Matroid theory: exercise sheet 1

- 1. For which numbers m, n is the uniform matroid $U_{m,n}$ graphic?
- 2. For which numbers m, n is the uniform matroid $U_{m,n}$ representable over the field \mathbb{F}_2 with 2 elements? For which numbers is it representable over the field \mathbb{R} of real numbers.
- 3. Let M be a matroid on E. For $X \subseteq E$, the closure $\operatorname{Cl}_M(X)$ of X is the set

$$\{x \in E | r_M(X \cup x) = r_M(X)\}$$

Prove that the function $\operatorname{Cl} := \operatorname{Cl}_M : \mathcal{P}E \to \mathcal{P}E$ has the following properties:

- (CL1) For any $X \subseteq E$ we have $X \subseteq Cl(X)$
- (CL2) For any $X \subseteq Y \subseteq E$ we have $\operatorname{Cl}(X) \subseteq \operatorname{Cl}(Y)$
- (CL3) For any $X \subseteq E$ we have Cl(Cl(X)) = Cl(X)
- (CL4) For any $X \subseteq E$, $x \in E$ und $y \in Cl(X \cup x) Cl(X)$ we have $x \in Cl(X \cup y)$
- 4.* Prove that a function Cl: $\mathcal{P}E \to \mathcal{P}E$ is the closure operator of a matroid on E if and only if it satisfies(CL1)-(CL4).