Infinite matroid theory exercise sheet 9

1. (a) Prove that a multigraph G is 2-connected if and only if its finite cycle matroid is connected.
(b) Prove that a multigraph G is 3-connected if and only if it is simple and its finite cycle matroid is 3 -connected.
2. Let (M, N) be a twinned pair of matroids.
(a) Show that any shift (with respect to M) of any normal base is again a normal base.
(b) Show that for any partition $E=P \dot{\cup} Q$ of the common ground set $\kappa_{M}(P)=\kappa_{N}(P)$.
3. For two matroids M_{1} and M_{2} that share only one edge e, the 2-sum $M_{1} \oplus_{2} M_{2}$ of M_{1} and M_{2} is the matroid whose edge set is the symmetric difference of those of M_{1} and M_{2} and whose scrawls are those symmetric differences of scrawls of M_{1} and M_{2} that do not contain the edge e.
(a) Prove that $M_{1} \oplus_{2} M_{2}$ is a matroid.
(b) Describe the bases, circuits and cocircuits of $M_{1} \oplus_{2} M_{2}$ in terms of the bases, circuits and cocircuits of M_{1} and M_{2}, respectively. Prove that $M_{1}^{*} \oplus_{2} M_{2}^{*}=\left(M_{1} \oplus_{2} M_{2}\right)^{*}$.
4. Let M be a connected matroid such that every circuit of M and every cocircuit of M is countable. Prove that M is countable.

Hints

Concerning exercise 4: It might be helpful to think about fundamental circuits and cocircuits.

