X1, -, X) # pyOV)amn (Xnga, -+, Xa)).
An explicit expression for the right hand-side is given in Proposition (ii).

Definition[A-7T]will be used in Subsection 2.7)and [C.I]to obtain the definition of symmetral,
symmetril, and g-symmetral, g-symmetril for bimoulds.

Alternatively, we can first apply the evaluation map ¢ : Q(A) — R for some commutative
Q-algebra R with unit to the generic diagonal series W(A).

Definition A.73. Let R be a commutative Q-algebra with unit and ¢ : Q(A) — R be
a Q-linear map. Define the (non-commutative) generating series with coefficients in R
associated to ¢ by
POVA) = 3 plw)w € RIA)).
weA*
Here R{{A)) denotes the completion of the space R{(A) = R ® Q(A) with respect to the
grading deg(a) =1 for all a € A.

Clearly, the generating series ¢(WW(A)) can also be decomposed into its homogeneous
depth components ¢(W(A))y for d > 0 (similar to Definition [A.65]).

Proposition A.74. Let R be a commutative Q-algebra with unit and ¢ : Q(A) — R be a
Q-linear map. Assume that the algebra (Q(A), x,) is graded with deg(a) > 1 for alla € A,
and denote by A, the dual coproduct to x, with respect to the pairing given in (A.60.1)).

The map ¢ is an algebra morphism for the quasi-shuffle product *. if and only if o (W(A))
is grouplike for the coproduct A, .

Proof. By Theorem |A.61] we have A, (cp(W(.A))) = > uwear P(u*o v)u®v. So ¢ is an
algebra morphism for the quasi-shuffle product *, if and only if

A (pOV(A) = D wlwp(v)us v = p(W(A) @ p(W(A)).
u,veA* n

In particular, applying the map ¢ involves always a dualization process. This approach is
the basis for Section [4]
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A.5 Examples for generating series and quasi-shuffle algebras

In this subsection, we give explicit recursive formulas for several quasi-shuffle products on
generating series of words (cf subsection |A.4]) for sake of reference.

Consider the alphabet Y = {yi,, | kK > 1, m > 0} and let the depth of a word in Q(Y"!)
be given by

dep(ykl,ml...ykd,md) Zd7 kl,---;kd Z 1, mi,...,Mq ZO
Define the Q-linear map pyni by
Pybi : Q(ybl> — Q[X17}/17X27Y27 .. '}7

]’ml Y'md
ki—1+1 kqg—114q
— X — X
Yk1,my Ykgmq 1 ! d mg!

9

then pywi essentiallyﬂ satisfies the conditions in Definition The generating series of
words in Q(Y) associated to pyri is given by pyni(W)o = 1 and

m mgq
B Y7 ! ky—1 Yy

= Z yk17m1-..ykd,de1 il Xd o
k1, kg>1 1- d:

mi,...,mqg>0

Xl,...,Xd> i> 1.

pybi(w)d( Yi,..., Yy

First, we give a recursive formula for an arbitrary quasi-shuffle product *, defined on
Q(Y") on the generating series of words.

Proposition A.75. Let (Q(YP),x,) be a quasi-shuffle algebra. Then we have for all
0 <n <d that 1%, pyoi(W)n = pysi(W)n o 1= pyui(W), and

Xl,...,Xn Xn+1a"'7Xd
NO%Y * (W
_ . Xl . X27'-'7Xn ) Xn+1"“’Xd
X Xi,.., X Xpioo o X
+Pybi(W)<Y::11) . (pybi(W)<£7”.’Ynn> *o Pybi(W)<yZi;,,,,Ydd>)

X1, Xnt1 Xo, ..., Xy Xnt2,..., Xy
+ (pybi(W)Opybi(W))<YhYn:1> . (pybi(W)(YQ".‘7Yn> *o pybi(W)<Yn12’”.’Yd>> ,

X1, X9 fi—1 ka1 Y] L Y5

) . Y _ 1— 2—

(pyb‘(w) < Pybl(W)) Yl,YQ = N §k2>1 (yklymloykZmZ)Xl X2 my! me! .
m1ms>0

Here - denotes the concatenation product (cf Proposition [A.66)).

5To be precisely in the situation of Definition [A.64] we have to define the depth as
dep(Yky my - - - Ykyomy) = 2d. But this means the depth of every homogeneous element in Q(Y®!) is di-
visible by 2, thus we stick to the above given depth map.
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Proof. First, consider the case d = 2 and compute directly

m1 mo
Y'Y
m1! mQ!

X X _ _
ﬂym(VV)(Yll) o Pybi(W><Y§> = D Wk o Yhama) X7 T X5

k1,k2>1
m1,m2>0

mi v me
ka—1 le Yé
2

k1—1
= E (yk:l,ml Yka,mo + Yko,maYki,m1 T Yk1,mq © yk’g,mg);(1 X ! !
my! mo!

k1,k2>1
m1,m2>0

o X1, Xo A X, X1 . ‘ X1, Xo
—Pybl(W)<Y17Y2> +Pybl(W)<Y27Y1) - (pybl(W)opyb,(W))<YhY2> .

Since the definition of the quasi-shuffle product *, as well as the above formula for the
generating series pyui (VW) is recursive, the arbitrary depth case follows similarly by induc-
tion. O

Corollary A.76. For all 0 < n < d, one has 1 W pysi(W)n = pyvi W)n W 1 = pyni( W),
and

X, X Xyt Xy
pybi(W)(Yl,...,Yﬁ o '”y“(w)(YZE,...,YJ

X4 Xoyooy Xn Xnt1,-- -, Xd
= (W - (W (W
ol )<Y1> (”yb( )<Y2,...,Yn>*°p3"’( )<Yn+l,...,Yd>>
X1 X1, ... X, Xpra, s Xy
(W . (W (W .
oyl )<Yn+1> (pyb( )<Y17---,Yn>*opyb( )<Yn+2>-~-7Yd>>

Proof. This is a direct consequence of Proposition since one obtains for the shuffle
product that

(pybi(W) & pybi(W)) (A)}(%: ;22> =0.
O

Corollary A.77. For all0 < n < d, one obtains 1 pyvi(W)n = pyui( W) *1 = pyui(WV),
and

X.,.... X, Xoitr o X
pybi(w)(Yi Yn> *o pybi(w)(Yni Yj)
Xl X27~~7Xn Xn+17"'7Xd
= pybi (W : 104 104%
Pyb( )<Yi> <Pyb( )(Y%”"Yn)*of’yb( )<Yn+1a---7yd>>
Xn+1 le'-‘an Xn+27"°7Xd
(W . (W 104%
Py )<Yn+1> (pyb( )<Y1,---,Yn)*0pyb( )<Yn+2a--->Yd>>

i Xl . Xn+1
pys(W) <Y1 " Yn+1> ~ ey (V) <Y1 + Yn+1>

X1 —Xnt1

) X27"'7XTL ) XTL+27"‘7Xd
('”yb‘(w)<y2,...,Yn>*”yb‘(w)<Yn+2,...,Yd |
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Proof. Apply Proposition and observe that

X1, Xo ki—1 yk 1val sz
(pybi(w) Opybi(WD <Y1,Y2 ) - k kz>1 Perthasmamads™ A my! mz!
my im0
. X1 ) X2
Pybi (W) (Yl + YQ) — Pybi (W) <Y1 + }/’2>

X1 —Xo
O

Next, consider the alphabet B = {bg,b1,bs,...} and let Q(B)? the subalgebra of Q(B)
spanned by all words, which do not start in by. The depth of a word in Q(B)° is defined
by

dep(bklbg” .. .bkdbz)nd) = d, k‘l, ey k:d > 1, mi,...,Mq > 0.

Moreover, define the Q-linear map pg by
ps : Q(B)” = Q[X1,Y1, X5, Y2,.. ],

b, b b b s Xty xRy (kg > 1 m, . mg > 0),

then pp satisfies the conditions in Definition The generating series of words in Q(B)°
associated to pg is given by pg(W)o =1 and

Xl,...,Xd>

pB(W)d<Y1”. vo )= ST bbb b X YL X Y d > L

ki,...,kg>1
mi,...,mqg >0

Proposition A.78. (i) Let (Q(B)°, 1) be the shuffle algebra, i.e., L is the quasi-shuffle
product to b;ob; =0 for alli,j >0 (E:mmple 1)). For all0 < n < d, we obtain that
1w psW)p = psW)p 0 1 = pp(W),, and

Xi..... X, Xoitse o Xy
w LU w
pB( )<}/117 > pB( )<Yn+17"'7Yd>
Xi. o X Xoits oo Xy X,
LLI w . w
<pB <Y17---7Yn—1> P )(Yn+17---7Yd>> il )<Yn+Yd>
Xla---aX XnJrl?"'aXd—l . Xd
(pB (Yl,...,Y )UJPB(W)<YN+1,...,YCI1>> pB(W)(Yn—i—Yd)'

(i) Let (Q(B), x,) be the balanced quasi-shuffle algebra, i.e., x, is the quasi-shuffle product

_|_

b/L ) b i . .
to by og bj = {Oﬂ ;‘Ze for alli,j > 0 (Example|A.55 4)). For all 0 < n < d, we

obtain 1 x4 ppWV)n = pBW)n *¢ 1 = pg(W),, and
Xi, ... X, Xoitso o Xy
pB(W)<Y177Yn> *qu(W)<Yn+17"‘7Yd>
_ X1y Xpa1 XTL-I—17"'7Xd Xn

- (pB(W)<Y1,...,Yn_1> K pB(W)(Yn+b...,Yd>> psV) (and)

Xi.... . X, Xoitre o Xy X
+ (pB(W)<Yi Yn> *q pB(W)(Yni Yj_11>> (W) (Yn +de>
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X1y, Xpa Xnt1, -5 Xag1
+ (pB(W)<}/17 . 'aYTLfl ) *a pB(W) < YTL+1’ s 7Yd—1

ps(W) <Yn)inYd> - ps(W) (Yn)ide>

Xn_Xd

Proof. We will only give a proof for (ii), part (i) follows from the same calculations modulo
lower depth. Consider the case d = 2. We obtain

X m — m
,03(W)<Y11> = Z brby Xfl 1Y1 ’

k>1
m>0

1
= 70, Gl P —— A.78.1

k>1

X
= Z ka —|— PB W) <Y11> . boYl. (A.78.2)

k>1

Hence we compute

p5(W) (ifj) g p5(W) (iﬁj)

. (Z kafl) . (z kaé“) ; (z ka£”> o (st () )
k>1 k>1 k>1

+p3<w><§f> e kglbkx ( /)B(W)G(,ll) y1> . (gbkxg—l)) by

ol st (om0 ) o))

(o) o))

_ (gl bt 1) (;1 bt )+ ((g kaf_l) o <pB<W> (iﬁj) Y2>) by
J-oe) gt )
)-

> Xt 1) > b X5
k>1

k>1

+ | ps(W

oo
(ool

175



_|_

((PB(W)<)§11> Y1> o (pB ( ) ;;ka ))
(o () -nt) s (som (32) )
- (;1 kaf‘l) *q (;1 ka;f—l) —2 (I;l kaf—l) . (1; ka§_1>

n
+ ps(W ( )Zka + ps(W ( )Zka

k>1 k>1

 (ro0m (32) ()

where the first equality is obtained from (A.78.2)), the second equality is just an applica-

tion of the definition of *,, the third equality again follows from (A.78.2]) and the fourth
equality is a simple cancellation and reordering. Therefore, we obtain

pa (W) (if) Y (i‘;) (A783)

1 - — —
m ( (; bk;Xk 1) *g (’; kag 1) -2 (lgl ka{f 1) . (}; kaée 1)
+PB(W)<)§2> S b XE 4 ps( W)( ) > b X5 )

k>1 k>1

1
Y (xSt ) 2 [ hext ) [ axt
T 1-bo(Vi+Y2) ((;m ) ! (kzl k=1 k=1
X X, X X
+pB(W)<Y22> -ps(W) (Y +Y) +PB(W)(Y11> - ps(W) <Y1 +2Y2>
1
Y ([saxt ) [Saxt ) o [ hext ) [ axt
T 1-b(V +Ys) (<k>1 ) =1 k=1 k=1
XQ,Xl X17X2
+ ps(W) <Y2,Y1 +Y2> + pB(W) (yl,y1 +Y2> ’

here the second equality is obtained from (A.78.1)) and the third equality follows from ap-
plying the concatenation product (A.66]). Moreover, one verifies by applying the definition
of x4 and some power series manipulation

STopXE | kg | DD b X5
E>1 E>1

=2 (Z kaf—l) : (Z bkxg—l) + Y b X TIXGE

k>1 k>1 k1,k2>1
) 1) e e X = s e Xy
=2 bpXPF1 - b X4t | + =52 =
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Applying this result to (A.78.3)), we obtain together with (A.78.1]

pu(W) (iﬁj) 4 p (W) (iﬁj)

_ 1 ‘ Zkzlkafl — Dk>1 b X5 ! + ps(W) Xa, X1
1—()0(Y1+Y2) X1 — Xo Yo, Y1+ Y2

X1, Xo

X1 X2
X5, X; X1, X, me(H+B>’MW%H+E>
= ps(W) ’ + ps(W) ' + )
PB 2,1+ Y, Yi,Y1+ Y, X1 —Xo

which equals exactly the claimed formula of *, for the generating series in depth 2. Since
the definition of the product *, and the above generating series formula are both recursive
(and any quasi-shuffle product can be equally defined from the left and the right), we obtain

the desired formula in arbitrary depth by applying induction and the same computations
as before. O

Proposition A.79. Let (Q(B)°, xsz) be the SZ stuffle algebra, i.e., xsz, s the quasi-shuffle
product to b; osz7 bj = by for alli,j >0 (E:mmple 3)). We have for all0 < n < d
that 1 xsz ps(W)n = psW)n x5z 1 = pg(W), and

X1, X, Xt s Xy
pB(W)(m,...,Yn> *SZﬁB(W)<Yn+1,...,Yd>

X1, X1 TR
=Y, +1 )4% w
( + ) (pB( )<}/17"'7Yn—1> *SZPB< )< n—i—l;--' )

=

- Yii,..., Y,

+ (Y, +1) (PB(W)()%’:“’XR> 57 /JB(W)<X"+1"" ))

(oeom(Sy ) rsmom (e i’f))
X, X
Pd“”Qxf+na@+n—4>_deDQKf+UO§+1N—J
' X, — X4 '

Proof. First, restrict to the case d = 2. We obtain

X m - m
%ow<ﬁ>—§:m%xp1n

k>1
m>0

1
= (> xt ) —— (A.79.1)
@E 1—byY;
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Then, calculate

%37 (gl bp X571 ) ((E bp X P~ ) %7, ( 5(W) @;) 1@)) - by

X _ X _
+PB(W)<}/§>'bO)§'Zkaf 1+pB(W)<Y22>Y2-Zkaf !

k>1 k>1

(w5 = (2 ) weeon(G2) gt
oG e (oo (5 ) e (mom 52) ) )
(o () ) o ()] »

((mon(5)) o o (2)15))
(o) (o) o)

pB(W ( ) > b xb ) > b XT! + pal W)(i(/;)YQ.Zkaf—l

E>1 E>1 k>1

+ (pB(W) <X > Y1> %Sy, (;; b X5~ )) - by

+ | sV ( ) > b Xt )be +pBW)<)§>Y1 > b X5t
X
Y

x>

+

k>1 k>1 k>1

(el o))
o (e <>,;Ml)*sz< ()
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+ <<PB(W) <)}£11> Y1> %57 (PB(W) (ii;) Y2>> - bo

= (Z kaf—l) %57 (Z bkng—l) —2 (Z kaf—l) : (Z ka;f—l)
E>1 E>1 E>1 E>1

+ ps(W) (ii ) (1+Y2) - > Xy~ + ps(W) (i(/ > (1+Y1)- > bpX5

k>1 k>1
X X
+ <pB(W) <Y11> *sz, p(WV) <Y22>> bo(Y1 + Y2 + Y1Ya),

where the first equality follows from (A.79.2), the second equality is obtained from the
definition of x4, the third equality again follows from (A.79.2) and the fourth equality is
just cancellation and reordering. We deduce

ps(WV) <§11> x5z, pg(W) (iij) (A.79.3)

1
b XE1 ] % b X 51
T 1 b(Yi+ Yo + V1Y2) ((,;k ) SZ(,gk 2 )
X
-2 (Z kaf_l) . (Z ka§_1> +pB(W)<Y2> 1+Y5)- Zka

k>1 E>1 E>1

+ps(W)<§1> (L+Y1)- > bpX5 )

k>1

T 1 bW +1Y2 YY) ( (,; ka{H) *SZ (g kag_l)
_9 (g bkxf—l) : (g kagH) > + (1 +Y2)ps(W) (%) - (W) <Y1 + 132(1 Y1Y2>
+ (14 Y1)ps(W) (i%) ~ps(W) <Y1 + ;;i Yle)
- +1Y2 s ( (;; b X1~ ) *sz (;; kaé“‘l)
_ 9 (Z ka{c—l) . (Z ka;H) > + (1 + Y2)ps(W) <Y2 (Vi f%’(ilJr 1) — 1)

k>1 E>1

X, X
+ (14 Y1)ps(W) (yb (Y1 + 11)(Y22+ 1) - 1> 7

here the second equality follows from (A.79.1) and the third equality is obtained from ap-
plying the concatenation product (A.66]). Moreover, one verifies by applying the definition
of xg7 and some power series manipulation

ST X xsr | D e X5
E>1 k>1
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=2 (Z kaf—l) : (Z bkxg—l) + Y b X TIXGE

k>1 k>1 k1,ko>1
B 1\ e X = Y e X!
=2 bpXPF1 - b X4t | + =52 =

Inserting this formula into (|A.79.3)), one obtains together with (A.79.1))

ps(W) <)}S11> xsz p(W) (if;)

1 <Zk>1 D XT = Yps ka§1>

T 1-b(V + s+ YV1Ya) X1 — X,

+ 1+ Y2)ps(W) (YQ, (Vi f?)éljt 1) - 1) + (1 +Y1)ps(W) <Y1 (V3 +)<f),(;(22+ 1) - 1)

= (1+Y2)ps(W) (Y% Y f%él 1) - 1) +(1+Y1)ps(W) <Y1, v ﬁ%éﬁ 1) — 1)
ey (m + 1)512 +1) - 1) ey <<Y1 + 1><§§+ - 1>

+ X, — X, ’

which is exactly the formula for the generating series pg(W) in depth 2. Since both the
above generating series formula and the SZ stuffle product are defined recursively (and
each quasi-shuffle product can be equally defined recursively from the left and the right),
we obtain the claim in arbitrary depths by applying induction and the same arguments as
before. O
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A.6 Affine group schemes

We give a rough introduction to affine group schemes in this subsection. More details and
missing proofs can be found in [DG70], [Mill7], [Rac00, I.4], and [WaT79|.

Definition A.80. Let C be a locally small category. A functor F' : C — Sets is called
representable if there is an object A € C, such that F' is naturally isomorphic to the
Hom-functor

Homc(A4, —) : C — Sets,
B — Homg(4, B).

In this case, one says that A represents the functor F'.

Let Q-Alg be the category of commutative Q-algebras with unit (we require an algebra
to be associative by definition).

An affine scheme is a representable functor F': Q-Alg — Sets.

Theorem A.81. (Yoneda’s Lemma) Let C be a locally small category and E,F : C —
Sets be two functors represented by A, B. Then any natural transformation ® : E — F
corresponds uniquely to a morphism ¢ : B — A in C. ]

Let ® : E — F be some natural transformation. Apply the map ®(A) : E(A) — F(A) to
id: A — A € Homg(A4, A) ~ E(A) to obtain a morphism ¢ : B — A € Homg(B, A) ~
F(A). Then ¢ is exactly the corresponding morphism to ® in the previous theorem.

Definition A.82. An affine group scheme is a representable functor G : Q-Alg — Groups.

Let G : Q-Alg — Groups be an affine group scheme represented by A. Then there are
natural transformations

mult:GxG— G, unit:{e} -G, inv:G—GC

corresponding to the group multiplication, the unit, and the inverse elements. Here we
denote by {e} the functor Q-Alg — Groups mapping any Q-algebra R to the trivial group
with one element. By Theorem the above three natural transformations correspond
to algebra morphisms

A:A—>ARA :A—>Q, S:A— A

Here the associativity of the group multiplication translates into the coassociativity of A
(cf Definition , the unit property translates into the counit property of € and A (cf
Definition , and the inverse elements property translates into the antipode property
of S (cf Definition . Thus, the maps A,e and S equip the algebra A with a Hopf
algebra structure. Summarizing the previous observations leads to the following.

Theorem A.83. ([Wa79, Subsection 1.4]) Affine group schemes are in one-to-one corre-
spondence to Hopf algebras over Q. ]

Example A.84. For each commutative Q-algebra R with unit, consider the dual quasi-
shuffle Hopf algebra (R((.A)), conc, A,,) obtained in Theorem The functor

F:Q-Alg — Sets,
R = R{(A))
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is an affine scheme represented by the polynomial algebra Q[(zy)wea+], since there are
natural bijections

R{(A)) — Homg_aig (Ql(su)wea], R),
D (2 (@ | w)).

Here (® | w) denotes the coefficient of ® in w. The grouplike elements Grp(R((.A))) for
the coproduct A, form a group with the concatenation product (Theorem . Hence
restricting the images of the affine scheme F' to the grouplike elements Grp(R({({A))), one
obtains an affine group scheme

G : Q-Alg — Groups,
R — Grp(R({A))).

By the duality given in Theorem [A.61] the affine group scheme G is represented by

B = Uhenl,

ZuZy — Zusev | Uy U E A*>’

where we set Zyytpuw = A2y + 2y for u,v € A*, A\, p € R. By Theorem B is a Hopf
algebra. Again by the duality in Theorem the coproduct on B is given by

Zw) = Z Zu ® 2y, we A",

Uv=w

Definition A.85. An affine (group) scheme G represented by A is called algebraic if A
is a finitely generated algebra.

For an affine group scheme, one uses the additional Hopf algebra structure on the repre-
senting algebra to obtain the following.

Theorem A.86. Any affine group scheme is an inverse limit of algebraic affine group
schemes. ]

Example A.87. Let V be a finite-dimensional Q-vector space. Then there is an algebraic
affine group scheme

V. Q-Alg — Groups,
R— (V&qgR,+)

represented by the symmetric algebra S(V*). More generally, let V' be a complete filtered

Fil®)

Q-vector space (Definition |A.44]), such that the quotients /Fll(j+1 y are finite-

dimensional for all j > 0 and ;5 Fil?!) V = {0}. Then the functor

V. Q-Alg — Groups,
R~ (V&gR,+)
~ Fil) v g ~
satisfies AV = Jm A FilU+D v Thus, A is an affine group scheme represented by
the algebra

hﬂs((mw Y Ao v)) :S(Iiﬂ(mo Y Ao V)) = S(er V),

where the associated graded space grV is introduced in Definition and the graded
dual gr VV is defined in Example

182



Similar to the connection of Lie groups and Lie algebras, one can assign a Lie algebra
functor to each affine group scheme.

Definition A.88. For any commutative Q-algebra R with unit, let R[e| = R[t]/<t2> be

the algebra of dual numbers over R, so €2 = 0. For an affine group scheme G, define the
Lie algebra functor as

g : Q-Alg — Lie-Alg,
R ker (G(R[e] > R)).

Here R[e] — R denotes the canonical projection induced by & — 0.

Proposition A.89. Let G be an affine group scheme represented by a Hopf algebra H
and denote by g the Lie algebra functor to G. Then one has

g(@) = HomQ—lin(Q(H)a Q)?
where Q(H) denotes the space of indecomposables of H (Definition [A.41). Ol

If the affine group scheme G is algebraic, then g(Q) is finite-dimensional and one obtains
g(R) = ¢g(Q) ® R for any commutative Q-algebra R with unit. By Theorem any
affine group scheme G is an inverse limit G = lim GG,,, where the G,, are algebraic affine
group schemes. Therefore, we have for each commutative Q-algebra R with unit

g(R) = lim g, (R) = lim (9,(Q) ® R) = 9(Q) & .

Identifying ¢(Q) with the space of all derivations on the representing Hopf algebra of
G, which are left-invariant under the coproduct, gives the Lie bracket on ¢(Q). Via the
identification g(R) = g(Q) ® R, one obtains the Lie bracket on each space g(R).

Proposition A.90. Let G be an affine group scheme. Then the Lie algebra functor
g : Q-Alg — Lie-Alg is an affine scheme represented by the algebra S(gr g(Q)V).

Sketch of proof. If G is algebraic, then ¢(Q) is finite-dimensional and g(R) = ¢(Q) ® R.
In particular, the functor g is equal to the functor A9%@ given in Example and thus

represented by S(g(Q)*).
By Theorem any affine group scheme G is an inverse limit G = lim G, where the
G, are algebraic affine group schemes. Therefore, g(Q) = 1£1 gn(Q) is a complete filtered

vector space. Since g(R) = g(Q)&R, the functor g is equal to A9@ . So by Example
g is represented by the algebra S(gr g(Q)V). O

Next, we introduce an important class of affine group schemes, for which there exists a
natural isomorphism to their Lie algebra functors.

Definition A.91. For a Q-vector space V, define the functor GI(V') by

Gl(V) : Q-Alg — Groups,
R+~ Autr(V ® R).

A linear representation of an affine group scheme G on a Q-vector space V is a natural
transformation p : G — GI(V'). Such a linear representation p : G — Gl(V') of G is called
faithful if for any commutative Q-algebra R with unit the map p(R) : G(R) — GL(V)(R)
is injective.

183



If V is a finite-dimensional vector space, then G1(V') is an affine group scheme.

Definition A.92. An algebraic affine group scheme G is called unipotent if there is a
faithful linear representation p : G — GI(V') on some finite-dimensional Q-vector space V,
such that the following holds

o V contains a finite flag V =1, 2 V1 2V, 2 --- D V,, = {0}.

e For each commutative Q-algebra R with unit and ¢ = 1, ..., n, the subspace V; ® R
is invariant under the action of G(R), i.e., p(R)(G(R))(V; ® R) CV; ® R.

o For any commutative Q-algebra R with unit, the action of G(R) on (VVVH-l) ®R
is trivial.

An arbitrary affine group scheme is called pro-unipotent if it is an inverse limit of unipotent
algebraic affine group schemes.

Proposition A.93. Let G be an affine group scheme with Lie algebra functor g. For any
commutative Q-algebra R with unit and x € g(R), there is a unique element exp(tz) €
G(R][t]]), such that

(i) exp(ex) = = in G(R[e]),
(ii) exp(tx) exp(t'z) = exp((t + t')x) in G(R[[t,t']]),
(177) exp(tz)exp(ty) = exp(t(xz +vy)) if x,y € G(R) commute.
O

Example A.94. Let V be a finite-dimensional vector space and consider the affine group
scheme GI(V'). The corresponding Lie algebra functor is given by

gl(V) : Q-Alg — Lie-Alg,
R +— Endgr(V ® R),

where the Lie bracket on the sets Endg(V ® R) is simply the commutator. For each
commutative Q-algebra R with unit and f € gl(V)(R), one has

exp(tf) = 3 - i GUV)(R).

>0

One simply checks that the element ;- tl@# satisfies (i)-(iii) in Proposition then

the claim follows from the uniqueness.

Let G be a unipotent algebraic affine group scheme with Lie algebra functor g. Then it
can be shown that for each commutative Q-algebra R with unit and each = € g(R), the
element exp(tx) is contained in G(R[t]). In particular, one can specialize in t = 1 and
obtains maps

g(R) — G(R), x> exp(z).

One verifies that these maps possess inverses and the construction is functorial. Thus, by
passing to inverse limits, the following is obtained.

Theorem A.95. ([DG70, IV, Proposition 4.1]) Let G be a pro-unipotent affine group
scheme with Lie algebra functor g. Then there is a natural isomorphism

exp:g— G.
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The Baker-Campbell-Hausdorff series ([Mill7, p. 260]) gives the explicit relation between
the Lie bracket on g and the group multiplication on G under the isomorphism exp.

Example A.96. In Example we considered the dual quasi-shuffle Hopf algebra
(R{{A)),conc,A,,) (where the unit was denoted by 1) and obtained the corresponding
affine group scheme

G : Q-Alg — Groups,
R — Grp(R((A))).

Let g be the Lie algebra functor to G. By definition for each commutative Q-algebra R
with unit, the set g(R) consists of all ¥ € R((A)), such that 1+ ¥ € G(R[e]). Compute
for 1 + ey € G(R|[e])

101+eA (P) =2, (1+eV)=(14e¥)® (1+7)
=101+1RcV4+c¥VR1+e¥ eV

:1®1+5(1®\IJ+\IJ®1).

Thus g(R) consists of the primitive elements for A, , this means for each commutative
Q-algebra R with unit we have

9(R) = Prim(R{{A))).

We want to derive the Lie bracket [—, —], on g(R) from the group multiplication on G(R),
which is the concatenation product. For each commutative QQ-algebra R with unit and
¢ € G(R), define the map

or(®) : R{{A)) — R{(A)), " s P’
Moreover, for U € g(R) define the morphism sp(V) : R((A)) — R({A)) by
or(1+e¥) =id +esp(P).

Since sg : (9(R),[—, —]g) = (End(R((A))),[—,—]) is the Lie algebra morphism deduced
from the group morphism op : (G(R), conc) — (Aut(R(({.A))), o), one obtains

sr([¥1, Valg) = [sr(¥1), sr(V2)], Uy, Us € g(R). (A.96.1)
For 1+ e¥ € G(R[e]), compute
14+e¥ =0r(1+e¥)(1) =1+esr(¥)(1)
and thus sg(¥)(1) = . Applying this to gives
(U1, U]y = sp(¥1)(¥2) — sp(¥2) (1), Uy, ¥s € g(R). (A.96.2)
For 1 +e¥ € G(RJe]) and each z € R{(A)), compute
r+esp(¥Y)(z) =or(1+e¥)(z) =1 +eV)r=a0+clx
and thus sgp(¥)(x) = Vz. Inserting this into the equation yields

(W, Wy, = U 0y — Uy
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Thus for each commutative Q-algebra R with unit, the Lie bracket on g(R) = Prim(R((A)))
is exactly the commutator with respect to the concatenation (cf. Theorem |A.38).

Moreover, one can show that G is pro-unipotent. So by Theorem one obtains a
natural isomorphism
exp:g— G.

Explicitly, for each commutative Q-algebra R with unit, this isomorphism is given by (cf.

Theorem
exp(R) : Grp(R((A))) — Prim(R({A))),
U — exp(R)(¥) =Y =0,

where U? denotes the i-times concatenation of the element .

We summarize some important results of this section. Let (G, ) be a pro-unipotent affine
group scheme, such that the corresponding Hopf algebra (H, mpg, Ag) (cf Theorem
is graded, commutative and satisfies rank H® = 1. Moreover, let ¢ be the Lie algebra
functor associated to G (Definition [A.88)). Then there is the following diagram

(H,my, M) =2 (U((@)), )
Thm [A]3]
1:1
. (A.96.3)
Prop .17 (G’ ) exp / log
(Thm
(Q(H),3) dual (Prop .59 (9(Q), [ )

The upper duality is obtained from Theorem and Proposition

HY ~UPrim(H")) ~UQ(H)Y) ~U(9(Q)). (A.96.4)
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Appendix B Multiple zeta values and Lie algebras

This section starts with a short basic introduction to the theory of multiple zeta values.
Then we will present two different approaches obtaining Lie algebras related to multiple
zeta values. On the one hand, there is the approach via non-commutative power series
([Rac0Q]), which shows that the algebra of formal multiple zeta values is a free polynomial
algebra. On the other hand, there is the commutative approach via moulds ([Ec11],[Sc15]),
which deals with the usual generating series of multiple zeta values. We will end this section
by comparing the Lie algebras obtained in these two different ways.

B.1 The algebra of multiple zeta values

We introduce the algebra of multiple zeta values and explain shortly the extended double
shuffle relation between multiple zeta values. For details, we refer to [BGF, Chapter 1].

Definition B.1. To integers k1 > 2, ko,..., kg > 1, associate the multiple zeta value

1
C(k17~~-7kd): Z ﬁER

d
ni>->ng>0 1 - Ny

Denote the Q-vector space spanned by all multiple zeta values by
Z =spang{((k1,...,ka) | d >0, k1 > 2, k,... kg > 1},
where () = 1. For a multi index (ki,...,kq) € N define the weight and depth by
wt(ki, ..., kq) =ki+ -+ kg, dep(ki,...,kq) = d.
For simplicity, we will also refer to these numbers as the weight and depth of ((k1,. .., kq).

Numerical experiments have led to the following dimension conjectures for Z.

Conjecture B.2. ([Zag9/, p. 509])
1) The vector space Z is graded with respect to the weight, i.e.,

zZ=PzW,

w>0

where ZW) s spanned by the multiple zeta values of weight w.

2) The dimensions of the homogeneous subspaces ZW) of Z are given by

- | 1 1
Hz(x):Zdlm@(Z(w))xwz 12223 1—22 1—-gB—p—gl —. -
=

It is well-known that Z is not graded with respect to the depth, e.g., there is Euler’s
relation

¢(2,1) =¢(3).
The notion of depth induces an ascending filtration on Z by
FillY (2) = spang{¢(k1, ..., k) | dep(kr,. .., k) < d}.
Considering the associated depth-graded vector space to Z (as defined in |A.48)
1(d)
_ @ ~ _ mFily(2)
grD‘Z—Cﬂ%grD Z_g /Fll(g_l)(Z)

leads to a refinement of Zagier’s dimension conjecture.
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Conjecture B.3. ([BK97, (7)]) The dimensions of the homogeneous subspaces of grp Z
with respect to the weight and depth are given by

. . (d) (W) ,ow, d __ 1
Hyo z(z,y) = dimg (grp” Z2*)z"y" = (1 + Ea(z ’
oy 2(0:9) = 2, dimg (rp Z)a"y" = (O Bal) 1= sy 2 — sy
where 9 3 12
T T v
Es(z) = 1= 22 O3(z) = 1 p2° S(z) = (1—2%)(1—ab)’

Proposition B.4. The space Z equipped with the usual power series multiplication is an
algebra. ]

There are two ways of expressing the product of multiple zeta values, called the stuffle and
the shuffle product (a general algebraic description is given in Proposition .
The stuffle product comes from the combinatorics of multiplying infinite nested sums.
E.g., for k1, ko > 2, there is the simple calculation

<<k1><<kz>=<2 ; )(Z,ﬁ%( >+ 2+ ) >mk1nk

mk1
m>0 n>0 m>n>0 n>m>0 m=n>0

= ((k1, k2) + ((k2, k1) + (k1 + k2).

The shuffle product is obtained from expressing multiple zeta values as iterated integrals
([BGE) Theorem 1.108.]). E.g., in depth 2 the shuffle product reads for k1, ko > 2

(Y () o _
C(k1)¢(k2) = JZQ <<k1_1>+<k2_1>>C(],k1+k2—J)-

Comparing the stuffle and shuffle product gives the double shuffle relations of multiple
zeta values. An immediate consequence of [IKZ06l, Proposition 1], is the following.

Proposition B.5. For all ky,...,kq > 1, there are unique elements (1, (ky, ..., kq) and
CI(ky, ..., kq) in Z[T), such that

(i) Bk, ka) = (b1, ka) = C(k, ... ka) for ky > 1,
(i) (L(1) =¢H() =T,
(iii) all elements (1, (k1,. .., kq) satisfy the shuffle product formula,
(iv) all elements CI (ky,. .., kq) satisfy the stuffle product formula. 0

Define the Z-linear map p: Z[T] — Z[T] by

Tm m Tmfi
— ) = o =0,1,2,... B.5.1
p(m'> Z(:)%(m—z)" m ) Ly 4y ’ ( )

where the coefficients v; € Z are defined by 3 v;u’ = exp ( > (_l)nC(n)u">.
i>0

Theorem B.6. ([IKZ006, Theorem 1]) For all k1,...,kq > 1, one has

p(CT ket k) = Gk ka):
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From the dimension conjectures [B:2] and [B.3] one also obtains conjectural dimensions for
the algebra Z[T] spanned by the regularized elements (L (K, ..., kq) and ¢ (K1, ..., kq).

Proposition B.7. Assume that Conjecture [B.9 and[B.3 hold. Then the Hilbert-Poincare
series of Z[T| and the associated depth-graded space grp Z[T] are given by

Han(@) = 11— = 1= )
M T T 22— 23 1-221— Oy(2) + Ba(z)’
1 1
Herp 2in)(@9) = 7 (L4 B0l T =5 oy s — 5@yt
1

= (1+ Ba(a)y)7— O1(2)y + M(2)y? — 2S(@)y3 — S(z)y* + 2S(@)y®’

where

T T 1
= —F E = —
1—a%’ 1(@) 1—a?%

O1(x)

Definition B.8. For ky,..., kg > 1, the elements
Culky,. o kg) = L0k, ka), Gk, kg) =CT7 0%k, . kg) €2
are called the shuffle regularized and stuffle regularized multiple zeta values.

Combining the shuffle product formula for the shuffle regularized multiple zeta values and
the stuffle product formula for the stufle regularized multiple zeta values together with
Theorem gives the extended double shuffle relations among multiple zeta values.

Conjecture B.9. ([IKZ06, Conjecture 1]) All algebraic relations in the algebra Z of
multiple zeta values are a consequence of the extended double shuffle relations.

In particular, Conjecture would imply that the algebra Z is graded by weight, since
the stuffle and the shuffle product are both homogeneous for the weight.

To get a better understanding of the algebraic structure of Z, it is usual to study the space
of indecomposables. More precisely, we want to consider the space of indecomposables of

Z/C(Q)Z given by

_ 2>
ny = —/<Z§1 n QC(2))' (B.9.1)
Here Z>; denotes the subspace of Z spanned by all multiple zeta values except ¢(0) = 1.
The space nj inherits the conjectural weight-grading and the depth filtration from the
algebra Z. If Z/C(Q) z would be a Hopf algebra, then space of indecomposables n3 would
be equipped with a Lie cobracket (cf. Proposition . It is expected that Goncharov’s
coproduct defined for formal iterated integrals ([Gon05]) induces a Hopf algebra structure

on Z/C(2) z, this leads to the following conjectures (according to Theorem |A.39} |A.43).

Conjecture B.10. (i) The algebra Z is a free weight-graded polynomial algebra, more
precisely there is an algebra isomorphism

Z~QC(2)] @U(nz")".

(ii) The associated depth-graded algebra gr Z/C(Q)Z is a free bi-graded polynomial algebra,

it is isomorphic to the graded dual of the universal enveloping algebra of grpng”.
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Some evidence for this conjecture is given by the shape of the conjectured Hilbert-Poincare

series in [B.2] and [B.3]

Lemma B.11. ([IKZ06, Appendiz]) By applying Mébius inversion one obtains integers
Jws Gw,d = 0, such that

? 1 '
= [ =)
HZ/C(Q)Z(m) 1— 23 — 20 — 27 — . w>1(1 z') o,
? 1
H Y) = _ H | oy —Fud
oY Z/C(Z)Z(x & 1—Os(z)y + S(x)y* — S(x)y* d>1( e O

So according to Corollary [A.36] the Hilbert-Poincare series of Z/C(2) Z resp. grp Z/C(2) z

could correspond to a universal enveloping algebra of some graded resp. bi-graded Lie
algebra. Proposition [A.7] implies

Proposition B.12. (i) If Conjecture and (i) hold, then one has for the homo-
geneous subspaces of weight w > 1

dimg (n;,(w)) = Gu-

(ii) If Conjecture and (ii) hold, then one has for the homogeneous subspaces of
weight w > 1 and depth d > 1 that
. d
dimg (grg)) ng(w)) = Ju.d-
In the following subsections, we will introduce two different explicit Lie algebras, one of
them is defined in terms of non-commutative polynomials the other one uses the language

of moulds (Appendix . For both Lie algebras, it is expected that they are isomorphic
to n3" equipped with the conjectural Lie bracket induced by Goncharov’s coproduct.
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B.2 Racinet’s Lie algebra of non-commutative polynomials

We provide a summary of the approach of G. Racinet to multiple zeta values given in
[Rac00]. We will start with a general description of the stuffle and the shuffle product
(p. [188) in terms of quasi-shuffle products (cf Appendix [A.3). This allows defining the
algebra of formal multiple zeta values Z7/, whose generators satisfy exactly the relations
predicted for multiple zeta values in Conjecture Since quasi-shuffle algebras are al-
ways equipped with a Hopf algebra structure (Theorem , one obtains completed
dual stuffle and shuffle Hopf algebras (Theorem . The grouplike elements in these
completed dual Hopf algebras will give rise to a pro-unipotent affine group scheme DM
represented by the algebra Zf of formal multiple zeta values modulo ¢/(2). By consid-
ering the primitive elements in these dual Hopf algebras, one obtains the corresponding
Lie algebra functor dmg (cf. Example . This Lie algebra of primitive elements is
canonically isomorphic to the graded dual of the Lie coalgebra of indecomposables of Zf
modulo ¢/(2) (cf. Theorem . Note that the group multiplication of the affine group

f
scheme DM equips the algebra 2 /C 12)2! with a coproduct, which gives rise to the Lie

cobracket on the space of indecomposables.

Definition B.13. Let X = {x¢, 21} be an alphabet. Denote by X* the set of all words
with letters in X | let Q(X) be the free algebra generated by X, and denote by 1 the
empty word. For a word in Q(X'), define the weight and depth as

Wt(mgl_lxl . xlgd*la}lmgd“) =ki+ -+ kar1,

dep(zf "tz ... xlgd_lxlx’gd“) =d.
Moreover, the shuffle product W on Q(X) is defined to be the quasi-shuffle product

corresponding to x; o #; = 0 for 4,j € {0,1} (Example [A.53] 1)), this means one has
lww=wwl=wand

ziu W v = (v W zv) + o (2w W v)
for all u,v,w € Q(X), z;,z; € X.
Theorem implies the following.

Proposition B.14. The tuple (Q(X), W, Agec) is a weight-graded commutative Hopf al-
gebra.

The deconcatenation coproduct Agec is defined in (A.58.1]).

For each commutative Q-algebra R with unit, denote by R((X)) the completion of the
space R(X) = Q(X)® R with respect to the weight (Proposition[A.45). So R{(X)) consists
of formal non-commutative power series in the letters zg,x; with coefficients in R. By
Theorem [A.61] a completed dual to the shuffle Hopf algebra is given by the following.

Proposition B.15. The tuple (R((X)), conc, Ay,)) is a complete cocommutative Hopf al-
gebra, where the coproduct Ay, is on the generators defined by

Am(:vl):xz®1+1®xl, 1=0,1.

The pairing R{{(X)) @ Q(X) — R, ¢ @ w — (¢ | w) gives the duality between the graded
Hopf algebra (Q(X), W, Adec) and the complete Hopf algebra (R((X)),conc, Ay).
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Let h' be the subspace of Q(X) spanned by all words ending in 1, so
b' = Q1 + Q(X)x1.
The shuffle product preserves the subspace h', so (h', L) is an algebra.
Proposition B.16. The map
(w: (' w) = (Z,),
mglflxl . mgd_lm = Cul(k, .- kaq)
18 a surjective algebra morphism compatible with notions of weight and depth. ]

Using the same techniques as in Proposition one obtains a unique extension of the
previously defined map h! — Z to Q(X). By abuse of notation, we write (,,(w) for the
image of w € Q(X) under this map.

The duality of Q(X) and R((X)) given in Proposition and Proposition imply

that the non-commutative generating series ¢y, = Y. (u(w)w € Z((X)) satisfies
weX*

Au(dw) = pwGdu. (B.16.1)
Next, we introduce the stuffle algebra and equip it with a Hopf algebra structure.

Definition B.17. Consider the infinite alphabet Y = {y1,y2,...}. Let Y* be the set of
all words with letters in ), Q()) be the free non-commutative algebra generated by ),
and denote by 1 the empty word. For a word in Q()), define the weight and depth by

Wt (Yky - Yiy) = k1 4+ + kg, dep(yg, - - - yr,) = d.
Moreover, let the stuffle product * on Q()’) be the quasi-shuffle product corresponding to
Yi ©Y; = Yiyj for 7,5 > 1, so we have 1 x w = w * 1 = w and
yiu* yjv = yi(u* y;v) + y;(yiw x v) + yiyj(uxv)
for all u,v,w € Q(V), vi,y; € V.
Again one obtains from Theorem [A.59]

Proposition B.18. The tuple (Q(Y), *, Agec) is a weight-graded commutative Hopf alge-
bra.

For any commutative Q-algebra R with unit, denote by R((})) the completion of the
space R(Y) = Q(Y) ® R with respect to the weight (Definition [A.44)). Then by Theorem
a completed dual for the stuffle Hopf algebra is given by the following.

Proposition B.19. The tuple (R((Y)), conc, A,) is a complete cocommutative Hopf alge-
bra, where the coproduct A, is defined on the generators by

i—1
A(y)) =10y + 3 @1+ > Yy @yimy, =1,2,....
j=1

The pairing R{({(Y)) x Q) = R, ¢ | w— (¢ | w) gives the duality of (Q(Y), *, Adec) and
(R((¥)), conc, A,).
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Proposition B.20. The map

C* : (Q<y>v*) - (Z")v
Ykq -+ Yky r—)C*(k‘h...,kd)

s a surjective algebra morphism compatible with the notions of weight and depth. ]

We will write (,(w) for the image of w € Q(Y) under the above map. Proposition [B.20]
and the duality given in Proposition imply that the non-commutative generating
series o5 = Y. C(w)w € Z((Y)) satisfies

weyY*

A(Ps) = 9B (B.20.1)

A non-commutative analog of the comparison of the shuffle and stuffle regularized multiple
zeta values (Theorem is given by the following.

Theorem B.21. ([Rac00, III, Corollary 4.20]) The following holds

6. = exp (— > (‘yan)y?) Iy ().

n>2

where 11y is the Z-linear extension of the canonical projection Q(X) — Q()) sending each
word ending in xg to 0 and x}fl_lxl e xlgrlxl t0 Yy - - Yiy for all kv, ... kg > 1. O

We reformulated the extended double shuffle relations for multiple zeta values in terms

of quasi-shuffle algebras (Proposition and Theorem , this leads to the
following definition.

Definition B.22. Define the algebra Zf of formal multiple zeta values as

2= @A)

where Relgpg is the ideal generated by the extended double shuffle relations.

In particular, Z/ is a (weight-)graded algebra generated by the formal symbols ¢f(w),
w € X*, for which we require that they satisfy no other relations than the extended
double shuffle relations. Let h” be the subspace of Q(X) spanned by all words, which start
in zg and end in x1, so

6 = Q1 + 2oQ(X) 1.

Using the same techniques as in Proposition one shows that the elements ¢/ (w) for
words w € h° generate the space Z7. Since it is expected that all relations in Z are a
consequence of the extended double shuffle relations (Conjecture , we should have

Conjecture B.23. The canonical map
zlh 5z,
d(w) = ((w),  (wep?)
is an isomorphism of weight-graded algebras.

Definition B.24. For any commutative Q-algebra R with unit, let DM(R) be the set of
all non-commutative power series ¢ € R((X)) satisfying
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(i) (@lzo) = (@lz1) = 0,
(i) Au(9) = %9,

where

6. = exp (—Z(‘;) (TLy(6) )y )Hy<¢>eR<<y>>

n>2
and Iy is the R-linear extension of the projection Q(X’) — Q(Y) (cf Theorem [B.21]).
For each A\ € R, denote by DMy (R) the set of all ¢ € DM(R), which additionally satisfy

(iv)  (dlzoz1) = A

By (B.16.1), (B.20.1)), and Theorem the non-commutative generating series ¢, of
the shuffle regularized multiple zeta values is an element in DM 2 5(Z).

Theorem B.25. ([Rac02, Theorem I]) For each commutative Q-algebra R and \ € R,
the set DMy (R) is non-empty. O

From [Dr91] and [Full] one deduces that there also exist elements ¢ in DM (R) addition-
ally satisfying

(¢ | xExz1) =0 for k> 1 even. (B.25.1)

The sets DM, (R) give rise to an affine scheme represented by a quotient algebra of z!
(Appendix [A.6)).

Proposition B.26. The functor DMy : Q-Alg — Sets is an affine scheme represented by
the algebra /(Cf( 2) — )Zf In particular, for each commutative Q-algebra R with unit,

there is a bijection

Homg_Alg (Zf/(cf( 2) 3zt R) — DM,(R),

o= > el (w)w
weEX* ]
To figure out the group structure for the affine scheme DMy, one needs to consider first

the corresponding linearized space.

Definition B.27. For any commutative Q-algebra R with unit, let dm(R) be the Q-vector
space of all non-commutative polynomials 1) € R(X) satisfying

Q) @lz) = W|z) = 0,
(ii) Au(v) = 1yv+yve1,
(iii) Ay () = 10U+ v ®1,
where
e = Ty (¥) + Z () | yn)yi € R(Y)
n>2

and IIy is the R-linear extension of the canonical projection Q(X’) — Q(Y).
By dmg(R) denote the subspace of all ) € dm(R) additionally satisfying

(iv) (¥ | xox1) = 0.
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Denote dmg = 0mg(Q). Then one has dmy(R) = dmp ® R.

Example B.28. There are the following elements in 0mg up to weight 5
5(3) = [$07 [mOa l‘l” + Han xl]vwl]v

£(5) = [wo, [0, [w0, [z0, 21]]]] + 2[[w0, [0, [T0, 21]]], 21] + %ona [z0, 21]], [w0, 71]]

+ 2[a, [, 2o, [vo, wa]ll] = 5 llwo, 2], [[wo, 21], 21]] + [[[[wo, 21], 1], 21], 21]-

Proposition B.29. ([Rac00, IV, Proposition 2.2]) For each k > 2 even and ¢ € dmy,
one has

(W | 2§ 1) = 0. ]

Consider the twisted Magnus Lie algebra (mt,{—, —}) given in Theorem 3.7, where {—, —}
is the Ihara bracket defined by

{wla ¢2} = dT/Jl (1/}2) - d¢2(¢1) + [wla¢2]a ¢1’¢2 S DmO(R)a
and dy is the derivation given by dy(1) = 0, dy(x0) = 0 and dy(z1) = [z1,7].

Theorem B.30. ([Rac00, IV, Proposition 2.28., Corollary 3.15.])
1) The pair (dmg(R),{—, —}) is a weight-graded Lie subalgebra of the twisted Magnus Lie
algebra.

2) Let R be a commutative Q-algebra with unit. For all ¢1,¢p2 € DMy(R), there exists a
unique element v in the completed Lie algebra dmg(R) such that

exp(sy)(¢1) = ¢2,
where sy(f) = dy(f) + fo for all f € R{(X)). O

In particular, one obtains natural bijections

omo(R) — DMy (R), (B.30.1)
W exp(sy)(1).
According to Theorem this leads to the following.

Corollary B.31. ([Rac00]) The functor DMy is a pro-unipotent affine group scheme with
Lie algebra functor
omg : Q-Alg — Lie-Alg, R — dmy(R). ]

Actually, DMy is a subscheme of the twisted Magnus affine group scheme MT (Theorem
. So for any commutative Q-algebra R with unit, the group multiplication on DM(R)
is given by (Definition (3.3])

P1 ® P2 = P1Rg, (P2), é1, p2 € DMg(R), (B.31.1)

where kg is the algebra automorphism on (R((X)),-) given by k(1) = 1, rg(x0) = o
and kg(z1) = ¢ a1 0.

f
The affine scheme DMy is represented by the algebra = /C 12)2! (Proposition [B.26)) and

the affine scheme dmy is represented by S(dmy) ~ U(dmy) (Proposition [A.90] [A.35). So
applying Yoneda’s Lemma (Theorem [A.81]) to the natural bijections in (B.30.1]) gives the
following theorem of Ecalle.
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Corollary B.32. ([Rac0d], Chapter IV, Corollary 3.14) There is an algebra isomorphism
2/ ~ Q¢! (2)] ®g U(omo)",
So, Z7 is a free polynomial algebra. O

In particular, the conjectured algebra isomorphism 2/ ~ Z (Conjecture B.23) would imply
that Z is a free polynomial algebra (Conjecture [B.10)).

We want to investigate the dimensions of the homogeneous subspaces of dmy. Let g™ =
Lie(ss, 85, .. .) be the free Lie algebra generated by formal symbols sk 11, & > 1. From the
theory of motivic multiple zeta values ([Brol2|,[De89],[Dr91],[Fulll,[Gon05]) it is known
that there is a non-canonical injective map

g™ < dmy, (B.32.1)

S2k+1 F7 O2k+1,
such that o911 € dmg is a homogeneous element of weight 2k + 1. The images o911 are
not unique and it is an open question how to explicitly construct them. It is expected that

the embedding g™ < dmg is an isomorphism, this conjecture is dedicated to P. Deligne
([De89]) and Y. Thara ([Ih89, p. 300]).

Conjecture B.33. The space dmg is a free Lie algebra with exactly one generator in each
odd weight w > 3.

Under the assumption of Conjecture[B.33] one obtains the following Hilbert-Poincare series
for the universal enveloping algebra of dmgy (Proposition [A.8))

1
ol —aB — b T —

Hyomg) () = 3 dimg (U(omg) ™)z

w>0

(B.33.1)

Since U(dmg)Y =~ ZJC/<(2)Zf (Corollary [B.32), (B.33.1) would imply that the formal

multiple zeta values satisfy Zagier’s dimension conjecture [B.2l Since it is expected that
there is an algebra isomorphism Z/ ~ Z (Conjecture |B.23), this gives some evidence for

Zagier’s dimension conjecture for multiple zeta values.

The group multiplication ® on DM given in (B.31.1]) induces a Hopf algebra structure on

!
Z /CQ (2)2 f, since any group multiplication on an affine scheme equips the representing

algebra with a Hopf algebra structure (Theorem Proposition [B.26)). More precisely,
there is a coproduct A defined on the non-commutative algebra Q(X’) satisfying

(feglw) =(f@glAw)eR,  fgeR{(X)), weQX).

Here (- | -) : R{{X)) x Q(X) — R is the canonical pairing given in Proposition In
IBGF., Proposition 3.296] it is shown that this coproduct A is exactly Goncharov’s coprod-
uct ([Gon0F, eq (24)]), hence we denote A = A%°", The proof is purely algebraic and does

f
not use any motivic results. The coproduct AG°" induces a coproduct on Z /CQ(Z) zf via

the canonical projection

Q) = 29y 200w ) mod 2),

for more details see also [Scl3, p.54].
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f
Theorem B.34. The algebra Z/Cf(Q)Zf equipped with Goncharov’s coproduct AG°" is
a Hopf algebra. ]

In particular, by Proposition Goncharov’s coproduct A" induces a Lie cobracket
!
0 on the space of indecomposables of = /C f2)z! given by

f
=" (2 )
Theorem [A-89] then implies the following.
Theorem B.35. There is a canonical isomorphism of Lie algebras
omg ~ nf3".

Conjecture would imply that there is an isomorphism nz ~ nf3, where nj is the
space of indecomposables of multiple zeta values (see (B.9.1))). In particular under the
assumption of Conjecture one obtains from Corollary the decomposition

2~ Q¢(2)] ®U(ng")"

as expected in Conjecture (1).
Summarizing the previous results leads to the following diagram (cf (A.96.3))

z/ on dual (K96.4)
( /Cf(Q)ZfaaAG ) ~ (U(Omo),®,A)
Propm
1:1
Prop [A42] (DM(]a ®)
exp / log
(Thm
dual (Thm [B:35) .
(nhvé) ~ (am07{_7_})

(B.35.1)

At the end of this subsection, we want to study the associated depth-graded Lie algebra
to omg.

Definition B.36. Define [s to be the Q-vector space of all non-commutative polynomials
P € Q(X) satisfying

1) @lwo) = Wlz1) = 0,

(i) Au(¥) = 1y+ye1,

(i)  Auy(ly(y)) = 1y@)+IHy(y) @1,

(iv) (wxg_lxl) = 0 n > 2 even,

where Ay, y denotes the shuffle coproduct on Q()) (Example [A.62), i.e.,
Apyy) =10y +yi®l, i=1,2,...,

and Iy : Q(X) — Q(Y) is the canonical projection given in Theorem [B.21]
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The same arguments as in the proof of Theorem 1) show

Theorem B.37. The pair (Is,{—,—}) is a bi-graded Lie algebra. O
Remark B.38. In [Ma22] it is shown that the Lie algebra (Is,{—, —}) is the bi-graded
dual of Goncharov’s dihedral Lie coalgebra.

Example B.39. For each odd k& > 3, there are the following elements

grp &(k) = ad(zo)f1(xy) € Ls.

For example, this implies

{erp&(3),grpé&(5)} = — 2[[wo, [xo, [0, [0, [0, z1]]]]], [z, z1]]
— 5[[zo, [wo, [0, [0, z1]]]], [0, [0, 21]]]
€ ls.

Since A,y is the associated depth-graded map to the coproduct A, and by Proposition
[B:29] one obtains a canonical embedding

grpomg — [s.

It is expected that this embedding is an isomorphism. So according to Conjecture (ii)
and Proposition (ii), the Hilbert-Poincare series of the universal enveloping algebra
of Is should be given by

1
Hyo)(z,y) = 3. dimg(U(1s) D)zt £ '
u(s) (€, y) w%;() QW) )2y = I oy + @ — Sy

The dimension formula indicates that the elements o941, k > 1, defined in [B.32.1] satisfy
some relations in [s. Indeed for any normalized choice of the embedding g™ < dmg, one
obtains

O2k+1 Ead(l’o)Qk(l'l) € s,

so for example in weight 12 there is the relation
{0'3,0'9} —3{05,0’7} =0. (B391)

Remark B.40. It is expected that [s is generated by two Lie algebras € and €, where &
is generated by the elements ad(zg)?*(z1) and € is generated by some elements in depth
4. The generators of the Lie algebra € satisfy some relations in depth 2 related to cusp
forms (like (B.39.1))) and € should be a free Lie algebra. Moreover, there should be no
relations between the Lie algebras € and €. This determines the Lie algebra [s completely.
More details are elaborated in the commutative approach (Subsection .
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B.3 Ecalle’s commutative approach to Lie algebras via moulds

We will introduce the usual generating series of shuffle and stuffle regularized multiple
zeta values and view them as moulds. An introduction to moulds is given in Appendix
[Cl we will use the notations and definitions from there. We will see that the images of
the generating series of the shuffle and stuffle regularized multiple zeta values in a formal
weight-graded version 7 of the space of indecomposables n3 (see ) are contained
in the Lie algebra ARI;(X’T. It is expected that the Lie subalgebra ARI&T{JQ consisting
of moulds, whose entries are rational polynomials, is isomorphic to nz¥. Moreover, we
will consider also a weight- and depth-graded version of nj, which leads to a bi-graded

Lie algebra ARIZIC)/];?. The Lie algebra ARIEF};? should be seen as the associated depth-

graded Lie algebra to ARIgﬁ}i’l@. We will end this section by explaining the structure of
the Lie algebra ARIgf/lé(l@ in detail and relating this to the Broadhurst-Kreimer dimension

conjecture

Definition B.41. For any depth d > 1, define the generating series of the shuffle regu-
larized and stuflle regularized multiple zeta values

FE(Xy,...Xa)= > Culkn,... k) XP ' Xh

k1, kg>1
Fy(X1,.... Xg) = > Gkp,.. k)Xt X5
k1, kg>1

Moreover, let F§" = F;; = 1. Then both sequences F' = (F) s and = (F7) >0 1€
moulds in GARIPO"+Z

For any mould F' we denote

FPX (X1, X)) =F(X1+ -+ Xg, Xo4+ -+ Xg,..., Xg).
Proposition B.42. The mould (FL“)#X is symmetral and the mould F* is symmetril.
Proof. The mould F* is symmetril, since by Proposition the coefficient map

(Q<y>7 *) — (Za ')7 Yky - - - Ykyq — C*(kla B kd)
is an algebra morphism (cf Example [A.72]). Moreover,
(L) = (Z,4), ab ey ake T ey s (R, k)

is an algebra morphism (Proposition [B.16)), so we deduce from (A.69.1]) that for all 0 <
n<d

(F™)* (X0, .. X)) (FY) X (X g, ., Xg)

= G oty (py V) (X1, -, X)) W py(W)(Xst, - ,Xd))#x.

Since by definition Cuy © 1y (py(W)(X1, ..., Xq)) = FY(X1,..., Xy) for all d > 1, the

mould (F LI")#X is symmetral (cf Example . O
Definition B.43. Let Z = @ Z®), where Z®) denotes the homogeneous subspace of
w>1

Z of weight w. Define the Q-algebra

7=+ o)
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By construction, the algebra T is graded by weight and all products of multiple zeta values
become trivial in 7. In particular, the dimension of 7(*) equals the number of algebra
generators of Z/C(Q) z in weight w. If the algebra Z would be graded (Conjecture |B.2)),

then 7 is equal to the space of indecomposables nj (see (B.9.1)).

Denote by (. (k1, ..., kg) the images of the shuffle regularized multiple zeta values in T, by
Ce(k1, ..., kq) the images of the stuffle regularized multiple zeta values in 7, and consider
their generating series in some depth d > 1,

FP(X1,...,Xa) = Y Culkr,.... k) XP o X5,

ki,....kg>1
Fi(Xy,...,Xa) = > Z;(kl,...,kd))(flfl,..)(gd—l.
k1okg>1

Set F! = Fj = 0, then both sequences F' = (FY)
contained in ARIPO™7

and F* = (Fij) are moulds

d>0 d>0

Corollary B.44. The mould (W)#X is alternal and the mould F* is alternil.

Proof. This is an immediate consequence of Proposition since alternality (resp.
alternility) is just symmetrality (resp. symmetrility) modulo products (see Appendix

). 0

There is an explicit relation between the shuffle and the stuffle regularized multiple zeta
values given in Theorem which allows treating (F) #X and F* simultaneously.

Theorem B.45. The mould ((—1)d*1(F7;U)#X>d>O is contained in

- A is alternal,
pow,T pow, T | * swap(A) is alternil up to addition with some
ARy = A € ARI Q-valued mould,
- A1(X1) is even.

Proof. By Corollary the mould (FY)#X is alternal, and therefore also the mould

((—1)d_1(F7d“-')#X >d>0 is alternal. By definition of the map p (given in (B.5.1)) and Theo-

rem the images of ¢ (k1, ..., kq) and (. (kq, ..., kq) in T become equal up to addition
with some constant,

FCIZU(Xl,... ,Xd) = Fj(Xl,. . .,Xd) + Cy
for some Cy € Q. Moreover, any alternal mould A satisfies
swap(A)(X1,..., Xg) = ()4 (X1, Xy, d>1.

So Corollary implies that there is a constant mould (Cg)4>0, such that

swap (=) EDHY) 4 (Caazo = FP)azo + (Codazo = (Fazo

is an alternil mould. Finally, Euler’s formula for the even single zeta values
C(2k) € Qnf, k>1,

implies that the odd component of (Fi¥) #X — T vanishes. O
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Lemma B.46. Decompose the mould FU of the shuffle reqularized multiple zeta values as
W = Z Q- Eaa
[e%

where o runs through a vector space basis of T. Then every mould ((_1)d—1(5a)#x>d>0

is contained in

alxil ™ alxil

ARIPOLQ — {A € ARIPOWC

A X, .., Xg) €Q[Xy, ..., Xy] foralld > 1,
- Ag(Xq, ..., Xq) # 0 only for finitely many d > 1"

Proof. Since the mould ((—1)‘1_1(@)#’( >d>0 is contained in ARI?®"7 (Theorem [B.45

alxil

and we decompose over a Q-vector space basis of 7, the moulds ((—l)dfl(ﬁa)#x )d>0

pow.Q Gince T is graded by weight and the homogeneous com-

must be contained in ARL)

ponents are finite-dimensional, the components of each mould ((—1)d*1(§°‘)#x)d>0 must
be polynomial. Moreover, the depth is bounded by the weight, therefore only finitely many
components can be non-zero. ]

IpOLQ

aleil > Which should correspond to

Example B.47. There are the following moulds in AR
the elements ((3),((5) € T

€B3)= (X7, - X1+ X2, 0, ...)
1 1 3
§5) = (X1, —2X7 +2X3 - JXPXo + JXiX3, 2X7 - 4XF +2XF - DX1Xa 4 3X1Xs
3
- §X2X3, —X1+3Xo—-3X3+ Xy, 0, ...)

alxil

The space ARIP®:? is graded by weight, its homogeneous components (AR

alxil

defined in (C.24.1)).

Corollary B.48. For each w > 1, the following holds

dimg 7™ < dimg (ARIPY) ™),

alxil

Proof. Let « is a basis element of 7(*), then by Lemma [B.46 ((—1)d_1(§0‘)#x)d>0 is

contained in (ARI;’S{]Q )(w). Therefore, the dimension of the space spanned by the moulds

((_1)d—1(§a)#x>d>0’ where « is homogeneous of weight w, is bounded by the dimension
of (ARI&T{JQ)(M. Evidently the assignment o ((—1)d_1(§0‘)#x)d>0 is injective, thus

IPSLQ )(w) ) 0

alxil

also the dimension of 7(*) has an upper bound given by dimg (AR

Theorem B.49. ([Sc15, Theorem 4.6.1.]) For each commutative Q-algebra R with unit,
the space ARIgffi’lR equipped with the ari bracket (Definition|C.29) is a graded Lie algebra.
o O

Recall that it is expected that 7 = nj. The decomposition in Lemma should be seen
just as a dualizing process with respect to the weight-grading, thus there should be a Lie
algebra isomorphism nz" ~ ARISS{IQ. So Conjecture [B.10| (i) and Proposition [B.12[ (i) can
be reformulated in terms of bimoulds as follows.
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Conjecture B.50. (i) There is an algebra isomorphism

Z~Q[¢(2)] @U(ARIP2)Y,

alxil

(ii) For all w > 1, the following holds

dimg (ARIP%2)™) = dimg 7() = g,,

al*il
where the numbers g, are defined in Lemma [B.11]
Next, we want to consider the associated depth-graded space to 7 (Definition [B.43]).
Definition B.51. Define the Q-algebra

_ FiI (7))

w w d w
M= @ M@0 MO = g T Fly V()

w,d>1

The algebra M is bi-graded with respect to weight and depth and the product is trivial. In
particular, the dimension of the homogenecous space M@ equals the number of algebra
generators of grp Z/C(Q) z of weight w and depth d. As before, Conjecture would

imply that M = grpn3.

Denote by grp Cu(ki,. .., kq) the images of the shuffle-regularized multiple zeta values in
M and by grp (i (k1,. .., kg) the images of the stuffle-regularized multiple zeta values in
M. For some depth d > 1 consider their generating series,

g (X1, Xa) = Y grpCulhn,.. k) XEt L X!,

k1,...,kqg>1
grp B (X1, o, Xa) = Y. grp Gk, k) XP o XS
kiyekg>1
Set grp F(P = grp g = 0, then grp FU = (grDFT%-')CDO and grp, F* = (grDFT’{)DO are

moulds in ARIPOVM

Proposition B.52. Both (grp F'™) #X and grp F* are alternal moulds. In addition, one
has
grp W = gr'p ﬁ

Proof. The first part is a direct consequence of Corollary [B.44and the observation that al-
ternility modulo lower depth is just alternality. The second part is obtained from Theorem
and the definition of p (given in (B.5.1)). O
Theorem B.53. The mould (grp W)#X is contained in

- A is alternal,
ARISIO/‘ZiM = { A€ ARIPOM | . swap(A) is alternal,
T - A1(X1) is even.

Proof. As explained in the proof of Theorem [B.45| one has
swap ((grp F7) ™) (X1, Xa) = (—1)" grp F(X0, 0, X)),

Moreover, observe that for any alternal mould A also the mould ((—1)471A4) _ is alternal.

d>0
So Proposition [B.52implies that (gr, F'™) #X and swap ((grD F) #X> are both alternal.
Finally, Euler’s formula ¢(2k) € Qr*, k > 1, implies that (grp, Film)#x is even. O
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Lemma B.54. Decompose grp FY over a Q-vector space basis of M,

gTDW: Zﬁ'ngfﬁ-
B
)#X

Then any bimould (grp &8 s contained in

ol,Q ow,Q
ARI;/&l = {A € ARIi/aJ

: Ad(Xl, e ,Xd) S Q[Xl, . ,Xd] f07’ alld > 1,
- Ag(X1, ..., Xq) # 0 only for finitely many d > 1|~

Proof. Similar to Lemma|[B:40] this follows immediately from the weight-grading of M. [

For example, the moulds
grpE(k)™ = (XF1 0, ..)), k> 3 odd,
are contained in ARISIO/ISIQ, and should correspond to the odd zeta values grp, ((k).

The space ARIEIO/Z? is bi-graded by weight and depth, the homogeneous components

(ARISIO/lé? )(w’d) are given in (C.24.2)).
Corollary B.55. ([IKZ06, Corollary 7]) For each w,d > 1, the following holds

dimg M9 < dimg (ARID )™,

Proof. This follows from the same arguments as in Corollary [B.48| O

Theorem B.56. ([Sc15/, Theorem 2.5.6.) For each commutative Q-algebra R with unit,

the space ARIglo/lf is a bi-graded Lie algebra with the ari bracket (Definition|C.23). O

It is expected that ARIPOHE i exactly the associated depth-graded Lie algebra to ARIPOLE

al/al alxil -
So as a reformulation of Conjecture (ii) and Proposition (ii), the following should
hold.

Conjecture B.57. (i) There is an algebra isomorphism
ol,
erp Z/C(Q)Z ~ U(ARI)P)Y.
(i) ([IKZ06, p. 329]) For all w,d > 1, the following holds

dimg (ARESE) Y = dimg MWD = g,, 4,

where the numbers g, 4 are obtained in Lemma[B.11]

Computational evidence for the second part of this conjecture are given by Carr and Ecalle
in [Ec11) 7.10.].

At the end of this subsection, we will explain the structure of the Lie algebra ARIEI)};(I@ and
relate this to the Broadhurst-Kreimer dimension conjecture [B:3] For simplicity we work

over the field QQ, but the same holds for any commutative Q-algebra R with unit.
Proposition B.58. ([Ecill, eq (2.79)]) If w,d > 1 and w # d mod 2, then one has

e} w,d
(ARIY2) ™ = {0},
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Definition B.59. Let € be the Lie subalgebra of ARI;%? spanned by the ekma moulds

grpé(k) = (XF10,..), k>3odd

pol,Q
al/al

(ARIF)Y = e,

Since the depth 1 components of moulds in ARI must be even, we must have

To describe the relations between the ekma moulds we introduce the space of even period
polynomials (see [KZ84] for details). For k > 2 even, set

- f homogeneous of degree k — 2,

: f(x7y)+f(y>$) =0,

’ f(:l:CC, :l:y) = f(ﬂf,y),

' f(x,y)+f(x—y,x)+f(—y,x—y) =0.

Wi =1 f €Qlz,y

There is a decomposition
WY = Sk, © Qpg—2,

where pr_o € WV denotes the polynomial py_o = k=2 — yk*Z. By the Eichler-Shimura
theorem, there is an isomorphism

S2(SLa(Z)) — S,
here S;?(SLQ(Z)) denotes the space of cusp forms with rational coefficients for SLo(Z).
Proposition B.60. ([Bro21, 7.2.]) There is a short exact sequence

0 D Sk— (AR A (AREED)W 25 (AR = 0. .
k>2 even T T -

(2)
In particular, one has (ARIS&E?) = ¢@ and each relation in depth 2 between the

ekma moulds grp (k), k£ > 3 odd, can be uniquely assigned to a cusp form. One can also
show that (ARIS f/l;? )(3) = ¢ and all relations in depth 3 are induced from the cusp
form relations in depth 2 ([Bro21}, 7.3]).

)(4). We will explain now

In depth 4, one obtains a proper inclusion &*) C (ARIY 10/13,(1@
how to obtain the additional generators in ARISI)}; of depth 4, this construction is due to
Ecalle ([Eclll, Section 7.3, 7.7]).

Consider the relation in €@ corresponding to the smallest cusp form in weight 12,

ari (grp €(3),81p §(9)) — ari (grp €(5),8rp &(T)) = 0.

IpOva

aleil > one obtains

Lifting this relation to the non depth-graded space AR

ari (£(3),€(9)) — 3ai (£(5),£(7)) = éa
where &€a € ARI&T{JQ is a mould of depth > 4. Since it is expected that ARISIO/ZI is the

associated depth-graded Lie algebra to ARIPOLQ any relation between the ekma moulds

alxil
in depth 2 should have a lift to ARIS&I{IQ. By construction, this lift vanishes in depth 2 and

due to Proposition also the depth 3 part vanishes. So any relation between the ekma
moulds in depth 2 should yield an element in ARIP:Q and after taking the depth-graded

alxil

(4)
part a (possibly trivial) in (ARI;’ f/la(?) .
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(4)
Definition B.61. Let € be the Lie algebra generated by the elements in (ARIZIO/IE;(?)

induced by the relations in &) in the above explained way.
In [Bro21), 8.2] a different construction for the generators of € is given.

Definition B.62. Any even period polynomial f € @y>2 eyen St has a decomposition

f(z,y) = zyfi(z,y) = zy(z — y) fo(z,y)
for some homogeneous f1, fo € Q[z,y]. Define the polynomial
ef(20,21,22,23,24) = 3 f1(za — 23,20 — 21) + (20 — 21) fo(22 — 23,24 — 23),
Z
51,

where the sum is taken over all cyclic permutations of zg, z1, 22, 23, z4. Then the mould
carmay € ARI is given by

carmaf(Xl,Xg,Xg,X4) = ef(O,Xl,X1 + X0, X1+ Xo+ X3, X4+ Xo+ X3+ X4)
and 0 elsewhere.

Proposition B.63. ([Bro2l, Theorem 8.2]) For each f € @y>2 even Sk, the mould carmay

1s contained in ARI;O/lf. O

The following structure is expected for the two Lie subalgebras  and €.
Conjecture B.64. (|Bro21l, Conjecture 3], [Ecll, 8.5.])

(i) There are no relations between the two Lie subalgebras € and € and both together
generate the Lie algebra ARI&O&Q.
(ii) The Lie algebra € is a free Lie algebra generated by the moulds carmay (Definition
B0
(iii) The only relations in the Lie algebra € are the cusp form relations in depth 2 (Propo-

sition .
Assuming Conjecture one obtains the following Hilbert-Poincare series (cf (A.11.1]))

Hug@y) = 8 dmo@@“ay! = o
Hye)(x,y) = w%;o dimg (U(€) WD)y = TS
HM(ARIEQI)(%:U) = w,dz>0 dimg (U(ARI;?ﬁ)(w’d))ffwyd = oSO SE
where
3 212
Os3(z) = =22 S(z) = k;2 dim Sy, (SL2(Z))z® = A= =29

pol,Q
Lai/al

Poincare series of grp, Z/C(2) z in the Broadhurst-Kreimer conjecture[B.3l This gives some

In particular, the Hilbert-Poincare series of U/ (AR ) equals the conjectured Hilbert-

evidence for the expected isomorphy gr, Z/C(Q) z~U (ARIE?;;?)V (Conjecture [B.57| (1)).
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B.4 Comparison of the different approaches

In the previous two subsections, we have seen two different Lie algebras conjecturally
isomorphic to the dual of the space of indecomposables nj (see (B.9.1])), one is defined in
the context of non-commutative polynomials and the other one is defined via moulds
. We will give an explicit isomorphism between these two Lie algebras, a proof is
given in [Rac00, Appendix A] or [Scl5l Chapter 3]. The relation of these two kinds of
generating series is generally explained in Subsection [A.4]

Definition B.65. For each k > 1, define
Cr = ad(ﬁo)kil(xl)

and let C be the alphabet consisting of these letters. For a word in Q(C), define the weight
and depth by

wt(Cly .. Cry) = k14 -+ kg, dep(Cy, ...Ck,) = d.

Proposition B.66. (Lazard elimination, [Re93, Theorem 0.6]) The space Lieg(C) is a
free Lie algebra and
LieQ<X> = on D Lie@ <C> n

In particular, both Lie algebras dmg (Definition [B.27) and [s (Definition [B.36|) are con-
tained in Lieg(C).
Definition B.67. Consider the Q-linear map

pPc - Q<C> — Q[X17X27' . ']7
Ckl...de HXfl_l...ng_l.

To every element f € Q(C) associate a mould ma(f) = (ma(f)a) -, € ARIPOLQ py

ma(f)a(X1,..., Xa) = (=1)* " pe(f D),
where (@) denotes the homogeneous component of f of depth d.

Theorem B.68. ([Scih, Theorem 3.4.3., Theorem 3.4.4.,]) There are two Lie algebra
isomorphisms

(omg, {—, —}) = (ARIPEC ari), £ — ma(f)

alxil 2

(Is,{=,—}) = (ARIEP:?, ari),  f — ma(f)

In particular, one obtains the following commutative diagram of Lie algebras

~ pol,Q
omg “ma ARIQ %l
grDJ{ lgrD

pol,Q

ls —m— AR
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Example B.69. The elements £(3),£(5) introduced in Example can be expressed in
terms of the alphabet C' as

£(3) = C3+ [0, C1],
£(5) = Cs +2[C4, 1] + %[03, i)+ 2[Ch, [Ch, Ci]] — 3[02, (Cy, Cu]] + [[[Ca, C1], Cal, C1l.

Thus, we compute
pc(§(3)) = (X2, —X; + X5, 0, ...),
pe(€(5)) = (X}, —2X7 +2X3 — éXIQXg + %XlXQQ, 2X2 — 4X2 + 2X2
- gxlxg +3X, X5 — 2X2X3, ~ X1 +3Xs—3X3+ X4, 0, ...)

These two moulds coincide with the ones given in Example [B:47]
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B.5 Block grading

The generators o911 of the depth-graded Lie algebra [s satisfy relations related to modular
forms (see for example (B.39.1)). One way to rid of these algebraic dependencies of the
generators ogx41 is to consider the block degree instead of the depth. Following [Ch21],
define for a word w = x;; ... x;, in Q(X) its block degree as

degp(w) = #{m | iy, = i1}

This defines an increasing filtration on the space Q(X)
Fil]g?) Q(X) = spang{w € X" | degy,(r1wzg) < n}.

Proposition B.70. The Lie algebra (dmg,{—,—}) is filtered for the block degree. In
particular,

Fil™
gryomo = €D 78 o

—1
) omg
n>0

1s a block-graded Lie algebra equipped with the block-graded Ihara bracket. ]
There is an explicit formula for the block-graded Thara bracket. For 1) € Q(X'), define the
map dy} : Q(X) — Q(X) by
0, n=>0
) (zg'at) = § 2t m=0
xyt ety + xgtpral else

and extend this to

dgl(xgnla:’fl coeagralrag)
T
= agtalt g T A (g ey
=1
forall r > 1, mo,...,mp,n1,...0. > 1, my,mpy1 > 0. Moreover, let

be the canonical projection, which sends any word starting with x1 to 0 and is the identity
elsewhere. Then the block-graded Thara bracket is given by

{1, 2} = d), (1) — ) (2) + 1lTg, (o) — alla, (11).

Theorem B.71. ([Ke20, Proposition 2.2.5, Theorem 2.2.7, Proposition 2.5.5])
1) The image of g™ in (gry dmg, {—, —}P) is a free Lie algebra with evactly one generator
Dok+1 “n each odd weight > 3.

2) The generators papi1 are explicitly determined and for each normalized choice of the
embedding g™ — dmg, one has

O2k+1 = P2k+1 € &rp OMp. O

Corollary B.72. Assume that Omg is a free Lie algebra with one generator in each odd
weight > 3 (Conjecture . Then the pair (gry,; 0mg, {—, —}P!) is also a free Lie algebra
generated by one element in each odd weight w > 3. In particular, we would have

gr'pl ompy >~ 0my.
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Appendix C Moulds and bimoulds

This chapter provides the necessary background on moulds and bimoulds. These objects
were introduced by J. Ecalle ([Ec11], [Ec02]) and further developed by L. Schneps ([Sc15]).
To compare the following to these articles, one needs to identify X; = v; and Y; = u;.

Definition C.1. Let A be an alphabet, denote by A* the set of all words with letters in
A, and let R be a commutative Q-algebra with unit. Following [Cr09], a mould is a map
M: A" — R,
w — M(w).

There is a canonical bijection between the sets of moulds A* — R and non-commutative
power series over A with coefficients in R given by the association

(M: A" = R)— Y Mww. (C.1.1)
weA*

Example C.2. (i) The map of the balanced multiple q-zeta values given in Theorem [2.5§]
defines a mould

Mcq :Bf — Zq,
if s17 >0
bsy ... bs, > Galst,orm) s (81,...,8 > 0).
0 else

(ii) Similarly, the map of the shuffle regularized multiple zeta values from Proposition
gives a mould

MCLU X = Z,
_ ki,...,k k =1
xlgl_lm .. ..’L“gdilimwlgﬁl 1 ~ {(C)LU( bk e{is:*l (1, kg > 1).

By choosing an appropriate translation map p from the algebra Q(A) into some ring of
commutative polynomials with coefficients in R, one can associate to a mould M : A* — R
a sequence of commutative generating series with coefficients in R (cf Subsection
Definition |[A.70]). This leads to the notion of moulds, which will be used in this work.

Example C.3. Consider the Q-linear map
pPx - Q<X> — Q[Xla X27 .. ‘]7

ki1—1 kqg—1
_ _ koo —1 X . ¢ kg1 =1
RS P VAL AL N 1 a +
0 0 0
0, else

which satisfies the conditions in Definition [A.64] and the mould M, given in Example
(ii). Then the commutative generating series with coefficients in Z associated to

(M, px) in the senseﬂ of Definition is given by

(MCLU ®pX)(W)d(X177Xd) = Z MCLu(w)pX($)7 d > ]-7
we(X*)(d)

where (X*)@ denotes the subset of all words in X* of depth d. Observe that generating
series (M¢, ® px)(W)a(X1,...,Xq) equals exactly the generating series of the shuffle
regularized multiple zeta values F*'(X7,..., Xy) in some depth d (Definition [B.41]).

SMore precisely, the map M, : X* — Z need to be extended to the space Q(X) by Q-linearity to apply

Definition
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In particular, we will view moulds from now on as a sequence of commutative power series
in an increasing number of variables.

Definition C.4. Let R be a commutative Q-algebra with unit. A sequence

M = (Mg(X1,...,Xa))az0 = (Mo(0), M1(X1), Ma(X1, X2),...) € [ RI[X1, .. Xdl]
d>0
is called a mould. Denote MUP™:F — [lg>0 RI[[X1,...,X4]] and call the elements in
MUP*™ moulds with coefficients in R.

Let A = {a1,as,...} be an alphabet. Conversely, any mould M € MUP®"® defines a
mould in the sense of Definition

M: A" — R[[Xl,XQ,...H,
Ay .- Ay —> Md(Xila"'aXid)'

In particular, the alphabet A gets identified with the set of variables {X1, Xo,...}.

At some points, it is necessary to consider sequences

M = (Mg(X1,...,Xa))azo0 € [[ R(X1,-..,Xq)).
d>0

We denote the set of those moulds by MUL-# = [Tiso R((Xq,..., Xq)).
Definition C.5. A sequence
Xl,...,Xd Xl X17X2
M= | M, = | M, M M R[|X1,Y1,...,X4,Y,
( d<Y1,-~,Yd>>d>0 ( 0(0), 1<Y1>7 2<Y1,Y2>’ )Edl;[() [X1,Y1,..., Xq, Y]

is called a bimould. Denote BIMUP?W# — [Li>o RI[X1, Y1, ..., X4, Yq]] and call the ele-
ments in BIMUP°"% himoulds with coefficients in R.

Consider a bi-alphabet Ap; = {A;; | i,j > 1}. Then any bimould M € BIMUP*™® gives
a mould in the sense of Definition [C.]
M : Af; — R[[X1,Y1,X2,Ys, .. ]],
o o Xiyy oo Xy
iy gy - v Qg jg T Md(le,...,de .
Moreover, set BIMU™# = [T,00 R(X1,11,..., X4, Ya)).

Example C.6. The generating of the SZ multiple g-zeta values (2.23.1)) given by s3, = 1
and for d > 1 by

5ad()§1""’§id>= S Gk A0y kg {0 X T YL XY
i ki, kg>1

mi,...,mq>0

and the generating series of the bi-brackets (2.32.1]) given by gg = 1 and for d > 1 by

m m,

Xl?"‘7Xd _ k17"'7kd ]{31—1}/1 ! k}d—IYd ¢

1y---512d ko Rg>1 mi,...,Mq ma. mgq:
mi,..,mg>0

both define bimoulds 53 = (534)a>0 and g = (g4)a>0 in BIMUPY-Za,
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In the following, we will often give definitions only for bimoulds. By forgetting about
the second row corresponding to the variables Y;, one obtains the definition for moulds.

Moreover, we will usually omit the index d and simply write M (‘)}(}"”’})fd> resp.
1,---51Xd

M(X1,...,Xg). If the shape of the components of the bimoulds does not matter, we
just write BIMU® (resp. MUR). Similarly, if the underlying algebra R is clear from the
context, we just write BIMU (resp. MU). This applies also to all subsets of (bi-)moulds,
which will be defined in the following.

Definition C.7. For two bimoulds M, N € BIMU® and X € R, define
o () (),
e () = G G
o0 ) = an (o (o).

The composition mu corresponds to the power series multiplication under the bijection

(C11).

Lemma C.8. The triples (BIMU®, 4+ mu) and (MU%, +,mu) are R-algebras with unit.
O]

Define the following subspaces of MU and BIMU,
ARI = {A € MU | Ay = 0}, BARI = {A € BIMU | Ag = 0}.
A simple calculation shows the following.
Lemma C.9. The sets ARI® and BARI® are R-subalgebras of (BIMUZ, 4 mu).

Moreover, define the subsets

GARI={AeMU| A4y =1}, GBARI={AecBIMU |4, =1}
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C.1 Basic symmetries of (bi-)moulds

We will introduce some standard symmetries of (bi-)moulds. All of them are introduced
n [Ecli] and can be found with more details in [Scl15]. We focus on giving an explicit
description of these symmetries as possible. All of the following (bi-)moulds will have
coefficients in some fixed Q-algebra R with unit.

The first symmetry for bimoulds is closely related to the conjugation of partitions.

Definition C.10. For A € BIMU, define the bimould swap(A) as

Xla'--aXd _ Yl+"'+Yd7Y1+"'+Yd—1>"'7Y1
SW&p(A’(n,...,Yd> ‘A< Xo Xomr = X, Xo = X )

In this special case, consider on both sides the row consisting of the variables X; to obtain
the corresponding definition for moulds, i.e., for a mould A € MU, one has

SW&p(A)(Xl, N 'JXd) = A(Xd,Xd_l - Xd7 cee 7X1 - X2)

The inverse of swap on MU is obtained by only considering the variables Y;.

A (bi-)mould A is called swap invariant if swap(A) = A.

Example C.11. Let A € BIMUP®Y and write

A X1,..., Xy _ Z a ki,..., kg Xkl 1Ym Xkdflydmd

Yi,..., Yy by 1 mi,...,Mq 1 maq! d mg!
mlz...:md_zo

where a( Tsifjf ) are the (normalized) coefficients of A. If the bimould A is swap invariant,

then the coefficients satisfy
a k1 . myq! a mi+1
mi)  (kp—1)! \k1—1)"
m1 k
of Frke iil 1! (m2 +u)! (2t l+umi+l—u)
M, M2 ulv! kl—l) (ko —1—0)!" \ ko —1—-v,ky —1+w

In higher depths, it is hard to give the explicit relations between the coefficients of A
coming from the swap invariance, see for example [BI22, Remark 3.14].

We want to translate the shuffle product and the q-stuffle product defined on Q(Y")
(Example 1) and 5)) into the language of (bi-)moulds (cf Subsection [A.4). So recall
that Y™ = {yk,m | K > 1, m > 0} and that the depth of a word in Q(J") is given by
dep(Yky my - - - Ykymy) = d. Define the Q-linear map

pyvi = QM) — Q[X1, Y1, Xo, Yo, .. ],

k-1 Y1 ka—1Y4 "
X Fi— d—

Yk1,ma -+ - Ykgmg ? 1 |
mq!

which satisfies the properties in Definition The generating series of words in Q()"!)
associated to pybi is given by pywi(WW)o = 1 and

Xl,...,Xd>

le Ymd
ki1—1 kg—1
Pybi(W)d( i Y, | a—11d

= Z Yki,my - - - Ykgyma X1 7,"'Xd ——, d>1
ki,..., kqg>1 . :
mi,...,mq>0
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Definition C.12. Consider the shuffle algebra (Q(Y"!), 1), i.e., W is the correspond-
ing quasi-shuffle product to yi, m, © Ykym, = 0 (Example 1)). A bimould A €
GBARIP*™! is called symmetral if there is an algebra morphism ¢, : (Q(Y"), W) — R,
such that for all d > 1

X1, Xy -
Ad(Yl,...,Yd> - Z (pm(ykl,ml"'ykd,md)Xll

k1,..kqg>1
mi,...,mqg=>0

mi
e

m1!

mg
Xkd—IYd

- Ay 7’[71, P
d-

In other words, the bimould A is symmetral if and only if A is (¢, pybi)-symmetric in
the sense of Definition We will refer to the map ¢, as the coefficient map of A.

Denote by GBARIPOE (resp. GARIPO™F) the subset of all symmetral bimoulds (resp.
moulds).

As obtained in (A.71.1) a bimould A € GBARIP°™® is symmetral with coefficient map
pu if and only if for all 0 <n < d

Xio X\ (Xagr o X
_ o [(X1se o X o (Kt Xa

An explicit recursive formula for LI on the generating series of words pyui (W) is obtained

in Corollary [A776]

Definition C.13. Let(Q(J"!), ¥) be the g-stuffle algebra, i.e., * is the quasi-shuffle product
With Yk, my © Yke.ma = Yky+kemy+my (Example 6)). A bimould A € GBARIP*™:® is
said to be symmetril if there is an algebra morphism ¢, : (Q(J), ¥) — R, such that for
alld > 1

mi y
1Y1 kqg—11q
— Ay

Xi1,..., X4 .

Ad(Y v ) = > elWrimy - Ykama) X1 y;"
b td ki, kg>1

mi,...,mq>0

m1! md! '

In particular, the bimould A is symmetril if and only if A is (@«, pybi)-symmetric. As
before, we also refer to ¢, as the coefficient map of A.

By GBARI?SOW’R (resp. GARIipSOW’R) denote the subset of all symmetril bimoulds (resp.
moulds).

A bimould A € GBARIP*™# is symmetril with coefficient map ¢, if and only if for all
O<n<d

Xl?"'aXTL Xn+17“'7Xd
A(mwwn>A(nwam>
X1y, Xp Xn+17"'7Xd
= QVx« (W * (W .
g (pyb( )<Y1,...,Yn> Pl )(Yn+l,...,Yd>>

An explicit recursive formula for the product * on these generating series of words pyni (W)

is given in Corollary
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Example C.14. For a bimould A € GBARI, symmetrility in depths 2 and 3 means
A5 () o) i)
X1 : Xo <A (Yf—?Yg) B A(Yf—?)@)) ’
() A) ) () o)
e (A <Y1)il éSYP,) - A(m)%égxe))

1 Xo, X4 Xo, X3
A ’ —A ’ .
XX X3< <Y2,YI+Y3) <Y2,Y1+Y3

Omit all terms of lower depths to obtain the formulas for symmetrality.

Remark C.15. (i) So far we defined symmetrality and symmetrility only for (bi-)moulds
in GBARIP°™® but clearly one could use the complicated explicit formulas for such
symmetries (as given in Example for low depths) alternatively as the definition for
these symmetries. This is for example the point of view of J. Ecalle and L. Schneps
([Ec11],[Sc15]), and in turn this allows to extend these symmetries to a wider class of (bi-)
moulds like GBART™Z.

(ii) The definition of symmetral and symmetril for moulds is already given in Example
[A772] but can be also obtained from Definition [C.12] and [C:13] by forgetting about the
variables Y; and the second index of the letters in Y.

Consider the subspace

BART;, svp — { A € BARI ‘ - A symmetril, } .

- A swap invariant

The elements in BARIg swap satisfy a second product formula. More precisely, one obtains
this second formula by applying the swap invariance to both factors, then multiplying with
respect to x and finally again applying the swap invariance to all terms. For example in
depth 2, this leads to the following explicit formula

X1 X2\ X1+ Xo, Xy X1+ X2, Xo
A<Y1>A<Y2>_A<Y2’Y1_Y2>+A<Yby2_yl> (C.15.1)

X1+ X X1+ Xo

* Y1-Yo

There are two other important properties of bimoulds, which should be seen as the sym-
metrality and symmetrility modulo products.

Definition C.16. A bimould A € BARIP°"?! is called alternal if there is a Q-linear map
o Q) — R satisfying ¢y (u W v) = 0 for all u,v € Q(YP)\Q1, such that for all
d>1

X1 e Xd k Ile k.i—1 Ymd
A AR = XptE X el
d Yi,....Yy Z (PLLI(ylﬁ,ml ykd,md) 1 my! d my!
ki,....ka>1
mi,...,mqg>0
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In this case, we also call ¢y, the coefficient map of A.

Denote by BARIY VB (resp. ARIYY ") the subspace of all alternal bimoulds (resp.
moulds).

In particular, a bimould A € BARIP®"® is alternal with coefficient map ¢, if and only if
forall 0 <n <d

(XX, PG SR AN

Definition C.17. A bimould A € BARIP°™# ig called alternil if there is a Q-linear map
@ 1 QP — R satisfying o.(u * v) = 0 for all u,v € Q(YP)\Q1, such that for all d > 1

mq
Yd

Xl?' : 'aXd K —1Y1m1 b1
Ad(m,...,yd>: 2 W ram) X XA

]
ko> 1 e
mi,...,mqg>0

As before, we will call ¢, the coefficient map of A.
Denote by BARIﬁOW’R (resp. ARIEOW’R) the subspace of all alternil bimoulds (resp.

moulds).

So a bimould A € BARIP®™® is alternil with coefficient map ¢, if and only if for all
0<n<d

. Xl,--.,Xn . Xn+17"’7Xd _

N (pybl(W)<H7“"Yn> *pybl(W)<YnH"”’Yd =0. (C.17.1)
Remark C.18. Similar to the case of symmetrality and symmetrility, one could define
alternality and alternility for (bi-)moulds by the explicit formulas obtained from (C.16.1])

and (C.17.1)). This allows to extend these symmetries to wider classes of (bi-)moulds like
BARI™.

Alternality can be seen as the associated depth-graded property to alternility.

Proposition C.19. Let r > 1 and A = (0,0,...,0, A, Art1,...) be an alternil bimould.
Then grp A = (0,0,...,0,A4,,0,0,...) is an alternal bimould.

Proof. From Corollary and [A.77], we deduce that the explicit formulas for alternality
(C.16.1)) and alternility (C.17.1)) in some depth d differ only by terms of depth < d. In

particular, the bimould grp A is simultaneously alternil and alternal. O
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C.2 (Bi-)Moulds and Lie algebras

This subsection is devoted to present the basic Lie algebra structure on the subspaces
ARI, and BARI,. In the following, we work over some fixed commutative Q-algebra R
with unit.

Decompose w = ()éii,ild) into w = abc, where

. D CTRRID.¢2 b— K1y v s Xpt o Xkti41s -+ Xd
Yh"')Yk’ , Yk-‘rlv""Yk‘-i-l ’ Yk+l+17"'7Yd
The flexions are defined by a| =aifb=10, [b=bifa=0,b] =bifc=10, [c =cif
b =0, and

al X1,..., X b= Xt — Xios v oy Xipt — X
Yi,... Ve, Ye+ -4+ Yip)’ Yir1, - Y '
b] = Kit1 = Xipiaty oy Xprt — X1 lc = Xkti+1s -+ Xd
Y1, Yin ’ Yir1 + -+ Yerir1, Yerigo, -, Y

Definition C.20. For A, B € BARI, define the derivation (with respect to mu) aritg by

aritp(A Z A(alc)B Z Aa [b).
=abc w=abc
b,c;é@ a,b#0

Example C.21. For bimoulds A, B € BARI, one computes
. X1, X0\ _ Xo X1—Xo) X1 Xo— X3
. X1, X9, X3 X1, X3 Xo — X3
tp(A R =A ' B
arit )<Y1Y2Y3> <Y1Y2+Y3> ( s )
X1 — X35, X0 — X3 X9, X3 X1 —Xo
B ’ A ’ B
( +Y2+Y3> ( Y1.Y )* <Y1+Y2,Y3> < Yi )
X1, X3\ p(Xe—X1) _ f X, X2 ) (X5 —Xo
Yi+Y2,Y3 Y, Y1, +Y3 Y3
pX2— X1, X3 - X
Y1 +Y2 +Y;3 Y2, Y3 ’

aritp(A) <X1’X2’X3’X4> — A( X4 ) B(Xl — Xy, Xo — X4, X3 — X4>

+A

IL

—A

Y1,Ys,Y3, Yy Yi+Yo+Ys+ Yy Y1,Ys,Y3
X3, Xy B X1 —X3,X0— X3 A Xo, X3, X4 B X1 —Xo
Y1 +Yo+Y3,Y, Yi,Ys Y1 +Yo,Y3, Yy Y
X1, X2, Xy B X3 — Xy A X1, Xy B Xo — Xy, X3 — Xy
Y1,Y2, Y3+ Yy Y3 Y,Yo +Y3+Y) Yo, Y3

X1, X5, X ) p( X2 = X3\ [ X1, Xo, Xy ) 5 (X — X3
V1,2 + Y3, Yy Ys Y1,Y2, Y54+ Yy Yy

+A

+
h

+A
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4 X1, Xo >B<X3—X2,X4—X2>

Y,Yo+Ys5+Y) Y3, Yy

:3>

- X1, X3 — X1, Xy — X1>

B(X?
Y‘}'YVQ"'}/ES‘*'}/ZI Y27}/E3a}/4
X1, X2, Xq | p( Xz —X2) _ X1, X4 pX2 XXX
Y Y2+}/37Y4 Y3 Y1+}/2+Y37}/;1 Y27Y3
—A X17X35X4 B X2_Xl )
Y1+ Yo,Y3, Yy Y,

Definition C.22. For two bimoulds A, B € BARI, set

—A

preari(A, B) = arit4(B) + mu(B, A).
Then, the ari bracket is defined as

ari(A, B) = preari(A, B) — preari(B, A).

Example C.23. For two bimoulds A, B € BARI, one obtains
: X1, X2\ _ Xo X1—Xo) X1 Xo— Xy
a“(A’B)<Y1,Y2>_B<Y1+Y2)A< v ) B<Y1+Y2>A< Ys )
X5 X5 X1 —-X
—A B —A B
Xl X2 — X1 X1 X2
A B B A
In difference to the previous cases, one obtains the definition of the ari bracket on the space
ARI of moulds by considering just the variables Y;. For example, one has for A, B € ARI
ari(A,B)(Xl,Xz) = B(Xl + XQ)A(Xl) — B(X1 + XQ)A(XQ) — A(Xl)B(X2>
— A(X1 + X2)B(X1) + A(X1 + X2)B(X2) + B(X1)A(X2).

Combining both statements in [SS20, Theorem 3.1.], one obtains the following.

Theorem C.24. The spaces BARIy and AR, equipped with the ari bracket are Lie
algebras. ]

Define

AR — {AGARI | cAg(X1,...,Xq) € R[Xy,...,Xg) foralld >1, }

- Ag(X1,...,Xg) # 0 only for finitely many d > 1

CAg(Kro R e RIXGL YL X, Y] for all d > 1,
BARIpol,R: A € BARI ?,---7? ’
Ay Yl""’Ydd # 0 only for finitely many d > 1
1,...’

and similarly for all subspaces of ARI® and BARI®. The two spaces ARIP°*? and
BARIPM? are bi-graded by weight and depth, the homogeneous component of weight
w is given by

(w)

Ag4 homogeneous of degree w — d

((B)ARIPOLR> foralld > 1 } (C.24.1)

= {A € (B)ARIPOHH
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and the homogeneous component of weight w and depth d is given by

d—1
——
={Ae BARIPM | . A=(0,...,0,440,...),
- Az homogeneous of degree w — d.

( (B)ARIPOHA ) (w,d)

(C.24.2)

Since the ari bracket is defined by a finite number of terms homogeneous in weight and
depth, Theorem implies the following.

Corollary C.25. Both ARI;01 and BARIEIOl are bi-graded Lie algebras with the ari bracket.

Remark C.26. The set of all symmetral (bi-)moulds is the corresponding Lie group to
the alternal (bi-)moulds. Define for any bimould A € BARI,

expari(A) = E —1‘ preari(. .. preari(preari(A, A), A),..., A) (C.26.1)
n!
n>0

n—1 times

1 1
=1+A+ 3 preari(A, A) + 6 preari(preari(A4, A), A) + ... .

By [Sc15l, Proposition 2.6.1.] the operator expari restricts to bijections
expari : BARI, — GBARI, expari : ARI, — GARI, .

In particular, both sets GBARI,s and GARI,s are groups, the explicit group law gari is
given in [Sclb, (2.7.3.)].
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Abstract

We study the algebraic structure of multiple g-zeta values, being inspired by the theory
of multiple zeta values.

Multiple zeta values are real numbers, which occur and have been studied in various areas
of mathematics and high energy physics. They satisfy a lot of algebraic relations and
conjecturally all of those arise from the so-called extended double shuffle relations. This
leads to the definition of the algebra Zf of formal multiple zeta values, which was for
example studied by Thara-Kaneko-Zagier or Gangl-Kaneko-Zagier. In his thesis, Racinet
gave an algebraic approach to the formal multiple zeta values in terms of non-commutative
power series. More precisely, he showed that the algebra Z7 modulo ¢f (2) represents a
pro-unipotent affine group scheme DMj. Using the corresponding Lie algebra dmg al-
lowed him to prove that Z/ is a free polynomial algebra. Moreover, one obtains that Z/
equipped with Goncharov’s coproduct is a Hopf algebra. The appendix provides a detailed
exposition of this approach.

A multiple g-zeta value is a particular kind of g-series, which yields a multiple zeta value
for the limit ¢ — 1 (whenever the corresponding multiple zeta value exists). We intro-
duce the balanced multiple g-zeta values, which span the algebra Z, of all multiple g-zeta
values and satisfy very explicit and simple relations. In particular, their product formula
is a balanced combination of the two product formulas for multiple zeta values. Another
advantage of the balanced multiple g-zeta values is that they give a simple description of a
conjectural weight-grading on Z;, which extends the weight-grading of the quasi-modular
forms. Moreover, the balanced multiple g-zeta values are closely related to the combina-
torial multiple Eisenstein series, which were obtained in a joint work with Bachmann.

With similar techniques as for multiple zeta values, we extend the balanced multiple g-
zeta values to a wider set of indices, such that they lie in the image of some morphism
from a quasi-shuffle algebra. The expected relations for these regularized multiple g-zeta
values lead to the definition of the algebra Z({ of formal multiple g-zeta values. This thesis
provides an algebraic approach to the algebra Zg , which should be seen as a g-analog of
Racinet’s approach to formal multiple zeta values.

It turns out that the algebra Zg modulo the formal quasi-modular forms C({ (2), C({ (4), C({ (6)
represents an affine scheme BMg, which has values in a completed Hopf algebra of non-
commutative power series. Moreover, the affine group scheme DM introduced by Racinet
for the formal multiple zeta values embeds into BMg. This implies a projection from the
algebra Z({ of formal multiple g-zeta values onto the algebra Z/ of formal multiple zeta
values, which should be seen as a formal version of the limit ¢ — 1.

Linearizing the defining equations of the affine scheme BMg leads to a space bmg consist-
ing of non-commutative polynomials. In analogy to the case of multiple zeta values, we
expect that BMg is a pro-unipotent affine group scheme and bmy is its Lie algebra. The
space bmy is very explicit and its generators can be computed up to weight 13, this allows
testing potential Lie brackets on bmy.

In this thesis, we obtained a Lie algebra mq equipped with the so-called g-lThara bracket
{—, —}4, which is a generalization of the twisted Magnus Lie algebra (mt,{—, —}). Just
as 0myg is a Lie subalgebra of the twisted Magnus Lie algebra, we expect that bmg is a Lie
subalgebra of (mq, {—, —};). The elements in bmg as well as the g-Thara bracket {—, —},
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are quite complicated. By computer experiments, we verified that the g-lIhara bracket
preserves bmg up to weight 9, and with some more effort one could probably extend this
to weight 13.

On the other hand, Kiithn proposed an approach to Lie algebras related to multiple g-zeta
values by using Ecalle’s theory of (bi-)moulds. We show that the (conjectural) Lie algebra
of alternil and swap invariant bimoulds is isomorphic to bmg. Although the alternil and
swap invariant bimoulds can only be calculated in very small weights and depths, since the
occurring bimoulds become very large, its depth-graded version is much more accessible
for explicit calculations. Therefore, the bimould approach as well as the non-commutative
approach to Lie algebras related to multiple g-zeta values are both of interest.

Independent of the general algebraic approach to multiple g-zeta values explained before,
explicit calculations give a partial result towards Bachmann’s conjecture that the brackets
and the bi-brackets span the same space. This result is a side product of this thesis.

In summary, this thesis opens up a lot of new questions and possible ways to continue,
some of which are described at the end of the introduction.
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Zusammenfassung

Wir untersuchen die algebraische Struktur der multiplen g-Zetawerte inspiriert durch die
Theorie der multiplen Zetawerte.

Multiple Zetawerte sind reelle Zahlen, welche in diversen Feldern der Mathematik und der
Hochenergiephysik auftreten und studiert werden. Sie erfiillen eine Vielzahl von algebrais-
chen Relationen und vermutungsweise entstehen alle durch die sogenannten erweiterten
Doppelshuffle-Relationen. Dies fithrt zu der Definition der Algebra Z7 der formalen multi-
plen Zetawerte, welche zum Beispiel von Thara-Kaneko-Zagier oder Gangl-Kaneko-Zagier
studiert wurde. Racinet erklirt in seiner Doktorarbeit einen algebraischen Zugang zu
den formalen multiplen Zetawerten, der nicht-kommutative Potenzreihen nutzt. Genauer
zeigt er, dass die Algebra Z/ modulo ¢7(2) ein pro-unipotentes affines Gruppenschema
DMy reprisentiert. Dann nutzt er die zugehérige Lie-Algebra dmg um zu zeigen, dass Z7/
eine freie Polynomalgebra ist. AuBerdem folgt, dass Zf ausgestattet mit Goncharovs Ko-
produkt eine Hopf-Algebra ist. Der Appendix enthélt eine detaillierte Darstellung dieses
Zugangs.

Ein multipler g-Zetawert ist eine spezielle Art einer g-Reihe, welche unter dem Gren-
zwert ¢ — 1 einen multiplen Zetawert liefert (wenn der zugehérige multiple Zetawert
existiert). We fithren die balancierten multiplen g-Zetawerte ein, welche die Algebra Z,
aufspannen und sehr explizite und einfache Relationen erfiillen. Insbesondere ist ihre
Produktformel eine ausbalancierte Kombination der beiden Produktformeln fiir multi-
ple Zetawerte. Ein weiterer Vorteil der balancierten multiplen g-Zetawerte ist, dass sie
eine einfache Beschreibung einer vermuteten Gewichtsgraduierung auf Z, liefern, welche
die Gewichtsgraduierung der Quasi-Modulformen erweitert. Die balancierten multiplen
q-Zetawerte stehen in engem Zusammenhang zu den kombinatorischem multiplen Eisen-
steinreihen, welche in einer gemeinsamen Arbeit mit Bachmann entdeckt wurden.

Mit dhnlichen Methoden wie bei den multiplen Zetawerten, erweitern wir die balancierten
multiplen ¢-Zetawerte auf eine gréflere Menge von Indices, sodass diese im Bild eines
Morphismus von einer Quasishuffle-Algebra liegen. Die erwarteten Relationen von diesen
regularisierten multiplen g-Zetawerten liefern die Definition der Algebra Z({ der formalen
multiplen g-Zetawerte. Diese Arbeit prasentiert einen algebraischen Zugang zu der Alge-
bra Zg , welcher als g-Analog von Racinet’s Zugang zu den formalen multiplen Zetawerten
gesehen werden sollte.

Es stellt sich heraus, dass die Algebra Z({ modulo den formalen Quasi-Modulformen
Cg (2), Cg (4), C({ (6) ein affines Schema BMj darstellt, welches Werte in einer komplet-
tierten Hopf-Algebra von nicht-kommutativen Potenzreihen hat. Dartiber hinaus gibt es
eine Einbettung des affinen Gruppenschemas DMy, welches von Racinet fiir die formalen
multiplen Zetawerte eingefithrt wurde, in das affine Schema BMy. Dies impliziert eine Pro-
jektion von der Algebra Zg der formalen multiplen q-Zetawerte auf die Algebra Z7/ der
formalen multiplen Zetawerte, welche als formale Version der Grenzwertabbildung ¢ — 1
gesehen werden sollte.

Linearisieren der definierenden Gleichungen des affinen Schemas BMg fiihrt zu dem Vektor-
raum bmyg, der aus nicht-kommutativen Polynomen besteht. In Analogie zu den multiplen
Zetawerten erwarten wir, dass BM ein pro-unipotentes affines Gruppenschema ist und
bmg die zugehorige Lie-Algebra. Der Vektorraum bmg ist sehr explizit und die Erzeuger
koénnen bis zum Gewicht 13 berechnet werden, dies erlaubt potentielle Lie-Klammern auf
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bmg zu testen.

In dieser Arbeit prisentieren wir eine Lie-Algebra mgq ausgestattet mit der sogenannten
g-Thara-Klammer {—, —},, welche eine Verallgemeinerung der getwisteten Magnus Lie-
Algebra (mt, {—, —}) ist. Genauso wie dmy eine Lie-Unteralgebra der getwisteten Magnus
Lie-Algebra ist, erwarten wir, dass bmg eine Lie-Unteralgebra von (mq, {—, —},) ist. Die
Elemente in bmg und die g-Thara-Klammer {—, —}, sind recht kompliziert. Mit Computer-
Experimenten konnten wir verifizieren, dass bmg abgeschlossen unter der g-Thara-Klammer
ist bis zum Gewicht 9, mit etwas mehr Aufwand kann dies vermutlich bis Gewicht 13 fort-
gefiihrt werden.

Auf der anderen Seite hat Kiihn einen Zugang zu Lie-Algebren von multiplen g-Zetawerten
vorgeschlagen, welcher Ecalles Theorie der (Bi-)Moulds nutzt. Wir zeigen, dass die (ver-
mutete) Lie-Algebra der alternil und swap-invarianten Bimoulds isomorph ist zu bmy.
Obwohl alternil und swap-invariant Bimoulds nur in sehr kleinen Gewichten und Tiefen
berechnet werden koénnen, da die auftretenden Bimoulds sehr grofl sind, ist die tiefen-
graduierte Version wesentlich zugénglicher fiir explizite Berechnungen. Daher ist sowohl
der Zugang via Bimoulds als auch der nicht-kommutative Zugang zu Lie-Algebren von
multiplen g-Zetawerten sehr interessant.

Unabhangig von dem oben erklarten algebraischen Zugang zu multiplen g-Zetawerten
liefern explizite Berechnungen Teilresultate in Richtung Bachmanns Vermutung, dass die
Klammern und die Bi-Klammern denselben Vektorraum aufspannen. Dieses Resultat ist
einer Nebenprodukt dieser Doktorarbeit.

Zusammenfassend wirft diese Arbeit viele neue Fragen auf und liefert viele mogliche Wege
zur Fortsetzung, ein paar von diesen werden am Ende der Einleitung beschrieben.
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Publications related to this dissertation

Subsection 2.5 is based on

[BB22] H. Bachmann, A. Burmester. "Combinatorial multiple Eisenstein series”.
Preprint, ArXiv: |2205.17074v2 [math.NT], 2022.

The paper provides the construction of the combinatorial (bi-)multiple Eisenstein series
and presents their properties. H. Bachmann and I independently obtained a construction
for the combinatorial bi-multiple Eisenstein series in depth 3, therefore we decided to
study the general depth case together. The main idea for the general construction is due
to H. Bachmann and together we figured out the details. Then my main task was to find
a proof that this construction has indeed the desired properties. H. Bachmann came up
with a first draft of the paper, which we then filled in together with details.
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