Matroid theory: exercise sheet 6

1. Let k be a field. Prove that the class of matroids which are representable over k is closed under 2 -sums.
2. (a) Let M be a matroid and F a set with 2 elements such that $|E(M) \cap F|=1$. Prove that $M \cong M \oplus_{2} U_{1, F}$.
(b) Let M be a matroid and let $e_{0} \in E(M)$ be an element which is neither a loop nor a coloop. Prove that M has a minor of the form $U_{1, F}$ with $e_{0} \in F$ and $|F|=2$.
(c) Let M_{1} and M_{2} be matroids on the sets E_{1} and E_{2} with $E_{1} \cap E_{2}=\left\{e_{0}\right\}$, and suppose that e_{0} is neither a loop nor a coloop of M_{1} or M_{2}. Prove that $M_{1} \oplus_{2} M_{2}$ has an M_{1}-minor and an M_{2}-minor.
3. Find all simple 3 -connected graphs G with the property that there is no edge e of G such that $G \backslash e$ or G / e is simple and 3-connected.
4^{*} Let G and H be simple 3-connected graphs such that $M(G) \cong M(H)$. Prove that $G \cong H$.
