Infinite matroid theory exercise sheet 4

1. Show that if \mathcal{C} satisfies infinite circuit elimination $(C 3)$, then so does \mathcal{C}^{*}.
2. Let X be some uncountable set, and let $y \notin X$. Let \mathcal{I} consist of those subsets of $X+y$ that either are countable or do not contain y. Show that \mathcal{I} satisfies (I1)-(I3) but there is no scrawl system whose set of independent sets is \mathcal{I}.
3. Let G be a graph. Let \mathcal{C} be the collection of edge sets of thetas, handcuffs, degenerate handcuffs, double rays and sperms in G, see Figure 1 and Figure 2. For every tree T, let ∂T consist of those edges not in T that have at least one endvertex in T. Let \mathcal{D} consist of all sets ∂T for (not necessary spanning) rayless trees T in G. Show that the pair $(\mathcal{C}, \mathcal{D})$ satisfies (01) and (02). Deduce that \mathcal{C} satisfies (C3).

4* Let M be a matroid with two bases B_{1} and B_{2}. Prove that there is a bijection $\alpha: B_{1} \rightarrow B_{2}$ such that $B_{1}-x+\alpha(x)$ is a base of M.

Figure 1: A theta is a subdivision of the graph on the left. A handcuff is a subdivision of the graph in the middle. A degenerate handcuff is a subdivision of the graph on the right.

Figure 2: A double ray is the graph on the left. A sperm is a subdivision of a the graph on the right.

Hints

Concerning question 4 :
Use Hall's marriage theorem.

