Matroid theory: exercise sheet 9

1. Find all 3 -connected binary matroids with 8 elements.
2. Using the previous exercise or otherwise, show that F_{7} is a splitter for the class of binary matroids with no F_{7}^{*}-minor.
3. Let M_{1} and M_{2} be binary matroids on sets E_{1} and E_{2} with $\left|E_{1} \cap E_{2}\right|=k$. Show that $\kappa_{M_{1} \oplus \mathrm{~F}_{2} M_{2}}\left(E_{1}-E_{2}\right)=k$ if and only if $E_{1} \cap E_{2}$ is both independent and coindependent in both M_{1} and M_{2}.

4* Let M be a binary matroid with ground set E and let $X \subseteq E$ with $\kappa_{M}(X)=k$. Show that there are a set G disjoint from E of size k and binary matroids M_{1} on $X \cup G$ and M_{2} on $(E-X) \cup G$ with $M_{1} \oplus_{\mathbb{F}_{2}} M_{2}=M$.

