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Abstract—In this paper, we introduce the Modulo Radon
Transform (MRT) which is complemented by an inversion algo-
rithm. The MRT generalizes the conventional Radon Transform
and is obtained via computing modulo of the line integral of
a two-dimensional function at a given angle. Since the modulo
operation has an aliasing effect on the range of a function, the
recorded MRT sinograms are always bounded, thus avoiding
information loss arising from saturation or clipping effects. This
paves a new pathway for imaging applications such as high
dynamic range tomography, a topic that is in its early stages of
development. By capitalizing on the recent results on Unlimited
Sensing architecture, we prove that the Modulo Radon Trans-
form can be inverted when the resultant (discrete/continuous)
measurements map to a band-limited function. Thus, the MRT
leads to new possibilities for both conceptualization of inversion
algorithms as well as development of new hardware, for instance,
for single-shot high dynamic range tomography.

Index Terms—Computational imaging, computer tomography,
filtered back projection, modulo, sampling and Radon transform.

I. INTRODUCTION

X-ray imaging, Computed Tomography (CT) and Q-Ball
imaging are examples of revolutionary scientific and medical
imaging technologies. Many of these methods trace their roots
back to the beginning of the 20th century; an era that saw
many exciting breakthroughs. In 1901, Röntgen was awarded
the Nobel Prize in physics for discovering what is today known
as the X-rays. In the area of mathematics, in 1904, Minkowski
posed the problem of recovering an even function on a sphere,
given its integrals over “big circles”. In 1915, Funk [1] solved
this problem by providing an explicit formula. In 1917, Radon
[2] posed a similar problem based on line integrals in Eu-
clidean spaces. These interdisciplinary ideas culminated into a
number of applications with Radon Transform based computed
tomography (in radiology [3]) being a notable example.

Beyond its applications that have done wonders in medical
imaging, the Radon Transform has also been theoretically
studied in various fields due to its fundamental significance
as a mathematical tool. For instance, it is closely tied to the
study of partial differential equations [4]. In signal processing,
sampling of the Radon Transform has been considered [5]
and discrete versions have been proposed along with fast and
efficient recovery algorithms [6]. Finally, in the context of
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tomography and integral geometry, some generalizations have
been defined, such as the Exponential Radon Transform [7].

Recent Development of High Dynamic Range Tomography.
Our work is motivated by a practical challenge. All modern
imaging sensors are based on digital representation of data.
In this context, the dynamic range of the sensor recording
intensity (or line integral at a given projection angle) is fixed
by design. Recent technological advances have led to X-ray
sources that are getting more powerful. To leverage from this
progress, the detectors as well as the reconstruction algorithms
must also be enhanced. A particular challenge to this end is
to be able to record high intensity projections. Whenever the
intensity of the X-rays traversing a path exceeds the imaging
sensor’s threshold, the resultant CT information is lost due
to saturation and clipping. To overcome the dynamic range
hurdle, a number of papers in the recent years have proposed
the idea of exploiting multiple exposures. In [8], Chen et al.
propose a new method whereby, at each projection angle, the
voltage is adjusted several times (multiple exposures) and this
results in measurements corresponding to different intensities.
Thereon, a high dynamic range (HDR) image is recovered
using image fusion. This approach is known as HDR–CT. In
[9], Li et al. automate the approach reported in [8] so that
the intensity is self-adapted for HDR imaging. Eppenberger et
al. [10] proposed one of the first methods for 32-bit, colored
HDR X-ray imaging (cf. Fig. 2, [10]). Their approach utilized
an underexposed, an intermediate, and an overexposed image.
Multiple-exposure-based HDR imaging has also found appli-
cations in fluorescence [11] and ultrasound [12]. Hardware-
only approaches have also been recently explored for HDR
X-ray imaging. In [13], Weiss et al. propose a method for
increasing the sensor’s dynamic range.

Our Contributions. To overcome the dynamic range barrier,
in this paper, we take a single-shot computational sensing
approach that is based on a co-design of hardware and algo-
rithms and avoids multiple exposures. To this end, we propose
the Modulo Radon Transform (MRT)—a generalization of the
conventional Radon Transform—that records the modulo of
the Radon Transform. Our work is inspired by the Unlimited
Sensing Architecture [14]–[16] and exploits the idea that
modulo non-linearity folds the amplitudes. Hence, even though
the Radon Transform may take arbitrarily large values, the
modulo output has a fixed range; this is demonstrated in Fig. 2.



(a) Shepp-Logan Phantom

0

0.5

1
(b) Radon Transform

0

0.275

0.55
(c) Modulo Radon Transform

-0.025

0

0.025

Fig. 1. The Modulo Radon Transform converts high dynamic range tomographic information into low dynamic range samples. (a) The Shepp-Logan phantom.
(b) Conventional Radon Transform and (c) Modulo Radon Transform with λ = 0.025 leading to about a factor of 10-times compression in dynamic range.

Our specific contributions regarding the MRT are as follows:
• We introduce the MRT for integrable functions.
• We take a first step towards the inversion of the MRT

and show its injectivity for band-limited functions.
• Our approach is constructive and our mathematical theory

is complemented by a recovery algorithm for discrete data
that is empirically stable with respect to noise.

• We derive L2-error estimates for the reconstruction error
in the case of semi-discrete MRT samples of functions
from Sobolev spaces of fractional order.

A related problem to our work is that of phase-unwrapping.
However, controlling redundancy in the acquisition process
and resulting recovery guarantees and algorithms is where our
approach differs from phase-unwrapping. For more discussion,
we refer to [15] and Section V on numerical demonstration.
A Note on Practical Feasibility. We remark that the idea
of folding was implicitly realized in the imaging hardware
literature (cf. Fast ADCs [17] and reset-ADCs for HDR
imaging [18]), however, its link with modulo operator and
the resulting inverse problem was never studied. A first step
towards this direction was taken in [14]. For detailed overview
of related hardware, we refer the reader to [15]. Recently, HDR
X-ray imaging using pixel-level customization was discussed
in [13]. Since amplitude-folding has already been established
in the context of CMOS imagers [14], [15], [18], over time,
the folding strategy could certainly be combined with detector
technology used in tomography hardware [13].

II. CONVENTIONAL RADON TRANSFORM

Let f ≡ f (x) be the two-dimensional function or image in
our setup with spatial coordinates x = (x1, x2)

> ∈ R2. The
conventional Radon Transform R is a mapping of the form

Rf (θ, t) =

∫
R2

f (x) δ
(
t− x>θ

)
dx =

∫
`t,θ

f (x) dx

and computes the line integral along the line `t,θ specified in
Hesse normal form by x>θ = t, i.e. x1 cos (θ)+x2 sin (θ) = t,
where θ = (cos (θ) , sin (θ))

> ∈ S1 is the projection direction
with angle θ ∈ [0, 2π) and t ∈ R is the (signed) distance from
the origin. For the sake of brevity, for fixed θ ∈ [0, 2π) we set

Rθf = Rf (θ, ·) .

It is well-known that R : L1
(
R2
)
→ L1

(
S1 × R

)
defines a

continuous linear operator and the Fourier slice theorem states

F1 (Rθf) (t) = F2f (tθ) (1)

with the d-dimensional Fourier transform

FdΦ (ω) =

∫
Rd

Φ (y) e−iω>y dy.

This implies that R is injective on L1
(
R2
)
. Under additional

assumptions, e.g. f ∈ C∞c
(
R2
)

or f ∈ S
(
R2
)
, the inversion

of R is given by the filtered back projection (FBP) formula

f (x) =
1

2
R#

(
F−1

1 [|S| F1 (Rθf) (S)]
)

(x) ,

where the back projection R# denotes the rescaled L2-adjoint
of R, for g ≡ g (θ, t) given by

R#g (x) =
1

2π

∫
S1

g
(
θ,x>θ

)
dθ.

The inversion of R is a (mildly) ill-posed problem and a
common regularization strategy is to choose a band-limited
reconstruction filter FΩ ∈ PWΩ with bandwidth Ω > 0 and
apply the approximate FBP reconstruction formula

fΩ =
1

2
R# (FΩ ∗ Rθf) . (2)

The influence of FΩ on the approximation quality of fΩ in
Sobolev spaces of fractional order is analysed in [19]–[21].

The Radon Transform measurements are converted to a
discrete-time form via generalized sampling operation yielding
the projections

pθ [m] =

∫
R
Rθf (t) φ (mT− t) dt = pθ (mT) . (3)

Here T is the sampling rate of the kernel φ ∈ L2 (R) which
characterizes the impulse response of the detector used for
data acquisition. Note that {`mT,θ}m∈Z defines a family of
parallel lines with fixed direction θ ∈ S1. This setup is used
in what is known as parallel beam geometry. As R satisfies
the evenness condition

Rf (−θ,−t) = Rf (θ, t) ∀ (θ, t) ∈ S1 × R,

it suffices to collect the data at projection angles θ ∈ [0, π).
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Fig. 2. RθfSL (black) and Rλ
θ fSL (red) for θ = π

2
and λ = 0.025.

III. MODULO RADON TRANSFORM

As mentioned before, to overcome the dynamic range lim-
itation, we propose a generalization of the Radon transform,
which we call Modulo Radon Transform and makes use of a
modulo operation to enforce projection data with values in the
range [−λ, λ] for a given threshold λ > 0. To this end, we
define the centered modulo operator Mλ : R −→ [−λ, λ] with

Mλ (t) = 2λ

(s
t

2λ
+

1

2

{
− 1

2

)
,

where JtK = t−btc denotes the fractional part of t. With this,
we define the Modulo Radon Transform Rλ on S1 × R as

Rλf (θ, t) = Mλ (Rf (θ, t)) .

As before, for fixed angle θ ∈ [0, 2π) we set

Rλ
θ f = Rλf (θ, ·) = Mλ (Rθf) .

As an example, Fig. 1(a) shows the so called Shepp-
Logan phantom fSL which is a classical test case in medical
imaging. The amplitude is normalized so that ‖fSL‖∞ = 1. In
Fig. 1(b), we show the Radon Transform RfSL along with the
Modulo Radon Transform RλfSL with threshold λ = 0.025 in
Fig. 1(c). In this illustration, the MRT is able to compress the
dynamic range ρfSL,λ = ‖RθfSL‖∞/2λ by about 10 times.

For a better illustration of the modulo operation, Fig. 2
shows the univariate functions RθfSL and Rλ

θ fSL for fixed
projection angle θ = π/2 and with threshold λ = 0.025.

A. The Modulo Radon Transform is Injective

The MRT defines a non-linear operator Rλ : L1
(
R2
)
−→

L1
(
S1 × R

)
that might not be injective, since adding multi-

ples of λ does not change the image of Mλ. However, we now
show its injectivity for the band-limited class. This assumption
is motivated by the fact that the approximate FBP reconstruc-
tion formula (2) is still one of the most applied reconstruction
techniques in tomography [22], where the reconstruction filter
satisfies

F1FΩ (S) = |S|W (S/Ω) (4)

with an even window W ∈ L∞ (R) supported in [−1, 1], and

F2fΩ (x) = W (‖x‖2/Ω) F2f (x) .

Hence, (2) provides a band-limited approximation fΩ to the
target function f ∈ L1

(
R2
)
, i.e.

fΩ ∈ BΩ

(
R2
)
⇐⇒ F2fΩ = 1BΩ(0) F2fΩ,

where 1BΩ(0) denotes the indicator function of the ball BΩ (0).
From now on let f belong to the Bernstein space B1

Ω

(
R2
)
,

that is f ∈ B1
Ω

(
R2
)
⇐⇒ f ∈ L1

(
R2
)
∩ BΩ

(
R2
)
. Thus,

applying the Fourier slice theorem (1) shows that we have
Rθf ∈ B1

Ω (R) ⊂ PWΩ for all θ ∈ [0, 2π). Moreover, a
direct consequence of [23, Theorem 3] is the injectivity of the
modulo operator Mλ on the Paley-Wiener space PWΩ.

Lemma 1 (Injectivity of Mλ). Any φ ∈ PWΩ is uniquely
determined by its modulo folded version Mλφ.

Consequently, with the injectivity of the Radon Transform
follows that

Rλf = Rλg =⇒ f = g

for all f, g ∈ B1
Ω

(
R2
)

and we have shown the following
Injectivity Theorem for Modulo Radon Transform.

Theorem 1 (Injectivity of the Modulo Radon Transform). For
any threshold λ > 0 the Modulo Radon Transform Rλ is
injective on the Bernstein space B1

Ω

(
R2
)

for any Ω > 0.

In particular, Theorem 1 implies that the MRT is invertible
as a mapping Rλ : B1

Ω

(
R2
)
−→ Rλ

(
B1

Ω

(
R2
))

.
In the following we demonstrate how to recover f from

discrete measurements of its Modulo Radon Transform by
applying Unlimited Sampling (US), which has been introduced
in [14] and makes use of the forward difference operator ∆
as well as the anti-difference operator S. For details on US,
we refer to [14], [15].

IV. RECOVERY VIA UNLIMITED SAMPLING

Case 1: Band-limited target function. Let f ∈ B1
Ω

(
R2
)

so
that Rθf ∈ PWΩ for all θ ∈ [0, π). Due to the Unlimited
Sampling Theorem [15, Theorem 3], Rθf can be recov-
ered by unlimited sampling from discrete modulo samples
yλθ [m] = Rλ

θ f (mT), m ∈ Z, if the sampling rate satisfies
T ≤ 1/2Ωe. The recovery procedure is outlined in Algorithm 1.
Consequently, Rf can be recovered by unlimited sampling
from semi-discrete MRT samples{

Rλ
θ f (mT) | θ ∈ [0, π), m ∈ Z

}
.

Since Rθf ∈ PWΩ, the approximate FBP reconstruction
formula (2) uniquely recovers f from Rf if the Ram-Lak filter
is used, which satisfies F1FΩ (S) = |S|1[−Ω,Ω] (S).

Theorem 2. Any f ∈ B1
Ω

(
R2
)

can be recovered from MRT
samples

{
Rλf (θ,mT) | θ ∈ [0, π), m ∈ Z

}
if T ≤ 1/2Ωe.

Case 2: Arbitrary target function. In case of f ∈ L1
(
R2
)

we perform the following steps:
(i) For fixed θ ∈ [0, π) we start with pre-filtering Rθf with

the ideal low-pass filter ΦΩ ∈ PWΩ. The resulting band-
limited Radon Projection (cf. (3)) takes the form

pθ(t) =

∫
R
Rθf (S) ΦΩ (t− S) dS.
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Fig. 3. Demonstration of US-FBP reconstruction for the Shepp-Logan phantom. (a) MRT projections. (b) Recovery using phase unwrapping. (c) Recovery
using proposed method. (d) FBP on Modulo Radon data in (a). (e) FBP on unwrapped Radon data in (b). (f) FBP on recovered Radon data in (c).

(ii) The Radon Projection pθ is folded in the range [−λ, λ]
via modulo operator Mλ resulting in the Modulo Radon
Projection pλθ (t) = Mλ(pθ(t)).

(iii) The Modulo Radon Projection pλθ is sampled with rate T
yielding pλθ [m] = pλθ (mT) = Mλ (pθ (mT)) for k ∈ Z.

By construction we have pθ ∈ PWΩ for all θ ∈ [0, π). Due
to [15, Theorem 3], pθ can be recovered by unlimited sampling
from discrete modulo samples pλθ [m] = pλθ (mT), m ∈ Z,
if the sampling rate satisfies T ≤ 1/2Ωe. Following this, we
apply the approximate FBP reconstruction formula (2) to the
recovered Radon Projections pθ = Rf ∗ ΦΩ yielding the so
called US-FBP reconstruction denoted by fλΩ.

Algorithm 1 Unlimited Sampling–Filtered Back Projection
Input: samples yλθ [k] = Rλ

θ f (kT) for k ∈ Z and θ ∈ [0, π),
upper bound 2λZ 3 βf ≥ ‖f‖∞

1: choose N =
⌈

log(λ)−log(βf )
log(TΩe)

⌉
, J = 6

βf
λ

2: s(0) [k] =
(
Mλ

(
∆Nyλθ

)
−∆Nyλθ

)
[k]

3: for n = 0, . . . , N − 2 do
4: s(n+1) [k] = 2λ

⌈
bSs(n)[k]/λc

2

⌉
5: κn =

⌈
s(n+1)[1]−s(n+1)[J+1]

12βf
+ 1

2

⌉
6: s(n+1) [k] = s(n+1) [k] + 2λκn
7: end for
8: yθ [k] = yλθ [k] +

(
Ss(N−1)

)
[k]

9: Rθf =
∑
k∈Z yθ [k] sinc

(
π
T (· − kT)

)
Output: US-FBP reconstruction fλΩ = 1

2R
# (FΩ ∗ Rθf)

A Note on US-FBP Error Bound. If we use a reconstruction
filter FΩ satisfying (4), we observe that

fΩ =
1

2
R# (FΩ ∗ Rθf) =

1

2
R# (FΩ ∗ pθ)

and, thus, existing error estimates for the FBP approximation
error f−fΩ carry over to the US-FBP error f−fλΩ. To illustrate
this, we apply [19, Theorem 5.5] and [20, Theorem 3] to obtain
error estimates in Sobolev spaces of fractional order α > 0,
given by Hα

(
R2
)

=
{
f ∈ L2

(
R2
)
| ‖f‖α <∞

}
, where

‖f‖2α =
1

4π2

∫
R2

(
1 + ‖x‖22

)α |F2f (x) |2 dx.

Theorem 3 (Reconstruction Error Bound). For α > 0, let
f ∈ L1

(
R2
)
∩ Hα

(
R2
)

and, for λ > 0, let fλΩ denote
the US-FBP reconstruction from semi-discrete Modulo Radon
Projections

{
pλθ (mT) | θ ∈ [0, π), m ∈ Z

}
with T ≤ 1/2Ωe.

If the reconstruction filter’s window satisfies W ∈ C [−1, 1]
and W (S) = 1 for S ∈ [−cW , cW ] with cW > 0, then the
L2-norm of the US-FBP error is bounded above by

‖f − fλΩ‖L2(R2) ≤
(
c−αW ‖1−W‖∞ + 1

)
Ω−α ‖f‖α.

Alternatively, if W ∈ C k−1,ν [−1, 1] for k ∈ N, ν ∈ (0, 1] and
W (0) = 1, W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1, then the L2-norm
of the US-FBP error is bounded by

‖f − fλΩ‖L2(R2) ≤ cα,W Ω−min{k−1+ν,α} ‖f‖α

with an explicitly known constant cα,W > 0.



V. NUMERICAL EXPERIMENTS

In our numerical experiments we use the proposed US-FBP
framework to recover the Shepp-Logan phantom on a grid of
256×256 pixels from finitely many Modulo Radon Projections{

pλθk(tm) | −M ≤ m ≤M, 0 ≤ k ≤ K − 1
}

in parallel beam geometry with tm = mT and θk = k π
K . To

this end, the FBP formula (2) is discretized using a standard
approach and according to [24, Section 5.1.1], the optimal
sampling conditions are given by T ≤ π/Ω, M ≥ 1/T, K ≥ Ω.

The results are summarized in Fig. 3, where we used the
bandwidth Ω = 180, threshold λ = 0.001, the parameters
T = 1/2Ωe, M = d1/Te, K = Ω, and the cosine filter
with F1FΩ(S) = |S| cos

(
πS
2Ω

)
1[−Ω,Ω] (S). As predicted by

our theory, the FBP reconstruction from conventional Radon
Transform data and the US-FBP reconstruction from Modulo
Radon Projections yield approximately the same root mean
square error (RMSE) of 7.229× 10−2.

Remarks on Numerical Assessment. For comparison, we
also applied Phase Unwrapping (PU) in place of Unlimited
Sampling for recovering Radon Projections from Modulo
Radon Projections. The result is displayed in Fig. 3(b) and the
corresponding FBP reconstruction fails, as shown in Fig. 3(e).
When λ is small, higher order differences are needed for
recovery. This can be tackled by the Unlimited Sampling
approach but is a fundamental limitation of the PU method
which only works for single order difference [15].

Secondly, we note that empirically the US-FBP method
works with a much slower sampling rate T so that the
condition T ≤ (2Ωe)

−1 is not fulfilled. Note that the choice
T = 1/ (2Ωe) corresponds to an oversampling factor of 2πe
compared to the Nyquist rate. In our numerical experiments
with the Shepp-Logan phantom and λ = 0.001 we found that
the reconstruction succeeds even for T = π/ (4Ω), which
corresponds to a much smaller oversampling factor of 4.

Finally, we remark that the proposed US-FBP method is
empirically stable in the presence of noise in the modulo
samples. To demonstrate this, we added white Gaussian noise
with SNR of 32.5 dB to the Modulo Radon Projections of
the Shepp-Logan phantom with λ = 0.05, which leads to
an RMSE of 6.4 × 10−4. Unlimited Sampling succeeds to
recover the Radon Projections up to the same RMSE and
the error between the US-FBP reconstruction and the FBP
reconstruction from conventional Radon data is 3.3× 10−4.

VI. CONCLUSIONS

In this work, we propose the Modulo Radon Transform
(MRT) which is obtained from the modulo of line integrals
used in the usual Radon Transform. We discuss conditions
under which the MRT is an injective mapping and complement
our approach with an inversion method. Recent advances in the
tomography source technologies require modifications to both
hardware and algorithms so that high dynamic range (HDR)
reconstructions are possible. As an alternative to existing
multiple-exposure HDR tomography, the MRT allows for

single-shot reconstruction. Beyond tomography, in the general
context of Radon Transform our work leads to a new class
of inverse problems with several interesting future directions.
For instance, a Fourier Slice Projection theorem for the MRT
would strengthen the applicability of our approach.

REFERENCES
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[2] J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralw-
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