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ABSTRACT
The topic of high dynamic range (HDR) tomography is starting to
gain attention due to recent advances in the hardware technology.
Registering high-intensity projections that exceed the dynamic range
of the detector cause sensor saturation. Existing methods rely on the
fusion of multiple exposures. In contrast, we propose a one-shot so-
lution based on the Modulo Radon Transform (MRT). By exploiting
the modulo non-linearity, the MRT encodes folded Radon Transform
projections so that the resulting measurements do not saturate. Our
recovery strategy is pivoted around a property we call compactly
λ-supported, which is motivated by practice; in many applications
the object to be recovered is of finite extent and the measured quan-
tity has approximately compact support. Our theoretical results are
illustrated by numerical simulations with an open-access X-ray to-
mographic dataset and lead to substantial improvement in the HDR
recovery problem. For instance, we report recovery of objects with
projections 1000x larger in amplitude than the detector threshold.

Index Terms— Computational imaging, computer tomography,
high dynamic range, Radon transform and sampling theory.

1. INTRODUCTION

Computerized tomography (CT) has revolutionized medical imag-
ing. At the heart of the CT technology is the Radon Transform,
although the roots of this topic date back to the work of Minkowski
who first proposed the idea of recovering mathematical objects,
given its line integrals over big circles on a sphere. Funk tackled this
problem for the case of the sphere [1] and Radon solved the problem
with respect to Euclidian spaces [2]. Fast forward 100 years and a
series of engineering marvels, the CT technology has become the
most powerful tool to image human beings in a non-invasive fashion.

Despite the remarkable progress on the front of algorithm de-
sign, the pace of hardware evolution for this technology has been
relatively slow-moving. Until now, in most settings, the CT hard-
ware was assumed to be fixed and the ideology was to concentrate
efforts on the algorithmic aspects. That said, there are certain lossy
aspects of data acquisition that cannot be handled easily using algo-
rithms. One such problem is that of the dynamic range. Almost all
physical sensors have a fixed operating range. Physical entities such
as voltage, amplitude or intensity that exceed this threshold cause
the sensor to saturate resulting in a permanent information loss.

As the imaging technology is constantly being pushed to its
peak, only recently the practitioners have started to think about high
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dynamic range (HDR) tomography — recovery of images where the
dynamic range far exceeds the sensor’s recordable threshold. To this
end, Chen et al. [4] proposed the idea of HDR image reconstruction.
Their key idea relies on the conventional HDR imaging setup which
exploits multiple, low dynamic range images at different exposure
levels which are then combined algorithmically to yield a HDR im-
age. In the context of CT, Chen et al. obtained multiple exposures by
varying the tube-voltage. Eppenberger et al. [6] extended this idea to
the case of colored imaging. Weiss et al. [7] proposed a pixel-level
design for HDR X-ray imaging. Extending the idea of Chen et al. [4],
in [5], Li et al. proposed an approach to automate the exposure level
of each image used for HDR X-ray reconstruction.

Taking a different approach to this problem, the authors of the
current paper proposed the Modulo Radon Transform (MRT) in [8]
as a conceptual alternative to the conventional Radon Transform.
The MRT is similar to the Radon Transform in that, at each ori-
entation, it computes line integrals in the Euclidean space. How-
ever, instead of recording the Radon Transform projections, the MRT
records the remainders with respect to the maximum recording volt-
age, λ. Hence, the MRT encodes measurements using the modulo
non-linearity. The distinct advantage of this computational imaging
centric approach is that the encoded measurements, which are al-
ways in the range of [−λ, λ], can be reliably acquired far beyond the
dynamic range of a conventional ADC; hence, sensor saturation or
clipping as they appear in the scenarios discussed in [4–7] is circum-
vented. That said, MRT encoded measurements lead to a new format
of information loss; a smooth function is converted into its discontin-
uous counterpart. To undo the effect of the modulo non-linearity, the
authors in [8] describe a decoding algorithm which is guaranteed to
succeed provided that the smoothness is preserved via inter-sample
correlation; this leads to an upper-bound on the sampling rate while
requiring infinitely many samples.

Practical Implementation and Feasibility. Some readers may
wonder how this non-linearity is to be put into practice. Semicon-
ductor imaging sensors that implement folding for HDR imaging
have been around since early 2000 (cf. [12]). Their link with
modulo non-linearities and the related inverse problem of signal
reconstruction was recently studied in a line of work on Unlimited
Sampling [9–11]. Beyond imaging hardware, [7] clearly shows that
HDR X-ray imaging is possible via pixel-level customization. A
confluence of [7] and [9] may potentially result in a new tomo-
graphy hardware capable of implementing the ideas underlying the
Modulo Radon Transform [8].

Contributions. In this paper, we propose a novel reconstruction
technique for HDR tomography based on the Modulo Radon Trans-
form. The MRT as defined in [8] is a conceptual tool and works
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Fig. 1. The Modulo Radon Transform converts high dynamic range tomographic information into low dynamic range samples. (a) The
Shepp-Logan phantom, (b) Conventional Radon Transform and (c) Modulo Radon Transform with λ = 0.01.

for functions on R2 (infinite sample sizes). In contrast, here, we de-
velop a reconstruction strategy that can handle finite sample sizes,
which is the case in practice. To make it practically amenable to
applications, we resort to a tool we refer to as λ-support. This may
be interpreted as an approximately compact support and alows us to
show how Radon Projections can be exactly recovered from Modulo
Radon Projections while using much less samples than our previ-
ously developed algorithm in [8]. The target function is then approx-
imated by applying filtered back projection to the recovered Radon
Projections, which leads to a reconstruction of the same quality as
for conventional Radon data.

We illustrate our theoretical results with a real Radon dataset
example, where our current approach to MRT is able to compress
the dynamical range of the Radon projections by about 500 times
and the increase in sample size is only one fifth compared to our
earlier work in [8].

2. MODULO RADON TRANSFORM

Let f ≡ f (x) be the two-dimensional function or image in our setup
with spatial coordinates x = (x1, x2)> ∈ R2. For given λ > 0, we
consider the problem of recovering f from its Modulo Radon data{

Rλf (θ, t)
∣∣ (θ, t) ∈ S1 × R

}
with the Modulo Radon Transform Rλf : S1×R −→ [−λ, λ] given
by

Rλf (θ, t) = Mλ (Rf (θ, t)) .

Here, Mλ denotes the centered 2λ-modulo operation with

Mλ (t) = 2λ

(s
t

2λ
+

1

2

{
− 1

2

)
,

where JtK = t− btc is the fractional part of t. Moreover, Rf is the
conventional Radon Transform of f ∈ L1

(
R2
)

with

Rf (θ, t) =

∫
`t,θ

f (x) dx,

which computes the line integral along the line `t,θ that is perpen-
dicular to θ = (cos (θ) , sin (θ)) with θ ∈ [0, 2π) and has distance
t from the origin. For fixed θ ∈ [0, 2π) we set

Rθf = Rf (θ, ·) and Rλ
θ f = Rλf (θ, ·) .

SinceR satisfies the evenness conditionRf (−θ,−t) = Rf (θ, t),
it suffices to collect the data at projection angles θ ∈ [0, π).

For illustration, Fig. 1 shows the Shepp-Logan phantom fSL to-
gether with its Radon TransformRfSL and its Modulo Radon Trans-
form RλfSL with threshold λ = 0.01. In this example, the MRT is
able to compress the dynamic range ofRfSL by about 25 times.

The Modulo Radon Transform measurements are converted to a
discrete-time form via a generalized sampling operation yielding the
Modulo Radon Projections

pλθ [k] = Mλ

(∫
R
Rθf (t) φ (kT− t) dt

)
= pλθ (kT) .

Here T is the sampling rate of the kernel φ ∈ L2 (R) which charac-
terizes the impulse response of the detector used for data acquisition
at different projection angles θ ∈ [0, 2π).

In this paper, we assume that φ is given by the ideal low-pass
filter ΦΩ ∈ PWΩ of bandwidth Ω > 0 and propose the following
sampling architecture for obtaining Modulo Radon samples in the
dynamical range [−λ, λ] with given threshold λ > 0:

(i) For fixed angle θ ∈ [0, π) we start with the one-dimensional
projectionRθf ∈ L1 (R) to be sampled.

(ii) Pre-filtering of Rθf with ΦΩ ∈ PWΩ results in the Radon
Projection pθ ∈ PWΩ given by

pθ (t) = (Rθf ∗ ΦΩ) (t) =

∫
R
Rθf (s) ΦΩ (t− s) ds.

(iii) The Radon Projection pθ is folded in the range [−λ, λ] via
the centered 2λ-modulo mapping Mλ resulting in

pλθ (t) = Mλ (pθ (t)) .

(iv) Finally, the Modulo Radon Projection pλθ is sampled with
sampling rate T > 0 yielding uniform samples

pλθ [k] = pλθ (kT) = Mλ (pθ (kT)) .

If the function f is itself band-limited with bandwidth Ω, the
pre-filtering step (ii) does not change the data and we have

pθ (t) = Rθf (t) .

In applications, however, we deal with compactly supported func-
tions f that cannot be band-limited. In this case, the Radon projec-
tion pθ ∈ PWΩ has essentially compact support in the sense that for
any c > 0 there is tc > 0 such that |pθ (t)| < c, ∀ |t| > tc. In the
following, we assume that f is supported in B1 (0), i.e.,

f (x) = 0 ∀ ‖x‖2 > 1.



Moreover, in practice only finitely many samples of pλθ are taken
for finitely many angles θ ∈ [0, π). Here, we assume that we are
given Modulo Radon Projections{

pλθm(tk) | −K ≤ k ≤ K, 0 ≤ m ≤M − 1
}

in parallel beam geometry with tk = kT and θm = m π
M

, where
T > 0 is the spacing of 2K + 1 parallel lines per angle.

To deal with this, we propose a sequential reconstruction ap-
proach, which we name US-FBP method. In the first step, we apply
Unlimited Sampling (US) for what we call compactly λ-supported
functions to recover pθ from pλθ for each angle θ. This will be ex-
plained in detail in Section 3. In the second step, we recover f from
pθ by applying the approximate filtered back projection (FBP) for-
mula

fΩ =
1

2
R# (FΩ ∗ pθ) , (1)

where FΩ ∈ PWΩ is a reconstruction filter of the form

F1FΩ (ω) = |ω|W (ω/Ω)

with even window W ∈ L∞ (R) supported in [−1, 1] and R#h is
the back projection of h ≡ h (θ, t) defined as

R#h (x) =
1

2π

∫
S1
h
(
θ,x>θ

)
dθ.

As ΦΩ and FΩ have the same bandwidth, formula (1) can be rewrit-
ten as

fΩ =
1

2
R# (FΩ ∗ Rθf)

and provides a band-limited approximation fΩ ∈ PWΩ to f with

F2fΩ (ω) = W (‖ω‖2/Ω)F2f (ω) .

It is discretized using a standard approach and according to [15,
Section 5.1.1], the optimal sampling conditions for fixed bandwidth
Ω > 0 are given by T ≤ π/Ω, K ≥ 1/T, M ≥ Ω.

3. UNLIMITED SAMPLING OF
COMPACTLY λ–SUPPORTED FUNCTIONS

The goal of this section is to outline a guaranteed algorithm that
can recover finitely many samples γ [k] = g (kT) with sampling
rate T > 0, given its modulo samples y [k] = Mλ (g [k]). Our ap-
proach involves the forward difference operator ∆ : Rd+1 −→ Rd,
(∆a) [k] = a [k + 1] − a [k] and the corresponding anti-difference
operator S : Rd −→ Rd+1, (Sa) [k] =

∑k−1
j=1 a [j], so that

S (∆a) = a−a [1]. Further, we use the modulo decomposition [10]

g (t) = Mλ (g (t)) + εg (t) , (2)

where εg is a piecewise constant function with values in 2λZ. We set
εγ [k] = εg (kT) = γ [k] − y [k]. We will make two assumptions
on our function: g ∈ PWΩ is Ω-band-limited and approximately
compactly supported. That latter condition makes sense since in the
context of tomography the functions of interest live on a finite do-
main. The precise meaning of approximate compact support is clar-
ified below in Definition 1 where we define the λ-support Property.

Definition 1 (λ-support Property). Let λ > 0 and g : R −→ R
be a univariate function. We call g compactly λ-supported if there is
ρ > 0 such that |g (t)| < λ for |t| > ρ. In this case we write g ∈ Bρλ.

Algorithm 1 Unlimited sampling of λ-supported functions
Input: samples y [k] = Mλ (g (kT)) for k = −K′, . . . ,K, upper

bound βg ≥ ‖g‖∞

1: choose N =

⌈
log(λ)−log(βg)

log(TΩe)

⌉
+

2: s(0) [k] =
(
∆Nεγ

)
[k] =

(
Mλ

(
∆Ny

)
−∆Ny

)
[k]

3: for n = 0, . . . , N − 2 do

4: s(n+1) [k] = 2λ

⌈
bSs(n)[k]/λc

2

⌉
. (rounding to 2λZ)

5: end for

6: γ [k] = y [k] +
(
Ss(N−1)

)
[k]

Output: samples γ [k] = g (kT) for k = −K, . . . ,K

We remind the reader that when dealing with a finite number
of samples, a recovery algorithm for compactly supported functions
was proposed in [13,14] in the context of sparse and parametric func-
tions. However, by relaxing the compact support constraint by the
λ-support property, we can work with significantly smaller sample
sizes. This is the key benefit of this paper which is also very relevant
to the practical setup of tomography.

Our recovery strategy is summarized in Algorithm 1 and exploits
the observation that higher order finite-differences of smooth func-
tions can be made to shrink arbitrarily. This result is summarized in
the form of the following Lemma proved in [9, 10].

Lemma 1. For g ∈ PWΩ, the samples γ [k] = g (kT) satisfy

‖∆Nγ‖∞ ≤ (TΩe)N ‖g‖∞.

Thus, once the sampling rate is chosen so that (TΩe)N < λ/βg ,
we can extract ∆Nγ from folded samples y because at this sampling
rate it is guaranteed that

∆Nγ = Mλ

(
∆Nγ

)
= Mλ

(
∆Ny

)
.

Based on this observation, we now show that when g ∈ PWΩ ∩Bρλ,
Algorithm 1 recovers the samples γ [k] exactly if we have enough
modulo samples y [k]. How much is enough? This is answered by
the next theorem.

Theorem 1. Let g ∈ PWΩ ∩ Bρλ and let R>0 3 βg ≥ ‖g‖∞
be given. Then, a sufficient condition for the exact recovery of the
samples γ [k] = g (kT) , k = −K, . . . ,K, from modulo samples
y [k] = Mλ (g (kT)) , k = −K′, . . . ,K, using Algorithm 1 is
given by

T ≤ 1

2Ωe
and K′ ≥ max

{
K, ρT−1 +N

}
,

where

N =

⌈
log (λ)− log (βg)

log (TΩe)

⌉
+

.

Sketch of Proof for Theorem 1. If βg ≤ λ, the statement is trivially
true. Thus, we assume βg > λ. By the choice of T and N we have
(TΩe)N ≤ λ/βg and Lemma 1 ensures that ‖∆Nγ‖∞ ≤ λ. This
implies ∆Nγ = Mλ

(
∆Nγ

)
= Mλ

(
∆Ny

)
and, hence,(

∆Nεγ
)

[k] =
(
Mλ

(
∆Ny

))
[k]−

(
∆Ny

)
[k]

can be computed from y [k], k ∈ [−K′,K].
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Fig. 2. HDR tomography for walnut Radon data. (a) MRT with λ = 0.001 leads to 500-times compression in dynamic range. (b) US-FBP
recovers the walnut by compensating the information loss with oversampling of factor 2πe. (c) PU-FBP is not able to recover the walnut.

Since g ∈ Bρλ and K′ ≥ ρT−1 +N , we have

εγ
[
−K′

]
= g

(
−K′T

)
−Mλ

(
g
(
−K′T

))
= 0

and, for all 1 ≤ n ≤ N ,

(∆nεγ)
[
−K′

]
=

n∑
m=0

(
n

m

)
(−1)n−m εγ

[
−K′ +m

]
= 0.

With this, we show by induction in m that s(m) = ∆N−mεγ .
The induction seed reduces to the definition of s(0) = ∆Nεγ .
For the induction step, we assume that for fixed m we have
s(m) = ∆N−mεγ = ∆(∆N−(m+1)εγ). Then, applying the anti-
difference operator S yields, Ss(m) = ∆N−(m+1)εγ . In particular,
we have

(
Ss(m)

)
[k] ∈ 2λZ and indeed obtain

s(m+1) = 2λ

⌈
bSs(m)/λc

2

⌉
= Ss(m) = ∆N−(m+1)εγ .

Choosing m = N − 1 yields s(N−1) = ∆εγ and, consequently,
Ss(N−1) = S (∆εγ) = εγ − εγ [−K′] = εγ . This in combination
with modulo decomposition (2) yields γ [k] = y [k]+

(
Ss(N−1)

)
[k]

and the proof is complete.

4. NUMERICAL EXPERIMENTS

In our numerical experiments, we use the Walnut dataset from [16],
which is transformed to parallel beam geometry with M = 600
and K = 1128 corresponding to T = 1/1128. Moreover, the Radon
data is normalized to the dynamical range [0, 1] so that ‖Rf‖∞ = 1.
Its Modulo Projections are displayed in Fig. 2(a), where we use
λ = 0.001 and Ω = 207 so that T ≤ (2Ωe)−1 is fulfilled.

The reconstruction with our proposed US-FBP method is shown
in Fig. 2(b), where we use the cosine filter with

F1FΩ(ω) = |ω| cos
(πω

2Ω

)
1[−Ω,Ω] (ω) .

A related method to our problem is Phase Unwrapping (PU). How-
ever, redundancy plays a key role in our work which cannot be ex-
ploited with PU methods. Furthermore, PU cannot work with higher
order differences. A detailed discussion on these aspects is presented
in [10]. For comparison, we also applied PU in place of Unlim-
ited Sampling for recovering pθ from pλθ . The result is displayed
in Fig. 2(c). We observe that the PU-FBP method is not able to re-
cover the walnut, whereas our method yields a reconstruction of the
walnut that is competitive to the direct FBP reconstruction from con-
ventional Radon data. In this example, the MRT is able to compress
the dynamic range ‖Rf‖∞/ (2λ) by about 500 times.

Remarks on Numerical Assessment. We first want to compare our
US-FBP method of this work with the algorithm proposed in [8].
In this paper, we use that convolving a compactly supported g and a
band-limited φ results in a λ-supported function so that (g∗φ) ∈ Bρλ
for a sufficiently large ρ > 0. With this, we are able to greatly reduce
the necessary sample size for exact recovery from modulo samples.
In our numerical tests we found that the walnut Radon Projections
are λ-supported with ρ = 1.6. This yields K′ = 1815 and for each
angle we have to collect 2944 Modulo Radon Projections, which cor-
responds to an increase of sample size by 687 samples per angle. In
contrast, the algorithm in [8] needs d6/λe+N + 1 = 6011 Modulo
Radon Projections for each angle. This corresponds to an increase
by 3754 samples per angle, which is more than 5-times the amount.

Secondly, we note that empirically the US-FBP method works
with a much slower sampling rate T such that T ≤ (2Ωe)−1 is not
fulfilled. In the case of the walnut data, T is fixed but the bandwidth
Ω can be varied. We found that the US-FBP method succeeds even
for Ω = 600, which is the maximal choice to ensure the condition
M ≥ Ω and leads to a sharper reconstruction of the walnut.

Finally, we remark that the proposed US-FBP method is empir-
ically stable in the presence of noise. To demonstrate this, we added
white Gaussian noise with SNR of 30 dB to the Modulo Radon Pro-
jections of the walnut with λ = 0.075, which leads to an RMSE of
1.2× 10−3. Algorithm 1 succeeds to recover the Radon Projections
up to the same RMSE and the error between the US-FBP reconstruc-
tion and the FBP reconstruction from Radon data is 5× 10−4.

5. FUTURE WORK AND CONCLUSIONS

The problem of high dynamic range tomography is considered in
this paper. This topic is still in the early stages of its investigation
and recent examples of research efforts include [4–7]. In contrast,
we proposed a solution that is based on the Modulo Radon Trans-
form (MRT) [8]. The MRT encodes Radon Transform projections
with modulo non-linearity and this ensures that the detector never
saturates. A practical algorithm for inverting the MRT is proposed
which works sequentially; first the effect of non-linearity is removed
and then, filtered back projection is used of reconstruction. By in-
troducing an approximate form of compact support, we substantially
improve over the previously developed method for MRT in [8]. One
of the key areas of improvement is that one can work with lesser
sampling density. Our work raises a number of interesting ques-
tions related to tighter sampling guarantees, robustness with respect
to noise and possibility of a MRT Fourier Slice Projection theorem
that would avoid the need for a sequential recovery of images.
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