Infinite matroid theory exercise sheet 1

- 1. Determine for which values for m and n, the uniform matroid $U_{m,n}$ is graphic.
- 2. Let $\mathcal{C} \subseteq \mathcal{P}(E)$ satisfy the following.
 - (C3) (Circuit elimination) Let $C, C' \in \mathcal{C}$ and $x \in C \cap C'$ and $z \in C \setminus C'$. Then there is some $C'' \in \mathcal{C}$ with $z \in C'' \subseteq (C \cup C') x$.

Show that the set of minimal nonempty elements of C is the set of circuits of a matroid.

3. A function $r : \mathcal{P}(E) \to \mathbb{Z}_{\geq 0}$ is the rank function of a matroid M if for every $A \subseteq E$ the value r(A) is the size of the largest independent subset of A.

Show that a function $r : \mathcal{P}(E) \to \mathbb{Z}_{\geq 0}$ is the rank function of a matroid M if and only if it satisfies the following.

- (R1) $\forall A \subseteq E, r(A) \le |A|$
- (R2) $\forall A \subseteq E, x \in E, r(A) \le r(A+x) \le r(A) + 1$
- (R3) (Submodularity) $\forall A, B \subseteq E, r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$

In these circumstances, show that the independent sets of M are precisely those sets $A \subseteq E$ satisfying r(A) = |A|.

Reminder: Independence axioms

A subset \mathcal{I} of $\mathcal{P}(E)$ is called the set of *independence sets of a finite matroid* if and only if it satisfies the following.

- (I1) $\varnothing \in \mathcal{I}(M)$.
- (I2) $\mathcal{I}(M)$ is closed under taking subsets.
- (I3) Given $I_1, I_2 \in \mathcal{I}(M)$ and $x \in I_1 \setminus I_2$ such that $I_2 + x \notin \mathcal{I}(M)$, there exists a $y \in I_2 \setminus I_1$ such that $I_1 x + y \in \mathcal{I}(M)$.

Circuit axioms

- (C1) $\emptyset \notin \mathcal{C}$
- (C2) No element of C is a subset of another.
- (C3) (Circuit elimination) Let $C, C' \in \mathcal{C}$ and $x \in C \cap C'$ and $z \in C \setminus C'$. Then there is some $C'' \in \mathcal{C}$ with $z \in C'' \subseteq (C \cup C') x$.

Hints

Concerning question 3:

First show that if r(A) + 1 = r(A + x) for some $x \notin A$, then r(B) + 1 = r(B + x) for every $B \subseteq A$.