Infinite matroid theory exercise sheet 1

1. Determine for which values for m and n, the uniform matroid $U_{m, n}$ is graphic.
2. Let $\mathcal{C} \subseteq \mathcal{P}(E)$ satisfy the following.
(C3) (Circuit elimination) Let $C, C^{\prime} \in \mathcal{C}$ and $x \in C \cap C^{\prime}$ and $z \in C \backslash C^{\prime}$. Then there is some $C^{\prime \prime} \in \mathcal{C}$ with $z \in C^{\prime \prime} \subseteq\left(C \cup C^{\prime}\right)-x$.

Show that the set of minimal nonempty elements of \mathcal{C} is the set of circuits of a matroid.
3. A function $r: \mathcal{P}(E) \rightarrow \mathbb{Z}_{\geq 0}$ is the rank function of a matroid M if for every $A \subseteq E$ the value $r(A)$ is the size of the largest independent subset of A.
Show that a function $r: \mathcal{P}(E) \rightarrow \mathbb{Z}_{\geq 0}$ is the rank function of a matroid M if and only if it satisfies the following.
(R1) $\forall A \subseteq E, r(A) \leq|A|$
(R2) $\forall A \subseteq E, x \in E, r(A) \leq r(A+x) \leq r(A)+1$
(R3) (Submodularity) $\forall A, B \subseteq E, r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$
In these circumstances, show that the independent sets of M are precisely those sets $A \subseteq E$ satsifying $r(A)=|A|$.

Reminder: Independence axioms

A subset \mathcal{I} of $\mathcal{P}(E)$ is called the set of independence sets of a finite matroid if and only if it satisfies the following.
(I1) $\varnothing \in \mathcal{I}(M)$.
(I2) $\mathcal{I}(M)$ is closed under taking subsets.
(I3) Given $I_{1}, I_{2} \in \mathcal{I}(M)$ and $x \in I_{1} \backslash I_{2}$ such that $I_{2}+x \notin \mathcal{I}(M)$, there exists a $y \in I_{2} \backslash I_{1}$ such that $I_{1}-x+y \in \mathcal{I}(M)$.

Circuit axioms

(C1) $\emptyset \notin \mathcal{C}$
(C2) No element of \mathcal{C} is a subset of another.
(C3) (Circuit elimination) Let $C, C^{\prime} \in \mathcal{C}$ and $x \in C \cap C^{\prime}$ and $z \in C \backslash C^{\prime}$. Then there is some $C^{\prime \prime} \in \mathcal{C}$ with $z \in C^{\prime \prime} \subseteq\left(C \cup C^{\prime}\right)-x$.

Hints

Concerning question 3:
First show that if $r(A)+1=r(A+x)$ for some $x \notin A$, then $r(B)+1=r(B+x)$ for every $B \subseteq A$.

