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Abstract—This work focuses on the development of a new semi- discretized implicitly whereas the nonlinear convectigens
implicit SPH scheme for the shallow water equations, followg  are discretized explicitly. The semi-Lagrangian methodrie

the semi-implicit finite volume and finite difference approach ; ; ; ‘i
of Casulli [1]. In standard explicit numerical methods, there is FI;}he{Iz;:)hmques to discretize these terms explicitly (s8¢

often a severe limitation on the time step due to the stabilit ] . L )
restriction imposed by the CFL condition. This paper proposs, a In this paper a new semi-implic&moothed Particle Hy-
new semi-implicit SPH scheme, which leads to an unconditiaily —drodynamics(SPH) scheme for the numerical solution of
stable method. To this end, the discrete momentum equation the shallow water equations is proposed and derived. The
is substituted into the discrete continuity equation to ob&in a oy yvariables in this present study are the particle free
symmetric positive definite linear system for the free surfae . . .
elevation. The resulting system can easily be solved by a nnixt surfa(_:e elevathn, particle total water depth and the q:ia_rtl
free conjugate gradient method. Once the new free surface Velocity. The discrete momentum equations are substituted
location is known, the velocity at the new time level can diretly be  into the discretized mass conservation equation to give a
computed and the particle positions can subsequently be upded.  discrete equation for the free surface leading to a system
A simple and yet non-trivial 1D test problem for the 1D shallv i o1y one single scalar quantity, the free surface elevati
water equation Is presented. . . . .
location. The system is solved for each time step as a linear
algebraic system. The components of the momentum equation
at the new time level can be directly computed from the new

This paper proposes a novel semi-implicit SPH schenfige surface. This can be conveniently solved by a matrix-
applied to the shallow water equations. We consider onfgee version of the conjugate gradient (CG) algorithm [4].
dimensional inviscid hydrostatic free surface flows. Thesonsequently, the particle velocities at the new time level
flows are governed by thghallow water equationahich we computed and the particle positions are updated. In this-sem
can derive from the three dimensional Navier-Stokes equsti implicit SPH method, the stability is independent of the wav
with the assumption of a hydrostatic pressure distribufsae celerity. Hence, a relatively large time steps can be péegthit
[3], [11]). to enhance the numerical efficiency [3].

A considerable amount of work has been done for both The remainder of this paper is structured as follows: In
structured and unstructured meshes using finite differensection I, the numerical models for the one-dimensional
finite volume and finite element schemes ( [3], [11], [17],][18 shallow water equations and models used for the particle
[19]). A major problem of explicit schemes in numerical methapproximations are presented. In section lll, the key ideas
ods is their severe time step restriction, where the Couraof the proposed semi-implicit SPH scheme are presented and
Friedrichs-Lewy (CFL) condition imposes the time step $ize derived. One dimensional numerical results to validate the
terms of the wave propagation speed and the mesh size. Hescagme are presented in section IV. Section V presents the
the major advantage of a semi-implicit approach is thatlstalzoncluding remarks and an outlook to future research.
schemes are obtained which allow large time step sizes at a
reasonable computational cost. In a staggered mesh aproac
for finite differences and volumes, discrete variables deno  This section details the computational models and their
defined at different (staggered) locations. The pressurg, te accompanying particle approximations. Vectors are defined
which is the free surface elevation is defined in the celkference to Cartesian coordinates. The latin subscripsésl
center while the velocity components are defined at the c#ll identify particle locations, where subscriptglenotes the
interfaces. In the momentum equation, pressure terms are thcal particle whereas the subscriptienotes the neighbor of
to the gradients in the free surface elevations and the #glogarticlei. Einstein’s summation will be employed for repeated
in the mass equation (i.e., free surface equation) are batiperscripts.

I. INTRODUCTION

II. NUMERICAL MODEL
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B. Governing Equations
The governing equations considered in this paper can be
\/ﬁ\ /7 written as nonlinear hyperbolic conservation law of tharfor
Lp(®) + V- (F(®,x,t)) =0, teRT, ®cR, (4)
h together with the initial condition
®(2,0) = Do(x), 2€QCRPyER, (5)

where L, is the transport operator given by

Lo(®) = 9047 - (b))

Fig. 1. Flow Domain
and
x= (2!, 2%, F = (F', ..., F%),b= (b, ..., b%),

. g o .
We shall use a regular functidi’ which is a positive non- W[}ereb 'S & regular_ yector field iRR?, " is a flux vector in
R* andz is the position.

increasing, axially symmetric shaped function with contpac Fig. 1 shows the flow domain in the present study. In this

rt of th neric form . . . o
support of the generic fo configuration, the vertical variation is much smaller when

A. The Kernel Function

1 7| compared to the horizontal variation, typical of rivers fiow
W(r,h) = WW <T) : (1) over long kilometers. We consider the frictionless, inidsc
shallow water equations in Lagrangian derivatives given as
In the specific, the classical B-spline kernel function ofjide Dn
3 is used in this study given as o TV (H) =0, (6)
3/r\2 3 /7r\3 Dv
1——(—) —(—) 0< <1, — +gVn =0, @)
RV 3+ 4 \h - h= Dt
W?‘,h :Wi‘:KX - _Z r Dr
( ) ! 4(2 h) 1§h§2’ EZU’ (8)
0 n> 2 2 wheren = n(z,t) denotes the free surface location, and
where the normalisation coefficieAt takes the valué, %, i H=H(z1) denotes the total water depth which is given as
according to the dimension of the space fdr= 1,2, or 3), H(x,t) = h(z) + n(x,t), 9)

respectively. We note that in the functioh’ € W>>=(R), \nere h(z) denotes the bottom bathymetry, = v(z,t)
h is the so called smoothing length which is related t0 thg,notes the particle velocity, = (z, t) denotes the particle

particle spacingAp by the relations = 2Ap for constant ,qjtion, andg denotes the constant of gravity acceleration.
h. The smoothing length can vary locally according to the

relations: C. Hydrostatic Approximation
1 — In geophysical flows the vertical acceleration is often $mal
hij = 5[hi +h;]  where h;=o0¢—L. (3) when compared to the gravitational acceleration and to the
Pi pressure gradient in the vertical direction as in the case of

In this study, the smoothing length relation in (3) is useds OU" flqw domain in Fig 1. Eor_instance,_ if we cqnsio_ler tidal
taken to be2 which ensures approximately a constant numb&PWs in the ocean the velocity in the horizontal directiowis
of neighbors in the compact support of each kernel. A popull order oflm/s, while the velocity in the vertical direction

and efficient approach based on the Shepard interpolatiﬁnmUCh5 smaller of the order of one meter per tidal cycle
technique [2] i.e., 107°m/s [16]. To this end, if the advective and viscous

W terms are neglected in the vertical momemtum equation of
W{j = ﬁ the Navier-Stokes equation, we have the equation for pressu
ijl p_jWij which reads i
P
is used for the kernel function normalisation, especiadigful Y (10)

for particles close to free surfaces, this technique reesedirhe pressure represents a normalised pressure, that is are me
problems such as numerical instabilities, partition oftyinithe pressure is divided by constant density. The solutian th

which affect the convergence of this method. satisfies (10) is given by the hydrostatic pressure
The gradient of the kernel function is corrected using the B
formulation proposed by Belytschko et al. [15]. Hereaftgr b p(@,y, 2,t) = po(2,y,¢) + gln(z, y,t) — 2],

notation, the kernel functioWi’j and its gradientVWi’j will  wherepg(z,y,t) marks the atmospheric pressure at the free
be taken adV;; and VIV;;, respectively. surface which without loss of generality is taken as a cartsta
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I1l. NUMERICAL METHOD G(n,v,u) = =G(—n,u,v)

There are several numerical methods that can be employgfh this formalism, the SPH discretization reads
to solve equations (6) - (7). These methods can be finite

differences or finite elements, explicit or implicit, conszs it — g N m;

tive or non-conservative or meshless method. In this sectio N Z 72HijvijVWz‘j =0, (14)
following the semi-implicit finite volume and finite diffenee =1 ™

approach of Casulli [1], we will delve into the derivation of oL N oo

the semi-implicit SPH scheme applied to the one dimensional f + gz —_7277ijVWij =0, (15)
shallow water equations. =1 Pi

In standard explicit numerical methods, there is the severe Dr;
limitation due to the stability restriction imposed by th&IlC Dt U (16)

condition. The restriction requires a much smaller timepste i< tormalism. in Fig. 2, for a pair of particlé and j
size than permitted by accuracy considerations. Fully iicitpl we define the free surface elevation 7; and velocityv;,
discretization often leads to unconditionally stable roeth = .. - particlé and j respectively |rj1 our approach, we

that tl)eadsf to thledsolutll_on of S|mu_ltaneous solution 011;1 Iar_ tificially define a staggered like velocity; between two
number of coupled nonlinear equations. For accuracy, et'interacting particles and j as

step cannot be chosen arbitrary large. To this effect, a sta- 1

ble, efficient, robust and simple semi-implicit SPH numalric vi; = = (v; + ;) (17)
method is derived in this section. 2
in the normal directionn;; at the midpoint of the two
A. Classical SPH formulation interacting particles, where;; is a vector given as
The standard SPH formulation discretizes the computdtiona T — 1
domain€)(t) by a finite set of N particles, with positions;. Nij = Tz — ]|

According to Gingold and Monaghan [8], the SPH discretiza- i , ,
tion of the shallow water equations (6) - (7) reads: where we writed;; = |lz; — ;| which denotes the distance
between pair of particlesand;j. Since, we know the value of

mﬂﬂ —nn N m; the velocities at the midpoint of the particles, we use kerne
At + Z p_jHij”jVWij =0, (11)  summation to update the velocity at the next location.
j=1
N

vt oy m; _ i v
T + gj; _jnjVWij - 07 (12)

Dr:

DT; = v, (13)

and the particles are moved by (13), whéxeis the time step, i Vi

m; denotes the particle mass; denotes the particle density,

andVWW;; is the gradient of the interpolation kerniéf;; with

respect tax;. In this Gingold and Monaghan [8] schemag,

Nz are eXplIf:Itly computgd. . Fig. 2. Staggered velocity defined at the midpoint of two dinteracting
The gradient formulation used in (11) - (12) follows byparticles: and j

substituting the flow variable with corresponding derives,

using integration by parts, the divergence theorem and some

- . Semi-implicit SPH Scheme
trivial transformations.

To start with, the derivation of the semi-implicit SPH
B. SPH formulation of Vila and Ben Moussa scheme let us consider some characteristic analysis of the
Towards the derivation of our semi-implicit SPH schemdloverning equations (6) - (7). Writing equations (6) - (7)ain
the SPH formalism of Vila and ben Moussa ( [5], [7]) ihon conservative quasi-linear form by expanding deriestin
used. The basic idea in Vila and Ben Moussa in the scheff§ continuity equation and momentum equations (assuming

comprises of replacing a centered approximation smooth solutions) we obtain
(F(vi, i, t) + F(vj,x, 1)) - ngj vt + vz + g1z = 0, (18)
Nt + vz + HUJ} = 0; (19)

of (4) by a numerical flux of finite difference scheme in
conservation forn2G(n;;, v;, v;) which should satisfy Writing (18) - (19) in matrix form we obtain

G(n(x),v,v) = F(v,z,t) - n(x) Q,+AQ, =0 (20)
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where In this formulation, the explicit, nonlinear finite diffaree
Q= (" A=(YV 9 operatorFv; in (25) takes the form
n)’ H v
Equation (20) is a strictly hyperbolic system with eigemnes Fojy = l(vi + v;) (28)
been real and distinct. The characteristic equation isngise 2

wherewv; and v; denotes the velocity of particle and j at

det(A —Al) =0 (21) time ¢t". The new velocity is computed through simple kernel
after solving (21), the solution yields summation:
AMo=v+Et\gH N ;
b2 g ot = o+ 30 2T ot oW, (29)
When the particle velocity is far smaller than the particle =1 Pi

celerity /gH i.e [v| < /gH, the particle flow is said to be . .
strictly subcritical and thus the characteristic spekedand )\, We should note that in (25) we have not used the gradient

have opposite directions. The maximum wave speed is givehthe kernel function for the discretization qf rather we
as used a finite difference discretization for the pressureligra

T S this is because this is more accurate, in orresponds to
Amax = MaX(/ g Hi; /9H;)- an explicit spatial discretization of the a(ggz?:tive tgrrfamce
In this case,/gH represents the dominant term which origiSPH is a Lagrangian scheme, the nonlinear convective term
nates from the off diagonal termsand A in the matrixA.  is discretized automatically, using the Lagrangian (niafer
Tracking back where the termggH originates from in derivative contained in the particle motion in Eqn. (13).

the governing equations. These are the coefficients of tRelation (28) is used to interpolate the particle velosifiem
derivative of the free surface elevatigp in the momentum the particle location to the staggered velocity location.
equation (18), and the coefficient of the derivative of the
velocity v,, in the volume conservation (19). Since, we d®. The Free Surface Equation
not want the stability of this method to be dependent on

From the approach of Vila and Ben Moussa ( [5], [7]).
the celerity /gH, we discretize the derivativeg, and v, bp (8], 17D

Let the particle volumewy; in (26) be given asv; = =<,

implicitly. Irrespective of the form imposed af, equations (25) -p(26)

Following .the charactgr_istic.a}nalysis presented above, Wenstitute a linear system of equations with unknowfis*
want to derive the semi-implicit SPH scheme for the o dn*! over the entire particle configuration. We solve this

. . B . . Z
dimensional s_halloyv water equation. The d_erlvat|ve of tlee_f system at each time step for the particle variables from tae p
surface elevation,, in the momentum equation and the deriv:

. ;T o X . %cribed initial and boundary conditions. The cardinal deat
tive of the velocity in the continuity equation are disczeti

implicitly. Th o h as th i d of this present numerical method from the computationatipoi
Implicitly. The remaining terms such as the nonlinearatvec ¢ ey is that the discrete momentum equation is substitute

terms in the momentum equation are discretized explictily ¥ the discrete continuity equation. The model is reducéal in
that the system to be solved eventually will be linear. n+1 as the only unknowns

Let ider th tinuit tion in th - ?smaller model im;
et us consider the continuity equation in the ongna Multiplying (26) byw; and inserting (25) into (26) we obtain
conservative form given as
N

2 N
e+ (Hv)e =0 @2 g5 S ey [ — )W) = b
v will be discretized implicitly, H# the total water depth is 7
discretized explicitly, for the sake of notation by impligiand
explicitly we meam + 1 andn in the superscript respectively:

i=1 j=1

(30)
where the right hand sid&" represents the known values at
time levelt™ given as

n n+1l __

a4 (H "), =0 (24) bf = winlf' — = > 2wiw; H ol VWi (31)

L

The general semi-implicit SPH discretization of (23) - (24) L=

assumes the form Since H;};, wi, w; are non-negative numbers, equations (30)
At - (31) constitute a linear system df equations forp*?
n+1l __ n n+1 n+1 )
vij = Fvij — Qa(ﬁj =) (25)  unknowns.

The resulting system is symmetric and positive definite
N . )

i1 . ma I (SPD). Because of the SPD property, this system admits

n = - Afzp—_](QHij“ij+ )V Wi (26) a unique solution which can be efficiently obtained by an

j=1 " iterative method. We obtain the new free surface location by

where (30), equation (25) gives readily and uniquely the new plrti

n __ n n pn n H n+1
H]: = max0, ks + ', his +n7') (27) velocity v .
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IV. NUMERICAL EXAMPLES B. Discontinuous Solution

In this section, the semi-implicit SPH scheme that has beenin this example, we consider the following Riemann prob-
derived in Section Il will be validated on the one dimensibn lem. Riemann problems are very important cases in initial
shallow water equation test problems. In this section, tw@lue problem for PDE systems. The initial data is prescribe
numerical examples will be validated namely: smooth sotuti by two piecewise constant states often separated by a discon
and discontinuous solution. In the subsequent test prahleninuity:
the acceleration due to gravity constanis set tog = 9.81. q z<0,
In the numerical examples presented, we wish to mention that q(z,0) = q. x>0
the particles are not moved. "
whereq = (v(z,0),n(z,0), h(z)). The computational domain
O =[x, z,] given as? = [—1, 1] is discretized with the semi-

In this example, we consider a smooth free surface wayfplicit SPH scheme using00 particles. In this example with
propagation. We consider the following initial value preil fat hottom, the exact solution is given by the exact Riemann
with in the domain(2 = [—1, 1] with the data solver for the shallow water equations [10]. The left state

B 1 _1(22/02) is given asq, = (—1,1,0) and the right state is given as
n(z,0) =1+ e ’ d, = (1,1,0). In this present simulation, we used the final
v(z,0) = h(z,0) = 0, time t = 0.15, At = 0.01. The rarefa_ctio_n solution of .the_
one dimensional shallow water equation is presented in Fig.
with flat bottom, wheres = 0.1. The computational domain 4, the solution consists of a left moving rarefaction fan and
Q) is discretized with200 particles. The final time¢ = 0.15 right moving rarefaction fan solution both moving away from
is used and the time step is chosen to e = 0.01. The the discontinuity. We compare our semi-implicit SPH salati
numerical solution is given in Fig. 3. The upper profile iwith the reference solution of the exact riemann solver for
Fig. 3 depicts the free surface elevation with a flat bottofhe one dimensional shallow water equation. A very good
bathymetry and the lower profile depicts the particle véjoci agreement is observed in Fig. 4. The upper profile in Fig. 4
We compare our solution with a reference solution obtaingpicts the free surface elevation with a flat bottom batttyyne
by solving the one-dimensional shallow water equation witind the lower profile depicts a rarefaction particle veigcit
the finite difference mesh based approach of Casulli onr@spectively.
fine mesh of10,000 points. The comparison between our
numerical results obtained with semi-implicit SPH scheme a
the reference solution is shown. A good agreement betwe

A. Smooth Surface Wave Propagation

Free surface elevation versus Position

[iN

the two solutions is observed in the figure. We attribute tt ¢ os V i
difference in the plot to the low order accurate time intéigra S o6} i
@
scheme used. £ ol |
7
o 0.2F il
Free surface elevation versus Position [
~ 15 -
E ) ) . ) . )
£ Position (m)
% 1_/\/-\ Velocity profile versus Position
o 1
[
8
5 05 b @ 0.5 i
g £
I g o 1
v_____ _ ]
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1 %
Position (m) > -05 g
Velocity profile versus Position
1 T T T T T -1

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Position (m)

Fig. 4. Semi-implicit SPH scheme rarefaction solution i(sdihe - blue)
versus exact solution (solid line - red). 200 particles isdum the numerical
solution.

Velocity (m/s)

-1 —018 —0‘.6 —0.‘4 —012 6 0.‘2 014 0‘.6 018 1
Positon (m) V. CONCLUSION

Fig. 3. Semi-implicit SPH scheme solution with 200 parsclsolid line - The papetr presen.ts a n_eW ,SPH formUIat_lc,m bi.iS.Gd Qn anovel

blue) versus reference solution (solid line - red) - staggemite difference Semi-implicit SPH discretization. The semi-implicit afgbm

approach with a mesh of 10,000 points. applied to the shallow water equations has been derived and

discussed. The momentum equation is discretized by a finite
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difference approximation for the gradient of the free stefa [18] M. Dumbser, V. Casulli,A staggered Semi-implicit spectral discon-

and SPH appoximation for the mass conservation equation. tinuous Galerkin scheme for the shallow water equationsApplied
bsti d the di . Mathematics and Computation, 219:8057-8077, 2013.
Because we substituted the discrete momemtum equat'?ﬂﬁ’ M. Tavelli, M. Dumbser,A high order semi-implicit discontinuous

into the discrete mass conservation equations, our schemeGalerkin method for the two dimensional shallow water eiguet on
reduces to a linear sparse system for the free surfaceielevat  Staggered unstructured mesheépplied Mathematics and Computation,
i 234:623644, 2014.
We therefore have one linear and scalar value for the free
surface to be solved, we conviniently solve this with the
matrix-free version of the conjugate gradient (CG) aldonit
This method possesses some key features such as: the
method is mass conservative, the time step is not restricted
by the stability condition that is dictated by the surfacevava
speed thus relatively large timesteps are permitted.
Future research will be related to the extension of this
scheme to2D and 3D numerical examples, extension to
nonhydrostatic free surface flows.
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