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Multiple zeta values

Definition

For natural numbers s1 ≥ 2, s2, ..., sl ≥ 1, the multiple zeta value (MZV) of weight

k = s1 + · · ·+ sl and length l is defined by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns11 . . . nsll
.

ByMZk we denote the space spanned by all MZV of weight k and byMZ the space

spanned by all MZV.

The product of two MZV can be expressed as a linear combination of MZV with the

same weight (stuffle product)

MZV can be expressed as iterated integrals. This gives another way (shuffle product)

to express the product of two MZV as a linear combination of MZV.

These two products give a number ofQ-relations (double shuffle relations) between

MZV, for example

ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .
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Multiple zeta values - Quasi-shuffle algebras

We now want to describe the algebraic setup for the stuffle/shuffle product introduced by

Hoffman.

LetA (the alphabet) be a countable set of letters

QA theQ-vector space generated by these letters

Q〈A〉 the noncommutative polynomial algebra overQ

and let � be an associative product onQA

Definiton

For letters a, b ∈ A and wordsw, v ∈ Q〈A〉 we define onQ〈A〉 recursively a product by

1� w = w � 1 = w and

aw � bv := a(w � bv) + b(aw � v) + (a � b)(w � v) .

By a result of Hoffman (Q〈A〉,�) is a commutativeQ-algebra which is called a quasi-shuffle

algebra.
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Multiple zeta values - Quasi-shuffle algebras

Some notations:

We consider the alphabetAxy := {x, y} and set H = Q〈Axy〉.
The set of words ending in y will be denoted by H1 = Hy + 1 ·Q.

H1 is generated by the elements zj = xj−1y.

i.e. H1 = Q〈Az〉 with the alphabetAz := {z1, z2, . . . }.
By H0 = xHy + 1 ·Q we denote the set of words starting with an x and ending

with an y.

Words zs1 . . . zsl ∈ H1 correspond to index sets (s1, . . . , sl) ∈ Nl.
Words zs1 . . . zsl ∈ H0 correspond to index sets (s1, . . . , sl) ∈ Nl, where

s1 ≥ 2, i.e. where the MZV ζ(s1, . . . , sl) is defined .
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Multiple zeta values - Quasi-shuffle algebras - Stuffle product

Stuffle product

The quasi-shuffle product on H1 = Q〈Az〉 with zi � zj = zi+j , is called stuffle product

and we denote it by ∗. We have for zi, zj ∈ Az andw, v ∈ H1

ziw ∗ zjv = zi(w ∗ zjv) + zj(ziw ∗ v) + zi+j(w ∗ v) ,

which gives aQ-algebra (H1, ∗).

The subspace H0 ⊂ H1 is also closed under ∗, i.e. we have aQ-algebra (H0, ∗).

Example:

z2 ∗ z3 = z2z3 + z3z2 + z5 .
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Multiple zeta values - Quasi-shuffle algebras - Shuffle product

Shuffle product

The quasi-shuffle product on H = Q〈Axy〉 with � ≡ 0, is called shuffle product and we

denote it by�. We have for a, b ∈ Axy andw, v ∈ H

aw ∗ bv = a(w ∗ bv) + b(aw ∗ v) ,

which gives aQ-algebra (H, ∗).

Both H0 ⊂ H and H1 ⊂ H are also closed under�, i.e. we obtainQ-algebras (H0,�)
and (H1,�).

Example:

z2 � z3 = xy� xxy

= xyxxy + xxyxy + xxyxy + xxyxy + . . .

= xyxxy + 3xxyxy + 6xxxyy

= z2z3 + 3z3z2 + 6z4z1 .
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Multiple zeta values - Quasi-shuffle algebras

By the definition of MZV as a ordered sum and by the iterated integral expression one

obtains algebra homomorphisms ζ : (H0, ∗)→MZ and ζ : (H0,�)→MZ by

sendingw = zs1 . . . zsl to ζ(w) = ζ(s1, . . . , sl).

These can be extended to H1:

Proposition (Ihara, Kaneko, Zagier)

There exist algebra homomorphism

ζ∗ : (H1, ∗) −→MZ ,
ζ� : (H1,�) −→MZ ,

which are uniquely determined by ζ∗(w) = ζ�(w) = ζ(w) forw ∈ H0 and

ζ∗(z1) = ζ�(z1) = 0.

We also write ζ∗(zs1 . . . zsl) = ζ∗(s1, . . . , sl) and similar for ζ�.

These two maps can differ for wordsw ∈ H1\H0, for example ζ∗(1, 1) = − 1
2ζ(2) and

ζ�(1, 1) = 0.
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q-analogues of multiple zeta values

"Roughly speaking, in mathematics, specifically in the areas of combinatorics
and special functions, a q-analogue of a theorem, identity or expression is a
generalization involving a new parameter q that returns the original theorem,
identity or expression in the limit as q → 1. "

— Wikipedia

There are a lot of different q-analogues for multiple zeta values.

Often these q-analogues have an analogon for the stuffle product but not for the

shuffle product.

We are interested in a specific model inspired by modular forms.

Therefore we often view q not just as a parameter but as q = e2πiτ with τ ∈ H
beeing an element in the complex upper half-plane.
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bi-brackets

For r1, . . . , rl ≥ 0 and s1, . . . , sl ≥ 1 we define the following q-series[
s1, . . . , sl
r1, . . . , rl

]
:=

∑
u1>···>ul>0
v1,...,vl>0

ur11

r1!
. . .

urll
r1!
·

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)!
· qu1v1+···+ulvl ,

which we call bi-brackets of weight s1 + · · ·+ sl + r1 + · · ·+ rl and length l.

For r1 = · · · = rl = 0 we also write[
s1, . . . , sl
0, . . . , 0

]
= [s1, . . . , sl]

and call these series just brackets. In length l = 1 they are given by

[s1] =
1

(s1 − 1)!

∑
n>0

σs1−1(n)qn , σk(n) =
∑
d|n

dk .
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bi-brackets

For the space spanned by all bi-brackets we write

BD :=
〈 [s1, . . . , sl
r1, . . . , rl

] ∣∣ l ≥ 0 , s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0
〉
Q
,

where we define the bi-bracket of length l = 0 to be 1. ByMD ⊂ BD we denote the

subspace spanned by the brackets

MD :=
〈

[s1, . . . , sl] ∈ BD
∣∣ l ≥ 0 , s1, . . . , sl ≥ 1

〉
Q

and for the space of admissible brackets we write

qMZ :=
〈

[s1, . . . , sl] ∈MD
∣∣ l ≥ 0 , s1 ≥ 2

〉
Q
.

We have the following inclusions

qMZ ⊂MD ⊂ BD .

Henrik Bachmann - University of Hamburg Multiple zeta values and regularised multiple Eisenstein series



(bi-)brackets as q-analogues of multiple zeta values

Define for k ∈ N the map Zk : Q[[q]]→ R ∪ {∞} by

Zk(f) = lim
q→1

(1− q)kf(q) .

Proposition

Assume that s1 > r1 + 1 and sj ≥ rj + 1 for j = 2, . . . , l, then it holds

Zs1+···+sl

([
s1, . . . , sl
r1, . . . , rl

])
=

1

r1! . . . rl!
ζ(s1 − r1, . . . , sl − rl) .

In particular one has for all [s1, . . . , sl] ∈ qMZ

Zk ([s1, . . . , sl]) =

{
ζ(s1, . . . , sl) , s1 + · · ·+ sl = k,

0 , s1 + · · ·+ sl < k .
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bi-brackets - why?

Question

Why do we care about bi-brackets and not just the space qMZ ? We get every MZV by

applying the map Zk and the space BD seems to be twice as much as we need it to be?!

The kernel of the map Zk contains every relation of MZV in a fixed weight k and is

therefore of great interest. It turns out that the bi-brackets are useful to describe this

kernel. (Not content of this talk)

The bi-brackets are necessary to describe the dimorphy structure of the brackets, i.e.

an analogue for the stuffle and the shuffle product, and the linear relations between

them.

They are also useful to regularise multiple Eisenstein series.
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bi-brackets - quasi-shuffle product

For the alphabetAbi
z := {zs,r | s, r ∈ Z , s ≥ 1 , r ≥ 0} we define onQAbi

z the

product

zs1,r1 � zs2,r2 =

(
r1 + r2

r1

) s1∑
j=1

λjs1,s2zj,r1+r2 +

(
r1 + r2

r1

) s2∑
j=1

λjs2,s1zj,r1+r2

+

(
r1 + r2

r1

)
zs1+s2,r1+r2 ,

where the numbers λja,b ∈ Q for a, b ∈ N and 1 ≤ j ≤ a are given by

λja,b = (−1)b−1

(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)!
.

One can show that this product is associative.
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bi-brackets - quasi-shuffle product

OnQ〈Abi
z〉 we now define the quasi-shuffle product � by

zs1,r1w � zs2,r2v = zs1,r1(w � zs2,r2v) + zs2,r2(zs1,r1w � v)

+ (zs1,r1 � zs2,r2)(w � v) .

and obtain a quasi-shuffle algebra (Q〈Abi
z〉,�).

Proposition

The map
[
.
]

: (Q〈Abi
z〉,�)→ (BD, ·) given by

w = zs1,r1 . . . zsl,rl 7−→ [w] =

[
s1, . . . , sl
r1, . . . , rl

]
fulfills [w � v] = [w] · [v] and therefore BD is aQ-algebra.

Here the · is the multiplication of q-series inQ[[q]].
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bi-brackets - quasi-shuffle product - example

Corollary (explicit quasi-shuffle product �)

For s1, s2 > 0 and r1, r2 ≥ 0 we have[
s1

r1

]
·
[
s2

r2

]
�
=

[
s1, s2

r1, r2

]
+

[
s2, s1

r2, r1

]
+

(
r1 + r2

r1

)[
s1 + s2

r1 + r2

]
+

(
r1 + r2

r1

) s1∑
j=1

(−1)s2−1Bs1+s2−j

(s1 + s2 − j)!

(
s1 + s2 − j − 1

s1 − j

)[
j

r1 + r2

]

+

(
r1 + r2

r1

) s2∑
j=1

(−1)s1−1Bs1+s2−j

(s1 + s2 − j)!

(
s1 + s2 − j − 1

s2 − j

)[
j

r1 + r2

]
Example: [

2

0

]
·
[
3

0

]
�
=

[
2, 3

0, 0

]
+

[
3, 2

0, 0

]
+

[
5

0

]
− 1

12

[
3

0

]
,[

1

1

]
·
[
1

2

]
�
=

[
1, 1

1, 2

]
+

[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]
.
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bi-brackets - generating series

For the generating function of the bi-brackets we write∣∣∣∣X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1

1 . . . Xsl−1
l ·Y r1−1

1 . . . Y rl−1
l .

Lemma

The generating function of the bi-brackets can be written as∣∣∣∣X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣ =
∑

u1>···>ul>0

l∏
j=1

eujYj
eXjquj

1− eXjquj
.
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bi-brackets - partition relation

Theorem (partition relation)

For all l ≥ 1 we have∣∣∣∣X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣ =

∣∣∣∣Y1 + · · ·+ Yl, . . . , Y1 + Y2, Y1

Xl, Xl−1 −Xl, . . . , X1 −X2

∣∣∣∣
Remark

In the language of moulds this says that the bimould of generating series of bi-brackets is

invariant under the swap operator.

This theorem gives linear relations between bi-brackets in a fixed length, for example[
s

r

]
=

[
r + 1

s− 1

]
for all r, s ∈ N ,[

2, 2

1, 1

]
= −2

[
2, 2

0, 2

]
+

[
2, 2

1, 1

]
− 4

[
3, 1

0, 2

]
+ 2

[
3, 1

1, 1

]
.

Idea of proof: Interpret the sum as a sum over partitions and then use the conjugation of

partitions. For this we will now introduce some notation.
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bi-brackets - partition relation - idea of proof

By a partititon of a natural number n with l different parts we denote a representa-

tion ofn as a sum of l different numbers, which are allowed to appear with some multiplicities.

For example

15 = 4 + 4 + 3 + 2 + 1 + 1

= 4 · 2 + 3 · 1 + 2 · 1 + 1 · 2

is a partition of 15 with the 4 different parts 4, 3, 2, 1 and multiplicities 2, 1, 1, 2.

We identify a partition of n with l different parts with a tupel
(
u
v

)
, with u, v ∈ Nl.

The uj are the l different summands.

The vj count their appearence in the sum.

The above partition is therefore given by
(
u
v

)
=
(

4,3,2,1
2,1,1,2

)
.
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bi-brackets - partition relation - idea of proof

We denote the set of all partition of n with l different parts by Pl(n), i.e. we set

Pl(n) :=

{(
u

v

)
∈ Nl ×Nl | n = u1v1 + · · ·+ ulvl , u1 > · · · > ul > 0

}
.

With this the bi-brackets can be written as[
s1, . . . , sl
r1, . . . , rl

]
:= c ·

∑
u1>···>ul>0
v1,...,vl>0

ur11 v
s1−1
1 . . . urll v

sl−1
l qu1v1+···+ulvl

= c ·
∑
n>0

 ∑
(uv)∈Pl(n)

ur11 v
s1−1
1 . . . urll v

sl−1
l

 qn ,

where c = (r1!(s1 − 1)! . . . rl!(sl − 1)!)−1.
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bi-brackets - partition relation - idea of proof

On the set Pl(n) we have an involution ρ given by the conjugation of partitions.

To see this one represents an element in Pl(n) by a Young diagram.

In P4(15) we have for example

(
4, 3, 2, 1

2, 1, 1, 2

)
= .

The conjugation ρ of this partition is given by(
4, 3, 2, 1

2, 1, 1, 2

)
=

ρ
−−−−−−−−−−−−−−−→ =

(
6, 4, 3, 2

1, 1, 1, 1

)
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bi-brackets - partition relation - idea of proof

We now can apply the conjugation ρ to the set Pl(n) in the summation as in the following

example

[
2, 2

0, 0

]
=
∑
n>0

 ∑
(uv)∈P2(n)

v1 · v2

 qn =
∑
n>0

 ∑
(u
′
v′)=ρ((uv))∈P2(n)

v′1 · v′2

 qn

=
∑
n>0

 ∑
(u
′
v′)=ρ((uv))∈P2(n)

u2 · (u1 − u2)

 qn

=
∑
n>0

 ∑
(uv)∈P2(n)

u2 · u1

 qn −
∑
n>0

 ∑
(uv)∈P2(n)

u2
2

 qn

=

[
1, 1

1, 1

]
− 2

[
1, 1

0, 2

]
.
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bi-brackets - partition relation - idea of proof

In general the conjugation ρ on the partitions Pl(n) is explicitly given by

ρ :

(
u1, . . . , ul
v1, . . . , vl

)
7−→

(
v1 + · · ·+ vl, . . . , v1 + v2, v1

ul, ul−1 − ul, . . . , u1 − u2

)
.

The partition relation of bi-brackets follows by applying the conjugation ρ to the Pl(n) in the

summation of the generating function.

Now we have seen the main idea used in the proof of the partition relation∣∣∣∣X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣ =

∣∣∣∣Y1 + · · ·+ Yl, . . . , Y1 + Y2, Y1

Xl, Xl−1 −Xl, . . . , X1 −X2

∣∣∣∣ .
This family of relations enables us to obtain a second expression for the product of two

bi-brackets.
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bi-brackets - � + partition = "shuffle"

Using the quasi-shuffle product and the partition relation we obtain[
1

1

]
·
[
1

2

]
�
=

[
1, 1

1, 2

]
+

[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]
,[

1, 1

1, 2

]
P
=

[
3, 2

0, 0

]
+ 3

[
4, 1

0, 0

]
, and

[
1, 1

2, 1

]
P
=

[
2, 3

0, 0

]
+ 2

[
3, 2

0, 0

]
+ 3

[
4, 1

0, 0

]
,

which yields[
2

0

]
·
[
3

0

]
P
=

[
1

1

]
·
[
1

2

]
�
=

[
1, 1

1, 2

]
+

[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]
P
=

[
2, 3

0, 0

]
+ 3

[
3, 2

0, 0

]
+ 6

[
4, 1

0, 0

]
+ 3

[
4

1

]
− 3

[
4

0

]
.

Compare this to the shuffle product of MZV

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .
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bi-brackets - "stuffle" & "shuffle" product

Denote by P : Q〈Abi
z〉 → Q〈Abi

z〉 the linearly extended map which sends a word

w = zs1,r1 . . . zsl,rl to the linear combination of words corresponding to the partition

relation. With this we get for words u, v ∈ Q〈Abi
z〉 two expressions for the product of two

bi-brackets:

[u] · [v] = [u� v] , [u] · [v] = [P (P (u) � P (v))] .

This yields a large family of linear relations similar to the double shuffle relations of MZV.

Question

The first product looks similar to the stuffle product and the second one looks similar to the shuffle

product of MZV.

Can we somehow obtain the real stuffle and shuffle product?
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Can we somehow obtain the real stuffle and shuffle product?
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bi-brackets - shuffle brackets

Theorem

There are two subalgebrasMD� ⊂ BD andMD∗ ⊂MD spanned by elements

[s1, . . . , sl]
� and [s1, . . . , sl]

∗, with the following properties

For • ∈ {∗,�} the map

(H1, •) −→MD•

zs1 . . . zsl 7−→ [s1, . . . , sl]
•

is an algebra homomorphism.

In length one we have [s1]� = [s1]∗ = [s1].

For s1 ≥ 1, s2, . . . , sl ≥ 2 we have [s1, . . . , sl]
� = [s1, . . . , sl].

We are mainly interested in the shuffle brackets [s1, . . . , sl]
�.
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bi-brackets - shuffle brackets

There are explicit formulas for the shuffle brackets in all length.

Proposition

For s1, s2 ≥ 1 the shuffle brackets in length 2 and 3 are given by

[s1, s2]� = [s1, s2] + δs2,1 ·
1

2

([
s1

1

]
− [s1]

)
,

[s1, s2, s3]� = [s1, s2, s3] + δs3,1 ·
1

2

([
s1, s2

0, 1

]
− [s1, s2]

)
+ δs2,1 ·

1

2

([
s1, s3

1, 0

]
−
[
s1, s3

0, 1

]
− [s1, s3]

)
+ δs2·s3,1 ·

1

6

([
s1

2

]
− 3

2

[
s1

1

]
+ [s1]

)
.
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bi-brackets - conjectures

Conjecture

All linear relations between bi-brackets come from the partition relation and the double

shuffle relations.

Every bi-bracket can be written as a linear combination of brackets, i.e. BD =MD.

The dimensions of the weight graded parts grW
k (qMZ) and grW

k (qMZ�) coincide

and they are given by

dim
(

grW
k (qMZ)

)
= dim

(
grW
k (qMZ�)

)
= d′k ,

where ∑
k≥0

d′kX
k :=

1−X2 +X4

1− 2X2 − 2X3
.
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Multiple Eisenstein series

Definition

For s1 ≥ 3, s2, . . . , sl ≥ 2 we define the multiple Eisenstein series of weight

k = s1 + · · ·+ sl and length l by

Gs1,...,sl(τ) :=
∑

λ1�···�λl�0
λi∈Λτ

1

λs11 . . . λsll
,

where λi ∈ Zτ +Z are lattice points and the order≺ onZ+Zτ is given by

m1τ + n1 � m2τ + n2 :⇔ (m1 > m2 ∨ (m1 = m2 ∧ n1 > n2)) .

It is easy to see that these are holomorphic functions in the upper half plane and that they

fulfill the stuffle product, i.e. it is for example

G3(τ) ·G4(τ) = G4,3(τ) +G3,4(τ) +G7(τ) .
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Multiple Eisenstein series - Fourier expansion

Remark

The condition s1 ≥ 3 is necessary for absolutely convergence of the sum. By choosing a

specific way of summation we can also restrict this condition to get a definition ofGs1,...,sl(τ)
with s1 = 2 which also satisfies the stuffle product.

The connection to the brackets and the MZV is given by the following:

Proposition

For s1, . . . , sl ≥ 2 theGs1,...,sl have a Fourierexpansion which can be written as a linear

combination of products of MZV, powers of 2πi and brackets by setting q = e2πiτ .

In the following we view the multiple Eisenstein series as an element inC[[q]] and write also
Gs1,...,sl(q) instead ofGs1,...,sl(τ).

Gk(q) = ζ(k) + (−2πi)k[k] = ζ(k) +
(−2πi)k

(k − 1)!

∑
n>0

σk−1(n)q
n ,

G3,2,2(q) = ζ(3, 2, 2) +

(
54

5
ζ(2, 3) +

51

5
ζ(3, 2)

)
(2πi)2[2] +

16

3
ζ(2, 2)(2πi)3[3]

+ 3ζ(3)(2πi)4[2, 2] + 4ζ(2)(2πi)5[3, 2] + (2πi)7[3, 2, 2] .
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Multiple Eisenstein series

Due to convergence issues the MES are just defined for s1, . . . , sl ≥ 2 and therefore

there are a lot more MZV than MES. A natural question was therefore the following

Question

What is a "good" definition of a "regularised" multiple Eisenstein series, such that for each multiple

zeta value ζ(s1, . . . , sl) with s1 ≥ 2, s2, . . . , sl ≥ 1 there is a multiple Eisenstein series

Gregs1,...,sl(q) = ζ(s1, . . . , sl) +
∑
n>0

anq
n ∈ C[[q]]

with this multiple zeta values as the constant term in its Fourier expansion and which equals the

original multiple Eisenstein series in the case s1, . . . , sl ≥ 2?
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Space of formal iterated integrals

Consider the algebra I of formal iterated integrals generated by the elements

I(a0; a1, . . . , aN ; aN+1), where ai ∈ {0, 1}, N ≥ 0, with the product given by the

shuffle product� together with relations coming from real iterated integrals.

Define

∆G (I(a0; a1, . . . , aN ; aN+1)) :=∑( k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)
)
⊗ I(a0; ai1 , . . . , aik ; aN+1),

where the sum runs over all i0 = 0 < i1 < · · · < ik < ik+1 = N + 1 with

0 ≤ k ≤ N .

Goncharov

The triple (I,�,∆G) is a commutative graded Hopf algebra overQ.

Henrik Bachmann - University of Hamburg Multiple zeta values and regularised multiple Eisenstein series



Space of formal iterated integrals

For integers n ≥ 0, s1, . . . , sl ≥ 1, we set

In(s1, . . . , sl) := I(0; 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
s1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
sl

; 1).

In particular, we write I(s1, . . . , sl) to denote I0(s1, . . . , sl) and consider quotient

space

I1 = I/I(0; 0; 1)I .

Proposition

The elements I(s1, . . . , sl) form a basis of I1, i.e. as aQ-algebra the space (I1,�) is

isomorphic to (H1,�).

In the following we therefore consider (H1,�,∆G) as a Hopf algebra.
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Coproduct <-> Multiple Eisenstein series

Example for the coproduct of the word z3z2 ∈ H1:

∆(z3z2) = z3z2 ⊗ 1 + 3z3 ⊗ z2 + 2z2 ⊗ z3 + 1⊗ z3z2 .

Compare this to the Fourier expansion ofG2,3(τ):

G3,2(τ) = ζ(3, 2) + 3ζ(3)(−2πi)2[2] + 2ζ(2)(−2πi)3[3] + (−2πi)5[3, 2] .

Since ∆(zs1 . . . zsl) ∈ H1 ⊗ H1 exists for all s1, . . . , sl ≥ 1 this comparison

suggests, that there might be a extended definition ofGn1,...,nr by defining a map

H1 ⊗ H1 → C[[q]]

which sends the first component to the corresponding zeta values and the second

component to (−2πi-multiple of) the bracket.
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Multiple Eisenstein series - shuffle regularisation

Define the algebra homomorphism g� : (H1,�)→ C[[q]] by

g�(zs1 . . . zsl) = (−2πi)s1+···+sl [s1, . . . , sl]
� .

Definition

For integers s1, . . . , sl ≥ 1, we define the (shuffle) regularised multiple Eisenstein series,

as

G�s1,...,sl(q) := m
(
(Z� ⊗ g�) ◦∆G

(
zs1 . . . zsl

))
,

wherem denotes the multiplication given bym : a⊗ b 7→ a · b.

We can viewG� as an algebra homomorphismG� : (H1
xy,�)→ C[[q]] such that

the following diagram commutes

(H1,�)
∆G //

G�

��

(H1,�)⊗ (H1,�)

Z�⊗ g�

��
C[[q]] MZ⊗C[[q]]

m
oo
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Multiple Eisenstein series - shuffle regularisation

Theorem (B., K. Tasaka 2014)

For all s1, . . . , sl ≥ 1 the shuffle regularised multiple Eisenstein seriesG�s1,...,sl have the

following properties:

They are holomorphic functions on the upper half plane having a Fourier expansion with the

shuffle regularised multiple zeta values as the constant term.

They fulfill the shuffle product.

For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl(q) = Gs1,...,sl(q)

and therefore they fulfill the stuffle product in these cases.

Proof sketch: The first statement follows directly by definition. The second statement

follows from the fact that ∆, Z� and g� are algebra homomorphism and hence

(Z�⊗g�)◦∆ is also an algebra homomorphism. For the third statement we give explicit

formulas for the coproduct and the Fourier expansion and then show that they are equal.
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Multiple Eisenstein series - shuffle regularisation

The Theorem gives a subset of the double shuffle relations between theG�, since the

stuffle product is just fulfilled for the case s1, . . . , sl ≥ 2.

Question

Do they also fulfill the stuffle product when some indices sj are equal to 1 ?

Yes! For example one can show, by using the quasi-shuffle product of bi-brackets, that

G�2 ·G�2,1 = G�2,1,2 + 2G�2,2,1 +G�2,3 +G�4,1 .

We want to give another way of proving this by introducing a stuffle regularisationG∗ of the

multiple Eisenstein series.
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Multiple Eisenstein series - stuffle regularisation

Theorem

For s1 ≥ 2, s1, . . . , sl ≥ 1 there exist stuffle regularised multiple Eisenstein series

G∗s1,...,sl(q) ∈ C[[q]] with the following properties

They fulfill the stuffle product, i.e. the mapG∗ : (H0, ∗)→ C[[q]] which sends

zs1 . . . zsl toG∗s1,...,sl(q) is an algebra homomorphism.

They can be written as a linear combination of MZV, powers of (−2πi) and bi-brackets.

For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G∗s1,...,sl(q) = Gs1,...,sl(q) = G�s1,...,sl(q) .

Notice that in contrast to theG� we need s1 ≥ 2 for theG∗.
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Multiple Eisenstein series - stuffle & shuffle regularisations

These two regularisation coincide in many cases and therefore we can prove the stuffle

product for theG� in some cases, for example:

Proposition

It isG∗2,1 = G�2,1,G∗2,1,2 = G�2,1,2, G
∗
2,2,1 = G�2,2,1 andG∗4,1 = G�4,1 and therefore

G�2 ·G�2,1 = G�2,1,2 + 2G�2,2,1 +G�2,3 +G�4,1 .

But there areG∗s1,...,sl that differ fromG�s1,...,sl . For example it is

G�2,1,1 −G∗2,1,1 =
5

2
ζ(2)(−2πi)2[2] +

1

8
(−2πi)4

[
2

1

]
− 1

12
(−2πi)4

[
2

2

]
6= 0

It is still an open question for which indices s1, . . . , sl we haveG�s1,...,sl = G∗s1,...,sl .
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Multiple Eisenstein series - relations

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

edsk 0 0 1 3 6 14 29 60 123 249 503 1012 2032 4075

fdsk 0 0 0 1 2 7 16 40 92 200 429 902 1865 3832

cdsk 0 0 0 1 2 6 14 32 72 156 336 712 1496 3120

rdsk 0 0 0 1 1 3 5 11 19 37 65 120 209 372

dk 0 1 1 1 2 2 3 4 5 7 9 12 16 21

d′k 0 1 2 3 6 10 18 32 56 100 176 312 552 976

edsk = Number of conjectured relations between MZV (extended double shuffle relations),

fdsk = Number of (finite) double shuffle relations,

cdsk = Conjectured number of double shuffle relations between theG�,

rdsk = Number of (restricted) double shuffle relations, i.e where all indices are≥ 2.
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Summary

Bi-brackets are q-series with coefficients given by sums over partitions.

The subspace of brackets give a q-analogue for multiple zeta values.

Due to the quasi-shuffle product � and the partition relation we have two (different)

ways of writing the product of two bi-brackets and therefore have a large family of

linear relations.

They appear also in the Fourier expansion of shuffle and stuffle regularised multiple

Eisenstein series.

You can find more details on my homepage:

http://www.math.uni-hamburg.de/home/bachmann/ .
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