Infinite matroid theory exercise sheet 2

1. Let M be a matroid, $X \subseteq E(M)$, and let $\mathcal{C}(X)=\{C \backslash X \mid C \in \mathcal{C}(M)\}$. Show that $\mathcal{C}(X)$ satisfies ($C 3$). By exercise 2 of the previous sheet, this means that the set of minimal nonempty elements of $\mathcal{C}(X)$ is the set of circuits of some matroid. Which matroid?
2. Let M be a matroid with rank function r. Define $r^{*}: \mathcal{P}(E) \rightarrow \mathbb{Z}_{\geq 0}$ via $r^{*}(X)=|X|-r(E)+$ $r(E \backslash X)$. Show directly that r^{*} satisfies the rank axioms. Then prove that r^{*} is the rank function of the dual M^{*} of M.
3. Let $E=E_{1} \dot{\cup} E_{2}$ be a partition of the ground set. Show that the following are equivalent.
(a) $M / E_{1}=M \backslash E_{1}$.
(b) $M / E_{2}=M \backslash E_{2}$.

Conversely, let M_{1} and M_{2} be two matroids with (disjoint) ground sets E_{1} and E_{2}. Show that there is a unique matroid M on the disjoint union $E_{1} \sqcup E_{2}$ of E_{1} and E_{2} such that $M_{1}=M / E_{2}=M \backslash E_{2}$ and $M_{2}=M / E_{1}=M \backslash E_{1}$.
4. Let N be a minor of M, that is, there are disjoints sets $C, D \subseteq E(M)$ such that $N=M / C \backslash D$. Show that there are disjoint sets C^{\prime} and D^{\prime} with $N=M / C^{\prime} \backslash D^{\prime}$ and such that C^{\prime} is M independent and D^{\prime} is M^{*}-independent.
5. Let M be a matroid with two bases B_{1} and B_{2}. Show that for any $x \in B_{1}$ there is some $y \in B_{2}$ such that both $B_{1}-x+y$ and $B_{2}-y+x$ are bases of M.

Hints

Concerning question 5 :
Think about fundamental circuits and cocircuits.

