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Abstract—We propose a wetting and drying SPH algorithm for

the numerical solution of the shallow water equations, following
the semi-implicit scheme of Casulli [10] and that of our previous
work [3]. To this end, we derive a mildly nonlinear system for the
discrete free surface elevation from the shallow water equations
by taking into consideration a correct mass balance in wet regions
and in transition regions, i.e., the regions from wet particles
to dry particles and those from dry particles to wet particles.
Unlike in other approaches, our algorithm does not place screens
or threshold values at some points to deal with the treatment
of wetting and drying. The proposed method of this paper is
simple, efficient, conserves mass, guarantees the production of
non-negative free surface water depths, and it permits large time
step sizes. The algorithm is validated on an inviscid hydrostatic
free surface flow for the shallow water equations.

I. INTRODUCTION

This paper proposes a new wetting and drying semi-implicit

SPH algorithm applied to the shallow water equations. We

consider the inviscid hydrostatic free surface flows. Such

flows are governed by the shallow water equations which we

can derive by vertically or laterally averaging the fully three

dimensional incompressible Navier-Stokes equations with the

assumption of a hydrostatic pressure distribution (see [11],

[12]).

Wetting and drying is a common phenomena in shallow

water flows where water level rises, called wetting, and where

water level recedes, called drying. This process can occur

during events, such as inundation of coastal regions that are

often due to storm surges and wave driven run-up on beaches,

even more in biological processes i.e., during the drying phase

on a tidal mud flat algal mats [17]. These processes occur

on periodic time intervals. Since the shallow water equations

are well defined in a fully wetted region in the domain,

when water height recedes and goes to zero, this affects

the numerical solution of the equations, where the arising

problems may become ill-posed. Viable approaches to tackle

such problems are essentially incorporating wetting and drying

into the numerical scheme or a dynamic adaptivity in the

computational domain as the water level moves. Pioneering

work in wetting and drying on two-dimensional shallow water

equations is due to Leendertse [20], whose approach makes use

of an alternating direction implicit ADI method to discretize

the governing equations. There is a considerable amount of

work relying on finite volume and finite element schemes to

treat wetting and drying, e.g. [1], [6], [9], [15], [18], [19],

[23], [29], to mention but a few. All these techniques make

use of mesh adaptation (by deforming domains and meshs) and

mesh reduction. The latter is by putting ’screens’ at velocity

points of the flow configuration when the water height drops

below a certain drying threshold and removing the screens

when the water height rises above a wetting threshold. This

approach is problem-dependent and the threshold parameters

must be tuned, where the thin water layer technique uses a

fixed mesh to maintain a thin layer of water in nominally dry

elements. Vater, Beisiegel and Behrens [27] propose a limiter-

based approach in the velocity and water height to prevent

instabilities.

In explicit numerical methods, the major problem is their se-

vere time step restriction, where the Courant-Friedrichs-Lewy

(CFL) condition imposes the time step size in terms of the

wave propagation speed and the mesh size. Hence, the major

advantage of a semi-implicit approach is that stable schemes

are obtained which allow large time step sizes at a reasonable

computational cost. In a staggered mesh approach for finite

differences and volumes, discrete variables are often defined

at different (staggered) locations. The pressure term, which is

the free surface elevation, is defined in the cell center, while

the velocity components are defined at the cell interfaces. In

the momentum equation, pressure terms that are due to the

gradients in the free surface elevations and the velocity in the

mass conservation are both discretized implicitly, whereas the

nonlinear convective terms are discretized explicitly.

The treatment of wetting and drying in shallow water

equations using a truly meshfree numerical method is a new

approach. In fact, to the best of our knowledge, only [25], [26]

solve the Thacker’s test case [24] and flooding problem with a

shallow water SPH model using a dynamic particle coalescing

and splitting method.

This paper proposes a new wetting and drying semi-implicit

Smoothed Particle Hydrodynamics (SPH) algorithm for the

numerical solution of the shallow water equations, following
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the semi-implicit SPH scheme in [3]. The wetting and drying

relies on the work of Casulli [10] for unstructured meshes,

where the resulting numerical algorithm can directly be de-

veloped from the governing equations. In this way, a correct

mass balance is assured in wet particle regions and in transition

regions, i.e., particle regions, from wet to dry and from dry

to wet regions, with maintaining a nonnegative water height.

The approach taken boils down to solving a mildly nonlinear

system. When wetting and drying is occurs, more iterations

are need for the solution of the mildly nonlinear system.

The remainder of this paper is organized as follows: In

Section II, the numerical model for the shallow water equa-

tions and the basic concept for the particle approximations

are presented. In Section III, the key ideas of the wetting and

drying algorithm are presented together with smoothed par-

ticle hydrodynamics (SPH) approximations. Finally, a model

problem concerning an oscillating lake resulting in a parabolic

basin is used in our numerical examples in Section IV to val-

idate the proposed semi-implicit SPH algorithm. Concluding

remarks, along with an outlook to future research are provided

in Section V.

II. PROBLEM STATEMENT AND MODELING

This section briefly introduces the utilized models and

particle approximations. Vectors are defined by reference to

Cartesian coordinates. Latin subscripts are used to identify

particle locations, where subscript i refers to the focal particle

and subscript j denotes the neighbour of particle i.

A. The Kernel Function

We use a mollifying function W , a positive decreasing

radially symmetric function with compact support, of the

generic form

W (r, h) =
1

hd
W

(

‖r‖

h

)

for r ∈ [0,∞) and h > 0.

In our numerical examples, we work with the B-spline kernel

of degree 3 [21], given as

W (r, h) = K ×




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where the normalisation coefficient K takes the value 2/3
(for dimension d = 1), 10/(7π) (for d = 2), or 1/π (for

d = 3) and W (r, h) = Wij henceforth. For the mollifyer

W ∈ W 3,∞(Rd), h > 0 is referred to as the smoothing length,

being related to the particle spacing ∆P by h = 2∆P . The

smoothing length h can vary locally according to

hij =
1

2
[hi + hj ] where hi = σ d

√

mj

ρj
. (1)

In this study, we use the smoothing length in (1). Moreover, σ
is in [1.5, 2.0], which ensures approximately a constant number

of particle neighbours of between 40 − 50 in the compact

x

z

η

h

Fig. 1. Sketch of the free surface (light blue) and the bottom bathymetry
(thick black)

support of each kernel. A popular approach for the kernel’s

normalisation is by Shepard interpolation [22], where

W ′

ij =
Wij

∑N

j=1

mj

ρj
Wij

.

Normalisation is of particular importance for particles close

to free surfaces, since this will reduce numerical instabilities

and other undesired effects near the boundary.

The gradient of the kernel function is corrected by using the

formulation proposed by Belytschko et al [4]. For the sake of

notational convenience, we will from now refer to the kernel

function W ′

ij as Wij and to its gradient ∇W ′

ij as ∇Wij .

B. Governing Equations

The governing equations considered in this work are non-

linear hyperbolic conservation laws of the form

Lb(Φ) +∇ · (F (Φ,x, t)) = 0 for t ∈ R
+,Φ ∈ R (2)

together with the initial condition

Φ(x, 0) = Φ0(x) for x ∈ Ω ⊂ R
d,Φ0 ∈ R

where Lb is the transport operator given by

Lb(Φ) =
∂Φ

∂t
+∇ · ((bΦ))

and

x = (x1, ..., xd), F = (F 1, ..., F d), b = (b1, ..., bd),

where b is a regular vector field in R
d, F is a flux vector in

R
d, and x is the position.

Fig. 1 gives a sketch of the flow domain, i.e., the free surface

elevation and the bottom bathymetry. In this configuration,

the vertical variation is much smaller than the horizontal

variation, as typical for rivers flowing over long distances of

e.g. hundreds or thousands of kilometres. We consider the
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frictionless, inviscid shallow water equations in Lagrangian

derivatives, given as

Dη

Dt
+∇ · (Hv) = 0 (3)

Dv

Dt
+ g∇η = 0 (4)

Dr

Dt
= v (5)

where η = η(x, y, t) is the free surface location,

H(x, y, t) = h(x, y) + η(x, y, t)

is the total water depth with bottom bathymetry h(x, y), and

where v = v(x, y, t) is the particle velocity, r = r(x, y, t) the

particle position, and g the gravity acceleration.

C. Hydrostatic Approximation

In geophysical flows the vertical acceleration is often small

when compared to the gravitational acceleration and to the

pressure gradient in the vertical direction as in the case of our

flow domain in Fig 1. For instance, if we consider tidal flows

in the ocean the velocity in the horizontal direction is of the

order of 1m/s, while the velocity in the vertical direction is

much smaller of the order of one meter per tidal cycle i.e.,

10−5m/s. To this end, if the advective and viscous terms are

neglected in the vertical momentum equation of the Navier-

Stokes equation, we have the equation for pressure which reads

dp

dz
= −g. (6)

The pressure represents a normalised pressure, that is we mean

the pressure is divided by constant density. The solution that

satisfies (6) is given by the hydrostatic pressure

p(x, y, z, t) = p0(x, y, t) + g[η(x, y, t)− z],

where p0(x, y, t) marks the atmospheric pressure at the free

surface which without loss of generality is taken as a constant.

III. WETTING AND DRYING METHODOLOGY

This section introduces the methodology employed towards

the construction of our proposed wetting and drying semi-

implicit SPH algorithm. Fig. 2 depicts a simple hydraulic

wetting and drying pattern. Below the free surface, the domain

is fully wetted with a nonvanishing velocity i.e., v 6= 0, H > 0
and at the dry region both velocity and total water depth is

zero, v = 0, H = 0.

A. Subparticle Modeling

When wetting and drying processes are modelled and sim-

ulated, the shallow water equations are defined on a time

dependent domain Ω(t) as

Ω(t) = {(x, y) : H(x, y, t) > 0} (7)

where Ω(t) is intrinsically one of unknowns to be determined

numerically. Also, since the fluid boundary is also moving

and one can not determine the position a priori. To circum-

vent this difficulty, Casulli [10] defined a piecewise constant

v 6= 0

H > 0

Free surface elevation

H = 0

v = 0

Fig. 2. Wetting and drying hydraulic pattern

function. For a specified bathymetry h(x, y) we give a precise

description of the flow by a function a(x, y, z) defined by

a(x, y, z) =

{

1 for h(x, y) + z > 0

0 otherwise

for (x, y) ∈ Ω and −∞ < z < ∞. At z = ηni , the horizontal

integral for each particle i given by

ai(η
n
i ) =

∫

Ωi

a(x, y, ηni )dxdy (8)

represents the free-surface area. We can state clearly that when

ai(η
n
i ) = 0, the ith particle is dry, when ai(η

n
i ) = Vi, the ith

particle is wet and when 0 < ai(η
n
i ) < Vi, the ith is partially

wet respectively. The piecewise constant function defined by

a(x, y, z) means that ai(η
n
i ) is nonnegative, nondecreasing and

bounded. For each particle i, the total water depth is given by

H(x, y, ηni ) =

∫ ηn
i

−∞

a(x, y, ηni )dz

= max [0, h(x, y) + ηni ]

(9)

so that H(x, y, ηni ) ≥ 0, and strict inequality identifies a wet

particle. Hence, the wet region is given by

Ωn
i = {(x, y) ∈ Ωi : H(x, y, ηni ) > 0} (10)

The water volume for particle i is given by

Vi(η
n
i ) =

∫ ηn
i

−∞

ai(z)dz =

∫

Ωi

H(x, y, ηni )dxdy (11)

Because ai(z) is nonnegative and nondecreasing, we have

Vi(η
n
i ) ≥ 0 and strict inequality necessarily implies

ai(η
n
i ) > 0.

B. Classical SPH Formulation

The standard SPH formulation discretizes the computational

domain Ω(t) by a finite set of N particles, with positions

ri. According to Gingold and Monaghan [16], the SPH
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discretization of the shallow water equations (3)-(5) are given

as

ηn+1
i − ηni

∆t
+

N
∑

j=1

mj

ρj
Hijvj∇Wij = 0 (12)

vn+1
i − vn

i

∆t
+ g

N
∑

j=1

mj

ρj
ηj∇Wij = 0 (13)

Dri

Dt
= vi (14)

where the particles are advected by (14), with ∆t being the

time step size, mj the particle mass, ρj the particle density, and

∇Wij is the gradient of kernel Wij w.r.t. xi. In the scheme

[16], [21] of Gingold & Monaghan, ∇ · (Hv) and ∇η are

explicitly computed. We remark that eqns. (12)-(14) follow

from a substitution of the flow variable with corresponding

derivatives, using integration by parts, and the divergence

theorem.

C. SPH Formulation of Vila and Ben Moussa

In the construction of our proposed semi-implicit SPH

scheme, we use the concept of Vila & Ben Moussa ( [5], [28]),

whose basic idea is to replace the centred approximation

(F (vi, xi, t) + F (vj , xj , t)) · nij

of (2) by a numerical flux G(nij , vi, vj), from a conservative

finite difference scheme, satisfying

G(n(x), v, v) = F (v, x, t) · n(x)

G(n, v, u) = −G(−n, u, v).

With using this formalism, the SPH discretization of equa-

tions (12)-(13) becomes

ηn+1
i − ηni

∆t
+

N
∑

j=1

mj

ρj
2Hijvij∇Wij = 0,

vn+1
i − vn

i

∆t
+ g

N
∑

j=1

mj

ρj
2ηij∇Wij = 0.

In this way, we define for a pair of particles, i and j, the free

surface elevation ηi, ηj and the velocity vi, vj , respectively

(see Fig. 3). In our approach, we, moreover, use a staggered

velocity vij between two interacting particles i and j as

vij =
1

2
(vi + vj) · nij

in the normal direction n
d=1,2
ij at the midpoint of the two

interacting particles, where

n1
ij =

xj − xi

‖xj − xi‖
and n2

ij =
yj − yi
‖yj − yi‖

for the two components of vector nij . Moreover,

δ1ij = ‖xj − xi‖ and δ2ij = ‖yj − yi‖

gives the distance between particles i and j. Since the veloc-

ities at the particles’ midpoint are known, we can use kernel

summation for velocity updates.

ηi vi

ηj vj

nij

vn
ij

Fig. 3. Staggered velocity defined at the midpoint of two pair of interacting
particles i and j.

D. Semi-implicit SPH Scheme

For the full derivation of the semi-implicit SPH scheme,

we refer the reader to our previous work (see [2], [3]). Let us

consider the continuity equation in the original conservative

form given as

ηnt +∇ · (Hnvn+1) = 0. (15)

The velocity v will be discretized implicitly, the total water

depth H is discretized explicitly. For the sake of notation,

by implicitly and explicitly we mean n + 1 and n in the

superscript, respectively:

vn
t + g · ∇ηn+1 = 0

ηnt +∇ · (Hnvn+1) = 0.

Furthermore, we have discretized the particle velocities and

free surface elevation in time by the theta method for the sake

of time accuracy and computational efficiency i.e n + 1 =
n+Θ. So we have

vn
t + g · ∇ηn+Θ = 0 (16)

ηnt +∇ · (Hnvn+Θ) = 0, (17)

where the theta method notation reads:

ηn+Θ = Θηn+1 + (1−Θ)ηn

vn+Θ = Θvn+1 + (1−Θ)vn.

The factor Θ is called the implicitness factor which should be

taken from
[

1

2
, 1
]

see Casulli and Cattani [11] for details.

The general semi-implicit SPH discretization of (16) - (17)

assumes the form

vn+1
ij − Fvn

ij

∆t
+

g

δij
Θ(ηn+1

j − ηn+1
i )

+
g

δij
(1−Θ)(ηnj − ηni )

= 0,

(18)
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ηn+1
i − ηni

∆t
+Θ

N
∑

j=1

mj

ρj
(2Hn

ijv
n+1
ij )∇W ij · nij

+ (1−Θ)
N
∑

j=1

mj

ρj
(2Hn

ijv
n
ij)∇W ij · nij

= 0,

(19)

where

Hn
ij = max(0, hn

ij + ηni , h
n
ij + ηnj ). (20)

In a Lagrangian formalism, the explicit operator Fvn
ij takes

the simple form in (18)

Fvnij =
1

2
(vi + vj), (21)

where vi and vj denotes the velocity of particles i and j at

time tn. The new velocity is computed through simple kernel

summation:

vn+1
i = vn

i +

N
∑

j=1

mj

ρj
(vn+1

ij − vni )Wij . (22)

We should note that in (18) we have not used the gradient of

the kernel function for the discretization of the gradient of η.

We rather used a finite difference discretization for the pressure

gradient. This increases the accuracy, in (18) F corresponds to

an explicit spatial discretization of the advective terms. Since

SPH is a Lagrangian scheme, the nonlinear convective term

is discretized automatically, using the Lagrangian (material)

derivative contained in the particle motion in Eqn. (14).

Equation (21) is used to interpolate the particle velocities from

the particle location to the staggered velocity location.

E. The Free Surface Equation and Mass Conservation

Substituting the discrete momentum equation into the dis-

crete continuity equation. The model is reduced into a smaller

model in ηn+1
i as the only unknown.

Multiplying (19) by ωi and inserting (18) into (19) we obtain

V (ηn+1
i )− gΘ2∆t2

δij

N
∑

j=1

2ωiωj

[

Hn
ij(η

n+1
j − ηn+1

i )∇W ij · nij

]

= bni ,
(23)

where the right hand side bni represents the known values at

time level tn given as

bni = V (ηni )−∆t

N
∑

j=1

2ωiωjH
n
ijFvn+Θ

ij ∇W ij · nij

+ gΘ(1−Θ)
∆t2

δij

N
∑

j=1

2ωiωj

[

Hn
ij(η

n
j − ηni )∇W ij · nij

]

,

(24)

where V (ηn+1
i ) is the water volume where the nonlinearity

resides, Fvn+Θ
ij = ΘFvn

ij + (1 − Θ)vn
ij . Since Hn

ij , ωi, ωj

are non-negative numbers, equations (23) - (24) constitute a

nonlinear system of N equations for ηn+1
i unknowns due to

the piecewise constant water volumes.

Having computed the free surface and water velocity, the

new total depth Hn+1
ij has to be updated. Since, the bathymetry

hij are specified at the locations. A negative value for H is

physically meaningless, then our discrete total depth Hij at

the next time are defined as

Hn+1
ij = max(0, hn+1

ij + ηn+1
i , hn+1

ij + ηn+1
j ) (25)

where we note that Hij = Hji.

But a zero value for H simply means a particle is dry which

can be later on wetted when the total water depth H becomes

positive. So, if H is positive, the particle is wet and the vertical

variation of the particle will be non zero whereas when H is

zero, the particle is dry and the particle’s vertical variation will

be zero.

In this numerical model, considering Equation (23) we can

inspect clearly that the resulting semi-implicit SPH equation

for the free surface equation accurately accounts for the

treatment of positive and zero values for the total water depth

H . We can further see that the treatment of wetting and drying

is naturally present in the present study without taking into

account special treatment. And this formulation guarantees

mass conservation while accounting for wetting and drying

fronts. When the total water depth of a particle is zero, this

implies a no mass flux or a zero velocity until at a later time

when H becomes positive. In Equation (23), if we set H to be

zero, the free surface equation becomes that the water volume

at time level n + 1 equals water level at time level n. This

means there is no variation in the free surface elevation for

a dry particle. On a dry particle the velocity equations are

replaced by v
n+1
ij = 0, so when wetting and drying of particles

occurs, we still solve the same SPH equations having satisfied

the condition of no mass flux.

In the entire particle configuration, when the total water

depth is zero, Hn
ij = 0, the free surface equation (23) trivially

implies

V (ηn+1
i ) = V (ηni ), (26)

hence we can assume

ηn+1
i = ηni . (27)

In this scenario, equation (23) does not form part of the

system to be constructed. The remaining set of the free surface

equation i.e., where there exist at least one Hn
ij that is nonzero

the system is assembled into a mildly nonlinear sparse system

for ηn+1
i . Brugnano and Casulli have presented convergent

iterative schemes to solve this system even for piecewise

polynomials for the definition of the water volume V (η), (see

[7], [8]) for details.

F. Mildly Nonlinear System

We hereby write system (23) in a compact vector notation:

V(η) + Tη = b (28)
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where

V(η) =











V1(η1)
V2(η2)

...

VN (ηN )











, η =











ηn+1
1

ηn+1
2

...

ηn+1

N











, b =











bn1
bn2
...

bnN











,

where T is a sparse and symmetric Nη × Nη matrix which

comes from the second and third term in the left hand side of

equation (23), matrix T is positive definite, then its inverse is

also positive definite, b is a vector of Nη components from the

right hand side of equation (23). Let us assume that the matrix

T is irreducible. From Equation (23) we write the coefficient

of ηn+1
i the ith main diagonal element of the matrix T given

as

ti,i = gΘ2∆t2

δij

N
∑

j=1

2ωiωjH
n
ij∇Wij · nij (29)

In the same vein, if we consider the non-zero off diagonal

elements in each row of the matrix T which represents the

coefficients of ηn+1
j in Equation (23), we have

ti,j = −gΘ2∆t2

δij

N
∑

j=1

2ωiωjH
n
ij∇Wij · nij (30)

From the assumption that T to be irreducible we have that

ti,j ≤ 0 for all particles i = 1, 2. · · ·N , so we have atleast one

of ti,j is nonzero. From the above, such that ti,i > 0 for each

particle i and ti,j ≤ 0 whenever particle i is different from

particle j, i 6= j, then we conclude that the T is an irreducible

symmetric and positive semidefinite matrix. We can say that
∑N

j=1
ti,j = 0 for i = 1, 2. · · ·N . If we denote any nonzero

diagonal matrix by P, from the above considerations, we have

P ≥ 0, then we have that P+T is an irreducible symmetric M-

matrix. Therefore, P+T is positive definite and consequently

(P+T)−1 > 0. From a physical point of view, the contribution

of matrix T denotes the mass fluxes between pair of interacting

particles.

For clarity, we define the water volumes and its correspond-

ing gradient as

V(η) =

{

η + h if η + h > 0 for wet case

0 if η + h ≤ 0 for dry case
(31)

The matrix P evaluated at ηi corresponds to the diagonal

entries

Pii = diag

(

∂V

∂η

)

(32)

The gradient of the water volumes is given as

∂V

∂η
=

{

1 if η + h > 0 for wet case

0 if η + h ≤ 0 for dry case
(33)

From the definition of the water volumes and in Fig. 4, we

see that the function is not differentiable at the black dot (red

broken lines).

η

V

Fig. 4. Non-differentiability of water volume

G. A Newton Method

We arrive at the piecewise system which is strongly diag-

onally dominant, symmetric and positive definite. Hence, a

unique solution can be efficiently obtained by a matrix free

version of the conjugate gradient method and solved exactly

in a Newton-type iteration. A nested Newton-type method can

be see in the work of Casulli and Zanolli (see [13], [14]).

Initializing the free surface elevation η, for all k = 1, 2, · · ·
where ηk,0 = ηk−1 a sequence of iterates ηµ is obtained from

Equ. (28). Linearising V (η) as follows we have,
[

V(ηk,µ−1) + P(ηk,µ−1)(ηk,µ − ηk,µ−1)
]

+ Tηk,µ = bk−1,
(34)

we obtain the iterates from the linear systems

(Pk,µ−1 + T)ηk,µ = gk,µ−1, µ = 1, 2, · · · (35)

where Pk,µ−1 = P(ηk,µ−1) and

gk,µ−1 = bk−1 − Vk,µ−1 + Pk,µ−1ηk,µ−1

The (k, µ)th residual r is given as

rk,µ = V(ηk,µ) + Tηk,µ − b, (36)

and a stopping criterion for the iterates is given as ‖rk,µ‖ < ǫ
where ǫ is a sufficiently small tolerance value. The nonlinear

problem to solve reads:

ηk+1 = ηk−
[

P(ηk) + T
]−1 [

V(ηk) + Tηk − b
]

, k = 0, 1, · · ·
(37)

where k denotes the iteration index, P(ηk) is a diagonal

matrix. The iterative scheme in (37) is hereby summarized

into Algorithm 1.

Once the free surface location ηi is computed. Equation

(18) constitute a linear system for vn+1
i , the systems are inde-

pendent of each other and are symmetric and positive definite.

This is conveniently solved to determine vn+1
i throughout the

particle configurations and the particle positions can be subse-

quently updated. Following our mildly nonlinear construction

in equation (23), a correct mass balance is always achieved

in all particle regions irrespective of the specified bottom

bathymetry. Nonnegative water volumes and water heights are

assured.
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Algorithm 1 Calculate η

Input: V, P, T, b, and ǫ
Do k = 1, 2, · · ·

Set P k,0 = I

Do µ = 1, 2, · · ·
Solve [P(ηk,µ−1 + T)]ηk,µ = b − P(ηk,µ−1)
If ‖rk,µ‖ < ǫ

set ηk = ηk,µ and Exit

End If

End Do

End Do

Output η

IV. NUMERICAL EXAMPLE

In this section, the wetting and drying semi-implicit SPH

algorithm that has been proposed and derived in Section III

will be validated on simple test problem for the shallow water

equations. An academic numerical example of an oscillating

lake will be presented. This test case is analogous to the

Thacker’s periodic flow with a planar free surface, a test case

that is extremely difficult for numerical models to handle.

In the subsequent problems, the acceleration due to gravity

constant g is set to g = 9.81.

A. An Oscillating Lake in a Parabolic Basin

In this one dimensional example, we consider an oscillating

lake inside a parabolic basin denoting the bathymetric bottom.

We consider the initial value problem

η(x, 0) = 0.1x,

u(x, 0) = 0,

in the parabolic basin with bottom bathymetry

h(x) = 1− 0.1x2

in the domain Ω = [−5, 5]. The oscillating lake is restricted

below by a fixed bottom boundary h and bounded above

by a moving free surface elevation η. We have discretized

the computational domain Ω with 400 particles. The final

simulation time t = 7.2s is used and a time step is chosen to be

∆t = 0.01. An implicitness factor Θ = 0.85 is used. A varying

smoothing length is taken as li = α(ωi)
1

d , where α = [1.5, 2]
and d = 1, a tolerance value of ǫ = 10−14 has been used

in our Newton iteration. The numerical solution is shown in

Fig. 5 at times t = 0.0s, 1.8s, 3.6s, 5.4s, 7.2s. Because, we

do not have the exact solution for this particular problem,

we obtain a reference solution by solving the shallow water

equation with a finite difference approach of Casulli [12].

The comparison between our numerical results obtained with

wetting and drying semi-implicit SPH and reference solution

is shown. A very good agreement between the two solutions

is observed in Fig. 5 even at the transition regions.
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Fig. 5. Wetting and drying semi-implicit solution (blue dots) versus reference
solution (red - solid line), the bottom bathymetry (black - solid line): Free
surface inside parabolic basin at times t = 0.0s, 1.8s, 3.6s, 5.4s, 7.2s.
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V. CONCLUSION

This paper proposes a new wetting and drying SPH algo-

rithm that is based on a novel semi-implicit SPH discretization.

The semi-implicit algorithm applied to the shallow water equa-

tions has been derived and discussed. The momentum equation

is discretized by a finite difference approximation for the

gradient of the free surface elevation and SPH approximation

for the mass conservation equation.

Because we substituted the discrete momentum equations

into the discrete mass conservation equations and since we

define the water particle volume as a piecewise constant

function, we arrive at a mildly nonlinear sparse system for

the free surface elevation. We thereby solve some Newton-

type iterations when wetting and drying is encountered. We

conveniently solve this mildly nonlinear system with the

matrix-free version of the conjugate gradient (CG) algorithm.

The key features of the proposed wetting and drying al-

gorithm are as follows. The method achieves a correct mass

balance in wet regions and in transition regions, it is simple

and efficient, and it guarantees non-negative water depths.

Finally, the method’s time step is not restricted by stability

conditions that are dictated by the surface wave speed, thereby

allowing large time steps.

Future research will be devoted to the method’s extension

to real life river flooding and drying scenarios.
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