The Ooguri-Vafa space as a moduli space of framed wild harmonic bundles

Ivan Tulli

Universität Hamburg

July 14, 2020

Table of Contents

- Motivation and statement of the problem
- Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles
- Main Idea of the correspondence and the main theorem
- Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

Table of Contents

- Motivation and statement of the problem
- Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles
- Main Idea of the correspondence and the main theorem
- Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

The Hitchin moduli space

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple $\left(E, \bar{\partial}_{E}, \theta, h\right)$ such that:

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple $\left(E, \bar{\partial}_{E}, \theta, h\right.$) such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple $\left(E, \bar{\partial}_{E}, \theta, h\right)$ such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple ($E, \bar{\partial}_{E}, \theta, h$) such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger}\right]=0 \tag{1}
\end{equation*}
$$

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple $\left(E, \bar{\partial}_{E}, \theta, h\right)$ such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger}\right]=0 \tag{1}
\end{equation*}
$$

We denote by $\mathcal{M}_{\text {Hit }}(\Sigma)$ the moduli space of harmonic bundles.

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple ($E, \bar{\partial}_{E}, \theta, h$) such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger}\right]=0 \tag{1}
\end{equation*}
$$

We denote by $\mathcal{M}_{\text {Hit }}(\Sigma)$ the moduli space of harmonic bundles.
$\mathcal{M}_{\text {Hit }}(\Sigma)$ has two important structures:

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple $\left(E, \bar{\partial}_{E}, \theta, h\right)$ such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger}\right]=0 \tag{1}
\end{equation*}
$$

We denote by $\mathcal{M}_{\text {Hit }}(\Sigma)$ the moduli space of harmonic bundles.
$\mathcal{M}_{\text {Hit }}(\Sigma)$ has two important structures:

- It carries a hyperkähler metric.

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple ($E, \bar{\partial}_{E}, \theta, h$) such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger \dagger}\right]=0 \tag{1}
\end{equation*}
$$

We denote by $\mathcal{M}_{\text {Hit }}(\Sigma)$ the moduli space of harmonic bundles.
$\mathcal{M}_{\text {Hit }}(\Sigma)$ has two important structures:

- It carries a hyperkähler metric.
- There is one of the complex structures in which it is a complex integrable system $\pi:\left(\mathcal{M}_{\text {Hit }}(\Sigma), I, \Omega_{l}\right) \rightarrow \mathcal{B}(\Sigma)$.

The Hitchin moduli space

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.
A harmonic bundle over Σ is a tuple ($E, \bar{\partial}_{E}, \theta, h$) such that:

- $\left(E, \bar{\partial}_{E}\right) \rightarrow \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger \dagger}\right]=0 \tag{1}
\end{equation*}
$$

We denote by $\mathcal{M}_{\text {Hit }}(\Sigma)$ the moduli space of harmonic bundles.
$\mathcal{M}_{\text {Hit }}(\Sigma)$ has two important structures:

- It carries a hyperkähler metric.
- There is one of the complex structures in which it is a complex integrable system $\pi:\left(\mathcal{M}_{\text {Hit }}(\Sigma), I, \Omega_{I}\right) \rightarrow \mathcal{B}(\Sigma)$. The base $\mathcal{B}(\Sigma)$ is called the Hitchin base.

Formulation of the problem

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of $\mathcal{M}_{\text {Hit }}(\Sigma)$ are expected to describe the Coulomb branch of certain $4 \mathrm{~d} \mathcal{N}=2$ theories (compactified on S^{1}).

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of $\mathcal{M}_{\text {Hit }}(\Sigma)$ are expected to describe the Coulomb branch of certain $4 \mathrm{~d} \mathcal{N}=2$ theories (compactified on S^{1}).
How? Clues from the work of Gaiotto-Moore-Neitzke:

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of $\mathcal{M}_{\mathrm{Hit}}(\Sigma)$ are expected to describe the Coulomb branch of certain $4 \mathrm{~d} \mathcal{N}=2$ theories (compactified on S^{1}).
How? Clues from the work of Gaiotto-Moore-Neitzke:
- Asymptotically near infinite ends of $\mathcal{M}_{\text {Hit }}(\Sigma): g \sim g_{s f}$, where $g_{s f}$ is a simpler "semi-flat" hyperkähler metric.

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of $\mathcal{M}_{\mathrm{Hit}}(\Sigma)$ are expected to describe the Coulomb branch of certain $4 \mathrm{~d} \mathcal{N}=2$ theories (compactified on S^{1}).
How? Clues from the work of Gaiotto-Moore-Neitzke:
- Asymptotically near infinite ends of $\mathcal{M}_{\text {Hit }}(\Sigma): g \sim g_{s f}$, where $g_{s f}$ is a simpler "semi-flat" hyperkähler metric.
- Near "generic" part of singular locus of the Hitchin base, the Ooguri-Vafa metric should be part of an approximate model of g.

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of $\mathcal{M}_{\text {Hit }}(\Sigma)$ are expected to describe the Coulomb branch of certain $4 \mathrm{~d} \mathcal{N}=2$ theories (compactified on S^{1}).
How? Clues from the work of Gaiotto-Moore-Neitzke:
- Asymptotically near infinite ends of $\mathcal{M}_{\text {Hit }}(\Sigma): g \sim g_{s f}$, where $g_{s f}$ is a simpler "semi-flat" hyperkähler metric.
- Near "generic" part of singular locus of the Hitchin base, the Ooguri-Vafa metric should be part of an approximate model of g.

Natural question: Is there a way to interpret the Ooguri-Vafa space in terms of certain harmonic bundles?

Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{\text {Hit }}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of $\mathcal{M}_{\text {Hit }}(\Sigma)$ are expected to describe the Coulomb branch of certain $4 \mathrm{~d} \mathcal{N}=2$ theories (compactified on S^{1}).
How? Clues from the work of Gaiotto-Moore-Neitzke:
- Asymptotically near infinite ends of $\mathcal{M}_{\text {Hit }}(\Sigma): g \sim g_{s f}$, where $g_{s f}$ is a simpler "semi-flat" hyperkähler metric.
- Near "generic" part of singular locus of the Hitchin base, the Ooguri-Vafa metric should be part of an approximate model of g.

Natural question: Is there a way to interpret the Ooguri-Vafa space in terms of certain harmonic bundles?

Answer: Yes! The Ooguri-Vafa space can be interpreted as a certain class of (framed) wild harmonic bundles.

Table of Contents

- Motivation and statement of the problem
- Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles
- Main Idea of the correspondence and the main theorem
- Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

The Ooguri-Vafa space

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$ ($X, g, I_{1}, I_{2}, l_{3}$) hyperkähler!

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$ ($X, g, I_{1}, I_{2}, l_{3}$) hyperkähler!

- Consider the harmonic function on $\mathbb{R}^{3}-\{(0,0, n)\}_{n \in \mathbb{Z}}$ defined by

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$ ($X, g, I_{1}, I_{2}, l_{3}$) hyperkähler!

- Consider the harmonic function on $\mathbb{R}^{3}-\{(0,0, n)\}_{n \in \mathbb{Z}}$ defined by

$$
\begin{equation*}
V\left(x^{1}, x^{2}, x^{3}\right):=\frac{1}{4 \pi} \sum_{n=-\infty}^{\infty}\left(\frac{1}{\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}+n\right)^{2}}}-c_{n}\right) \tag{2}
\end{equation*}
$$

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$ ($X, g, I_{1}, I_{2}, l_{3}$) hyperkähler!

- Consider the harmonic function on $\mathbb{R}^{3}-\{(0,0, n)\}_{n \in \mathbb{Z}}$ defined by

$$
\begin{gather*}
V\left(x^{1}, x^{2}, x^{3}\right):=\frac{1}{4 \pi} \sum_{n=-\infty}^{\infty}\left(\frac{1}{\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}+n\right)^{2}}}-c_{n}\right) \tag{2}\\
=-\frac{1}{2 \pi} \log \left(\frac{|z|}{|\Lambda|}\right)+\frac{1}{2 \pi} \sum_{n \neq 0, n \in \mathbb{Z}} e^{2 \pi i n x^{3}} K_{0}(2 \pi|n z|) \tag{3}
\end{gather*}
$$

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$ ($X, g, I_{1}, I_{2}, I_{3}$) hyperkähler!

- Consider the harmonic function on $\mathbb{R}^{3}-\{(0,0, n)\}_{n \in \mathbb{Z}}$ defined by

$$
\begin{gather*}
V\left(x^{1}, x^{2}, x^{3}\right):=\frac{1}{4 \pi} \sum_{n=-\infty}^{\infty}\left(\frac{1}{\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}+n\right)^{2}}}-c_{n}\right) \tag{2}\\
=-\frac{1}{2 \pi} \log \left(\frac{|z|}{|\Lambda|}\right)+\frac{1}{2 \pi} \sum_{n \neq 0, n \in \mathbb{Z}} e^{2 \pi i n x^{3}} K_{0}(2 \pi|n z|) \tag{3}
\end{gather*}
$$

- Over $U:=\mathcal{B} \times \mathbb{R}-\{(0,0, n)\}_{n \in \mathbb{Z}} \subset \mathbb{R}^{3}$ where $V>0$, we can take a $U(1)$-principal bundle with connection $\pi:(X, \Theta) \rightarrow U$ with:

$$
\begin{equation*}
d \Theta=\pi^{*}(2 \pi i \star d V) \tag{4}
\end{equation*}
$$

The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:
From $V: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}_{>0}$ with $\Delta V=0$ and $[\star d V] \in H^{2}(U, \mathbb{Z}) \rightsquigarrow$ $\left(X, g, I_{1}, I_{2}, I_{3}\right)$ hyperkähler!

- Consider the harmonic function on $\mathbb{R}^{3}-\{(0,0, n)\}_{n \in \mathbb{Z}}$ defined by

$$
\begin{gather*}
V\left(x^{1}, x^{2}, x^{3}\right):=\frac{1}{4 \pi} \sum_{n=-\infty}^{\infty}\left(\frac{1}{\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}+n\right)^{2}}}-c_{n}\right) \tag{2}\\
=-\frac{1}{2 \pi} \log \left(\frac{|z|}{|\Lambda|}\right)+\frac{1}{2 \pi} \sum_{n \neq 0, n \in \mathbb{Z}} e^{2 \pi i n x^{3}} K_{0}(2 \pi|n z|) \tag{3}
\end{gather*}
$$

- Over $U:=\mathcal{B} \times \mathbb{R}-\{(0,0, n)\}_{n \in \mathbb{Z}} \subset \mathbb{R}^{3}$ where $V>0$, we can take a $U(1)$-principal bundle with connection $\pi:(X, \Theta) \rightarrow U$ with:

$$
\begin{equation*}
d \Theta=\pi^{*}(2 \pi i \star d V) \tag{4}
\end{equation*}
$$

- Furthermore, on the total space X we can define the three real symplectic forms:

$$
\begin{equation*}
\omega_{j}=\left(\frac{i}{2 \pi} \Theta\right) \wedge \pi^{*} d x^{j}+\pi^{*}\left(V \star d x^{j}\right) \tag{5}
\end{equation*}
$$

- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Extra piece of structure: V invariant under \mathbb{Z}-shifts of x^{3}.
- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Extra piece of structure: V invariant under \mathbb{Z}-shifts of x^{3}. Can lift \mathbb{Z} action to X (non-uniquely) and consider X / \mathbb{Z}.
- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Extra piece of structure: V invariant under \mathbb{Z}-shifts of x^{3}. Can lift \mathbb{Z} action to X (non-uniquely) and consider X / \mathbb{Z}. We define $\mathcal{M}^{\mathrm{ov}}(\Lambda):=X / \mathbb{Z}$, where the phase $\Lambda /|\Lambda|$ records the choice of lift.
- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Extra piece of structure: V invariant under \mathbb{Z}-shifts of x^{3}. Can lift \mathbb{Z} action to X (non-uniquely) and consider X / \mathbb{Z}. We define $\mathcal{M}^{\text {ov }}(\Lambda):=X / \mathbb{Z}$, where the phase $\Lambda /|\Lambda|$ records the choice of lift.
- Furthermore, we have the $U(1)$-principal bundle $\pi: \mathcal{M}^{\mathrm{ov}}(\Lambda) \rightarrow \mathcal{B} \times S^{1}-\{\mathrm{pt}\}$.
- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Extra piece of structure: V invariant under \mathbb{Z}-shifts of x^{3}. Can lift \mathbb{Z} action to X (non-uniquely) and consider X / \mathbb{Z}. We define $\mathcal{M}^{\mathrm{ov}}(\Lambda):=X / \mathbb{Z}$, where the phase $\Lambda /|\Lambda|$ records the choice of lift.
- Furthermore, we have the $U(1)$-principal bundle $\pi: \mathcal{M}^{\mathrm{ov}}(\Lambda) \rightarrow \mathcal{B} \times S^{1}-\{\mathrm{pt}\}$.
- One can add a point to $\mathcal{M}^{\text {ov }}(\Lambda)$, and extend π to a map $\pi: \mathcal{M}^{\mathrm{ov}}(\Lambda) \rightarrow \mathcal{B} \times S^{1}$.
- Finally, from the ω_{i} we can obtain the l_{i} 's and

$$
\begin{equation*}
g=V^{-1}\left(\frac{i}{2 \pi} \Theta\right) \otimes\left(\frac{i}{2 \pi} \Theta\right)+V \pi^{*}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \tag{6}
\end{equation*}
$$

- Extra piece of structure: V invariant under \mathbb{Z}-shifts of x^{3}. Can lift \mathbb{Z} action to X (non-uniquely) and consider X / \mathbb{Z}. We define $\mathcal{M}^{\mathrm{ov}}(\Lambda):=X / \mathbb{Z}$, where the phase $\Lambda /|\Lambda|$ records the choice of lift.
- Furthermore, we have the $U(1)$-principal bundle $\pi: \mathcal{M}^{\text {ov }}(\Lambda) \rightarrow \mathcal{B} \times S^{1}-\{\mathrm{pt}\}$.
- One can add a point to $\mathcal{M}^{\mathrm{ov}}(\Lambda)$, and extend π to a map $\pi: \mathcal{M}^{\text {ov }}(\Lambda) \rightarrow \mathcal{B} \times S^{1}$. The HK structure also extends smoothly.

Picture of $\mathcal{M}^{\mathrm{ov}}(\Lambda)$

Composing $\pi: \mathcal{M}^{\text {ov }}(\Lambda) \rightarrow \mathcal{B} \times S^{1}$ with $\mathcal{B} \times S^{1} \rightarrow \mathcal{B}$ we get the following picture of $\mathcal{M}^{\text {ov }}(\Lambda)$:

Picture of $\mathcal{M}^{\mathrm{ov}}(\Lambda)$

Composing $\pi: \mathcal{M}^{\text {ov }}(\Lambda) \rightarrow \mathcal{B} \times S^{1}$ with $\mathcal{B} \times S^{1} \rightarrow \mathcal{B}$ we get the following picture of $\mathcal{M}^{\text {ov }}(\Lambda)$:

Picture of $\mathcal{M}^{\mathrm{ov}}(\Lambda)$

Composing $\pi: \mathcal{M}^{\text {ov }}(\Lambda) \rightarrow \mathcal{B} \times S^{1}$ with $\mathcal{B} \times S^{1} \rightarrow \mathcal{B}$ we get the following picture of $\mathcal{M}^{\text {ov }}(\Lambda)$:

\rightsquigarrow should think of $\mathcal{M}^{\mathrm{ov}}(\Lambda)$ as a "model HK space".

Framed wild harmonic bundles

We will consider a specific subset of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger}\right]=0 \tag{7}
\end{equation*}
$$

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger}\right]=0 \tag{7}
\end{equation*}
$$

- $(E, h) \rightarrow \mathbb{C} P^{1}$ and the fiber E_{∞} carries a certain choice of framing g.

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger} \dagger\right]=0 \tag{7}
\end{equation*}
$$

- $(E, h) \rightarrow \mathbb{C} P^{1}$ and the fiber E_{∞} carries a certain choice of framing g.
- The Higgs field θ has a pole of order >1 at ∞ (thus, we are on the "wild case").

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger} \dagger\right]=0 \tag{7}
\end{equation*}
$$

- $(E, h) \rightarrow \mathbb{C} P^{1}$ and the fiber E_{∞} carries a certain choice of framing g.
- The Higgs field θ has a pole of order >1 at ∞ (thus, we are on the "wild case").
- Hence the name "framed wild harmonic bundles".

Framed wild harmonic bundles

We will consider a specific subset of tuples ($E, \bar{\partial}_{E}, \theta, h, g$), where:

- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle. That is:
- $\left(E, \bar{\partial}_{E}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a holomorphic vector bundle, with hermitian metric h.
- θ is a holomorphic section of $\operatorname{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$
\begin{equation*}
F\left(D\left(\bar{\partial}_{E}, h\right)\right)+\left[\theta, \theta^{\dagger} \dagger\right]=0 \tag{7}
\end{equation*}
$$

- $(E, h) \rightarrow \mathbb{C} P^{1}$ and the fiber E_{∞} carries a certain choice of framing g.
- The Higgs field θ has a pole of order >1 at ∞ (thus, we are on the "wild case").
- Hence the name "framed wild harmonic bundles".
- The reason for including framings in not obvious at this point, but it will become clear in the future.

Definition of the moduli space of framed W.H.B.

Definition of the moduli space of framed W.H.B.

Let $\mathcal{H}^{\mathrm{fr}}$ be the set of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

Definition of the moduli space of framed W.H.B.

Let $\mathcal{H}^{\text {fr }}$ be the set of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

- $(E, h) \rightarrow \mathbb{C} P^{1} \rightsquigarrow S U(2)$-vector bundle.

Definition of the moduli space of framed W.H.B.

Let $\mathcal{H}^{\text {fr }}$ be the set of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

- $(E, h) \rightarrow \mathbb{C} P^{1} \rightsquigarrow S U(2)$-vector bundle.
- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle such that $\operatorname{Tr}(\theta)=0$ and $\operatorname{Det}(\theta)=-\left(z^{2}+2 m\right) d z^{2}$ for some $m \in \mathbb{C}$.

Definition of the moduli space of framed W.H.B.

Let $\mathcal{H}^{\mathrm{fr}}$ be the set of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

- $(E, h) \rightarrow \mathbb{C} P^{1} \rightsquigarrow S U(2)$-vector bundle.
- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle such that $\operatorname{Tr}(\theta)=0$ and $\operatorname{Det}(\theta)=-\left(z^{2}+2 m\right) d z^{2}$ for some $m \in \mathbb{C}$.
- g is an $S U(2)$-frame of E_{∞}, having an extension to a local $S U(2)$-frame where θ and $\bar{\partial}_{E}$ have the following form:

Definition of the moduli space of framed W.H.B.

Let $\mathcal{H}^{\mathrm{fr}}$ be the set of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

- $(E, h) \rightarrow \mathbb{C} P^{1} \rightsquigarrow S U(2)$-vector bundle.
- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle such that $\operatorname{Tr}(\theta)=0$ and $\operatorname{Det}(\theta)=-\left(z^{2}+2 m\right) d z^{2}$ for some $m \in \mathbb{C}$.
- g is an $S U(2)$-frame of E_{∞}, having an extension to a local $S U(2)$-frame where θ and $\bar{\partial}_{E}$ have the following form:
For $w=1 / z$ and $H=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

$$
\begin{equation*}
\theta=-H \frac{d w}{w^{3}}-m H \frac{d w}{w}+\text { regular terms } \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\partial}_{E}=\bar{\partial}-\frac{m^{(3)}}{2} H \frac{d \bar{W}}{\bar{W}}+\text { regular terms } \quad \text { for some } \quad m^{(3)} \in\left(-\frac{1}{2}, \frac{1}{2}\right] \tag{9}
\end{equation*}
$$

Definition of the moduli space of framed W.H.B.

Let $\mathcal{H}^{\mathrm{fr}}$ be the set of tuples $\left(E, \bar{\partial}_{E}, \theta, h, g\right)$, where:

- $(E, h) \rightarrow \mathbb{C} P^{1} \rightsquigarrow S U(2)$-vector bundle.
- $\left(E, \bar{\partial}_{E}, \theta, h\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$ is a harmonic bundle such that $\operatorname{Tr}(\theta)=0$ and $\operatorname{Det}(\theta)=-\left(z^{2}+2 m\right) d z^{2}$ for some $m \in \mathbb{C}$.
- g is an $S U(2)$-frame of E_{∞}, having an extension to a local $S U(2)$-frame where θ and $\bar{\partial}_{E}$ have the following form:
For $w=1 / z$ and $H=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

$$
\begin{equation*}
\theta=-H \frac{d w}{w^{3}}-m H \frac{d w}{w}+\text { regular terms } \tag{8}
\end{equation*}
$$

$\bar{\partial}_{E}=\bar{\partial}-\frac{m^{(3)}}{2} H \frac{d \bar{w}}{\bar{w}}+$ regular terms \quad for some $\quad m^{(3)} \in\left(-\frac{1}{2}, \frac{1}{2}\right]$

We call g a compatible frame; and the equivalence classes of $\mathcal{H}^{\text {fr }}$ we denote by $\mathfrak{X}^{\mathrm{fr}}$.

Picture of $\mathfrak{X}^{f r}$

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \Longrightarrow \mathfrak{X}^{\text {fr }}\left(m, m^{3}\right)$ is a $U(1)$-torsor.

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \Longrightarrow \mathfrak{X}^{\text {fr }}\left(m, m^{3}\right)$ is a $U(1)$-torsor. $U(1)$ acts by:

$$
\begin{equation*}
e^{i \theta} \cdot\left[E, \bar{\partial}_{E}, \theta, h, g\right]=\left[E, \bar{\partial}_{E}, \theta, h, e^{i \frac{\theta}{2}} \cdot g\right] \tag{10}
\end{equation*}
$$

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \Longrightarrow \mathfrak{X}^{\text {fr }}\left(m, m^{3}\right)$ is a $U(1)$-torsor. $U(1)$ acts by:

$$
\begin{equation*}
e^{i \theta} \cdot\left[E, \bar{\partial}_{E}, \theta, h, g\right]=\left[E, \bar{\partial}_{E}, \theta, h, e^{i \frac{\theta}{2}} \cdot g\right] \tag{10}
\end{equation*}
$$

For $g=\left(e_{1}, e_{2}\right)$:

$$
\begin{equation*}
e^{i \frac{\theta}{2}} \cdot g=\left(e^{i \frac{\theta}{2}} e_{1}, e^{-i \frac{\theta}{2}} e_{2}\right) \tag{11}
\end{equation*}
$$

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \Longrightarrow \mathfrak{X}^{\text {fr }}\left(m, m^{3}\right)$ is a $U(1)$-torsor. $U(1)$ acts by:

$$
\begin{equation*}
e^{i \theta} \cdot\left[E, \bar{\partial}_{E}, \theta, h, g\right]=\left[E, \bar{\partial}_{E}, \theta, h, e^{i \frac{\theta}{2}} \cdot g\right] \tag{10}
\end{equation*}
$$

For $g=\left(e_{1}, e_{2}\right)$:

$$
\begin{equation*}
e^{i \frac{\theta}{2}} \cdot g=\left(e^{i \frac{\theta}{2}} e_{1}, e^{-i \frac{\theta}{2}} e_{2}\right) \tag{11}
\end{equation*}
$$

- If $m=m^{(3)}=0 \Longrightarrow \mathfrak{X}^{\text {fr }}(0,0)=\{\mathrm{pt}\}$

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \Longrightarrow \mathfrak{X}^{\text {fr }}\left(m, m^{3}\right)$ is a $U(1)$-torsor. $U(1)$ acts by:

$$
\begin{equation*}
e^{i \theta} \cdot\left[E, \bar{\partial}_{E}, \theta, h, g\right]=\left[E, \bar{\partial}_{E}, \theta, h, e^{i \frac{\theta}{2}} \cdot g\right] \tag{10}
\end{equation*}
$$

For $g=\left(e_{1}, e_{2}\right)$:

$$
\begin{equation*}
e^{i \frac{\theta}{2}} \cdot g=\left(e^{i \frac{\theta}{2}} e_{1}, e^{-i \frac{\theta}{2}} e_{2}\right) \tag{11}
\end{equation*}
$$

- If $m=m^{(3)}=0 \Longrightarrow \mathfrak{X}^{\text {fr }}(0,0)=\{\mathrm{pt}\} \rightsquigarrow$ "most symmetric" point in $\mathfrak{X}^{\text {fr: }}$

Picture of $\mathfrak{X}^{f r}$

- For $m \in \mathbb{C}$ and $m^{(3)} \in(-1 / 2,1 / 2]$, let $\mathfrak{X}^{\text {fr }}\left(m, m^{(3)}\right) \subset \mathfrak{X}^{\text {fr }} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \Longrightarrow \mathfrak{X}^{\text {fr }}\left(m, m^{3}\right)$ is a $U(1)$-torsor. $U(1)$ acts by:

$$
\begin{equation*}
e^{i \theta} \cdot\left[E, \bar{\partial}_{E}, \theta, h, g\right]=\left[E, \bar{\partial}_{E}, \theta, h, e^{i \frac{\theta}{2}} \cdot g\right] \tag{10}
\end{equation*}
$$

For $g=\left(e_{1}, e_{2}\right)$:

$$
\begin{equation*}
e^{i \frac{\theta}{2}} \cdot g=\left(e^{i \frac{\theta}{2}} e_{1}, e^{-i \frac{\theta}{2}} e_{2}\right) \tag{11}
\end{equation*}
$$

- If $m=m^{(3)}=0 \Longrightarrow \mathfrak{X}^{\text {fr }}(0,0)=\{\mathrm{pt}\} \rightsquigarrow$ "most symmetric" point in $\mathfrak{X}^{\text {fr }}$:

$$
E=\mathbb{C} P^{1} \times \mathbb{C}^{2}, \quad \bar{\partial}_{E}=\bar{\partial}, \quad \theta=z H d z, \quad h\left(e_{i}, e_{j}\right)=\delta_{i j}, \quad g=\left.\left(e_{1}, e_{2}\right)\right|_{\infty}
$$

Table of Contents

- Motivation and statement of the problem
- Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles
- Main Idea of the correspondence and the main theorem
- Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

HK spaces and their twistor family of holomorphic symplectic forms

HK spaces and their twistor family of holomorphic symplectic forms

Let $\left(M, g, I_{1}, I_{2}, I_{3}\right)$ be a hyperkähler manifold.

HK spaces and their twistor family of holomorphic symplectic forms

Let ($M, g, I_{1}, I_{2}, I_{3}$) be a hyperkähler manifold.

- M is holomorphic symplectic in a " $\mathbb{C} P^{1 "}$ worth of ways:

HK spaces and their twistor family of holomorphic

 symplectic formsLet ($M, g, I_{1}, I_{2}, I_{3}$) be a hyperkähler manifold.

- M is holomorphic symplectic in a " $\mathbb{C} P^{1}$ " worth of ways: for $\xi \in \mathbb{C}^{*} \subset \mathbb{C} P^{1}$, we have $\left(M, I_{\xi}, \Omega(\xi)\right)$, where

$$
\Omega(\xi)=-\frac{i}{2} \xi^{-1}\left(\omega_{1}+i \omega_{2}\right)+\omega_{3}-\frac{i}{2} \xi\left(\omega_{1}-i \omega_{2}\right)
$$

HK spaces and their twistor family of holomorphic

 symplectic formsLet ($M, g, l_{1}, I_{2}, l_{3}$) be a hyperkähler manifold.

- M is holomorphic symplectic in a " $\mathbb{C} P^{1}$ " worth of ways: for $\xi \in \mathbb{C}^{*} \subset \mathbb{C} P^{1}$, we have $\left(M, I_{\xi}, \Omega(\xi)\right)$, where

$$
\begin{equation*}
\Omega(\xi)=-\frac{i}{2} \xi^{-1}\left(\omega_{1}+i \omega_{2}\right)+\omega_{3}-\frac{i}{2} \xi\left(\omega_{1}-i \omega_{2}\right) \tag{12}
\end{equation*}
$$

for $\xi=0$ or $\xi=\infty$ we take $\left.\xi \Omega(\xi)\right|_{\xi=0}$ or $\left.\xi^{-1} \Omega(\xi)\right|_{\xi=\infty}$, respectively.

HK spaces and their twistor family of holomorphic

 symplectic formsLet ($M, g, I_{1}, I_{2}, I_{3}$) be a hyperkähler manifold.

- M is holomorphic symplectic in a " $\mathbb{C} P^{1}$ " worth of ways: for $\xi \in \mathbb{C}^{*} \subset \mathbb{C} P^{1}$, we have $\left(M, I_{\xi}, \Omega(\xi)\right)$, where

$$
\begin{equation*}
\Omega(\xi)=-\frac{i}{2} \xi^{-1}\left(\omega_{1}+i \omega_{2}\right)+\omega_{3}-\frac{i}{2} \xi\left(\omega_{1}-i \omega_{2}\right) \tag{12}
\end{equation*}
$$

for $\xi=0$ or $\xi=\infty$ we take $\left.\xi \Omega(\xi)\right|_{\xi=0}$ or $\left.\xi^{-1} \Omega(\xi)\right|_{\xi=\infty}$, respectively.

- $\Omega(\xi)$ encodes the H.K. structure of M ! (i.e. can recover ω_{i} 's, and hence l_{i} 's and g).

HK spaces and their twistor family of holomorphic

 symplectic formsLet $\left(M, g, I_{1}, I_{2}, I_{3}\right)$ be a hyperkähler manifold.

- M is holomorphic symplectic in a " $\mathbb{C} P^{1}$ " worth of ways: for $\xi \in \mathbb{C}^{*} \subset \mathbb{C} P^{1}$, we have $\left(M, I_{\xi}, \Omega(\xi)\right)$, where

$$
\begin{equation*}
\Omega(\xi)=-\frac{i}{2} \xi^{-1}\left(\omega_{1}+i \omega_{2}\right)+\omega_{3}-\frac{i}{2} \xi\left(\omega_{1}-i \omega_{2}\right) \tag{12}
\end{equation*}
$$

for $\xi=0$ or $\xi=\infty$ we take $\left.\xi \Omega(\xi)\right|_{\xi=0}$ or $\left.\xi^{-1} \Omega(\xi)\right|_{\xi=\infty}$, respectively.

- $\Omega(\xi)$ encodes the H.K. structure of M ! (i.e. can recover ω_{i} 's, and hence l_{i} 's and g).
- Manifestation of the fact that $\left(M, g, I_{1}, I_{2}, l_{3}\right)$ can be encoded holomorphically in the associated twistor space of M $\rightsquigarrow(\mathcal{Z}(M), \mathcal{I}, \Omega, \tau)$.

Main ideas for the correspondence

Main ideas for the correspondence

Main ideas:

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$:

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$: There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\mathrm{ov}}(\xi)$ and $\mathcal{X}_{m}^{\mathrm{ov}}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}$ and $\xi \in \mathbb{C}^{*}$

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$: There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}}$ and $\xi \in \mathbb{C}^{*} \rightsquigarrow$ "framed filtered flat bundle" $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$,

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}}$ and $\xi \in \mathbb{C}^{*} \rightsquigarrow$ "framed filtered flat bundle" $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$, where

$$
\nabla^{\xi}=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger h}
$$

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{0 \mathrm{v}}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}}$ and $\xi \in \mathbb{C}^{*} \rightsquigarrow$ "framed filtered flat bundle" $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$, where

$$
\begin{equation*}
\nabla^{\xi}=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger^{\dagger}} \tag{14}
\end{equation*}
$$

which in turn is associated to Stokes data \rightsquigarrow "refined monodromy data".

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{0 \mathrm{v}}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}}$ and $\xi \in \mathbb{C}^{*} \rightsquigarrow$ "framed filtered flat bundle" $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$, where

$$
\begin{equation*}
\nabla^{\xi}=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger} \dagger \tag{14}
\end{equation*}
$$

which in turn is associated to Stokes data \rightsquigarrow "refined monodromy data".

- We define "twistor coordinates" $\mathcal{X}_{e}(\xi)$ and $\mathcal{X}_{m}(\xi)$ of $\mathfrak{X}^{\mathrm{fr}}$ using Stokes data of $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$.

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}}$ and $\xi \in \mathbb{C}^{*} \rightsquigarrow$ "framed filtered flat bundle" $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$, where

$$
\begin{equation*}
\nabla^{\xi}=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger \dagger} \tag{14}
\end{equation*}
$$

which in turn is associated to Stokes data \rightsquigarrow "refined monodromy data".

- We define "twistor coordinates" $\mathcal{X}_{e}(\xi)$ and $\mathcal{X}_{m}(\xi)$ of $\mathfrak{X}^{\mathrm{fr}}$ using Stokes data of $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$.
- $\mathcal{X}_{e}(\xi)$ and $\mathcal{X}_{m}(\xi)$ will be matched with $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$ by certain properties that characterize them uniquely.

Main ideas for the correspondence

Main ideas:

- work with the twistor description of $\mathcal{M}^{\text {ov }}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$, such that:

$$
\begin{equation*}
\Omega^{\mathrm{ov}}(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{e}^{\mathrm{ov}}(\xi)} \wedge \frac{d \mathcal{X}_{m}^{\mathrm{ov}}(\xi)}{\mathcal{X}_{m}^{\mathrm{ov}}(\xi)} \tag{13}
\end{equation*}
$$

- For $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}}$ and $\xi \in \mathbb{C}^{*} \rightsquigarrow$ "framed filtered flat bundle" $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$, where

$$
\begin{equation*}
\nabla^{\xi}=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger} \tag{14}
\end{equation*}
$$

which in turn is associated to Stokes data \rightsquigarrow "refined monodromy data".

- We define "twistor coordinates" $\mathcal{X}_{e}(\xi)$ and $\mathcal{X}_{m}(\xi)$ of $\mathfrak{X}^{\text {fr }}$ using Stokes data of $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$.
- $\mathcal{X}_{e}(\xi)$ and $\mathcal{X}_{m}(\xi)$ will be matched with $\mathcal{X}_{e}^{\text {ov }}(\xi)$ and $\mathcal{X}_{m}^{\text {ov }}(\xi)$ by certain properties that characterize them uniquely.
- Remark: we need framings so that Stokes data can be used as coordinates.

Main Theorem

Consider $\mathcal{M}^{\text {ov }}(\Lambda)$ with $\Lambda \in \mathbb{C}^{*}$,

Main Theorem

Consider $\mathcal{M}^{\text {ov }}(\Lambda)$ with $\Lambda \in \mathbb{C}^{*}$, and let \mathcal{B} be the base of the singular torus fibration $\mathcal{M}^{\mathrm{ov}}(\Lambda) \rightarrow \mathcal{B}$.

Main Theorem

Consider $\mathcal{M}^{\text {ov }}(\Lambda)$ with $\Lambda \in \mathbb{C}^{*}$, and let \mathcal{B} be the base of the singular torus fibration $\mathcal{M}^{\mathrm{ov}}(\Lambda) \rightarrow \mathcal{B}$. Furthermore, let

$$
\mathfrak{X}^{\operatorname{fr}}(\Lambda):=\left\{\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }} \mid \operatorname{Det}(\theta)=-\left(z^{2}+2 m\right) d z^{2} \Longrightarrow-2 i m \in \mathcal{B}\right\}
$$

Main Theorem

Consider $\mathcal{M}^{\text {ov }}(\Lambda)$ with $\Lambda \in \mathbb{C}^{*}$, and let \mathcal{B} be the base of the singular torus fibration $\mathcal{M}^{\mathrm{ov}}(\Lambda) \rightarrow \mathcal{B}$. Furthermore, let
$\mathfrak{X}^{\mathrm{fr}}(\Lambda):=\left\{\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\mathrm{fr}} \mid \operatorname{Det}(\theta)=-\left(z^{2}+2 m\right) d z^{2} \Longrightarrow-2 i m \in \mathcal{B}\right\}$

Theorem [I.T.]: If $\Lambda=4 i$, then $\mathfrak{X}^{\text {fr }}(4 i)$ can be identified with $\mathcal{M}^{\text {ov }}(4 i)$. Under this identification $\mathfrak{X}^{\mathrm{fr}}(4 i)$ gets an induced hyperkähler structure, whose twistor family of holomorphic symplectic forms $\Omega(\xi)$ is described by

$$
\begin{equation*}
\Omega(\xi)=-\frac{1}{4 \pi^{2}} \frac{d \mathcal{X}_{e}(\xi)}{\mathcal{X}_{e}(\xi)} \wedge \frac{d \mathcal{X}_{m}(\xi)}{\mathcal{X}_{m}(\xi)} \text { for } \xi \in \mathbb{C}^{*} \tag{15}
\end{equation*}
$$

Table of Contents

- Motivation and statement of the problem
- Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles
- Main Idea of the correspondence and the main theorem
- Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

Stokes data of a framed meromorphic connection

Stokes data of a framed meromorphic connection

Consider $\mathcal{E} \rightarrow \mathbb{C} P^{1}$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z=\infty$.

Stokes data of a framed meromorphic connection

Consider $\mathcal{E} \rightarrow \mathbb{C} P^{1}$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z=\infty$.

- In $w=1 / z$, and a holomorphic trivialization we have:

$$
\begin{equation*}
\nabla=d+A_{k} \frac{d w}{w^{k}}+A_{k-1} \frac{d w}{w^{k-1}}+\ldots+A_{1} \frac{d w}{w}+\text { holomorphic }(1,0) \text { terms } \tag{16}
\end{equation*}
$$

with $A_{j} \in \operatorname{End}\left(\mathbb{C}^{2}\right)$.

Stokes data of a framed meromorphic connection

Consider $\mathcal{E} \rightarrow \mathbb{C} P^{1}$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z=\infty$.

- In $w=1 / z$, and a holomorphic trivialization we have:
$\nabla=d+A_{k} \frac{d w}{w^{k}}+A_{k-1} \frac{d w}{w^{k-1}}+\ldots+A_{1} \frac{d w}{w}+$ holomorphic $(1,0)$ terms
with $A_{j} \in \operatorname{End}\left(\mathbb{C}^{2}\right)$.
- We assume A_{k} is diagonalizable with distinct eigenvalues.

Stokes data of a framed meromorphic connection

Consider $\mathcal{E} \rightarrow \mathbb{C} P^{1}$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z=\infty$.

- In $w=1 / z$, and a holomorphic trivialization we have:
$\nabla=d+A_{k} \frac{d w}{w^{k}}+A_{k-1} \frac{d w}{w^{k-1}}+\ldots+A_{1} \frac{d w}{w}+$ holomorphic $(1,0)$ terms
with $A_{j} \in \operatorname{End}\left(\mathbb{C}^{2}\right)$.
- We assume A_{k} is diagonalizable with distinct eigenvalues.
- A frame τ of \mathcal{E}_{∞} is called compatible if it extends to a holomorphic frame where A_{k} is diagonal.

Stokes data of a framed meromorphic connection

Consider $\mathcal{E} \rightarrow \mathbb{C} P^{1}$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z=\infty$.

- In $w=1 / z$, and a holomorphic trivialization we have:
$\nabla=d+A_{k} \frac{d w}{w^{k}}+A_{k-1} \frac{d w}{w^{k-1}}+\ldots+A_{1} \frac{d w}{w}+$ holomorphic $(1,0)$ terms
with $A_{j} \in \operatorname{End}\left(\mathbb{C}^{2}\right)$.
- We assume A_{k} is diagonalizable with distinct eigenvalues.
- A frame τ of \mathcal{E}_{∞} is called compatible if it extends to a holomorphic frame where A_{k} is diagonal.
- The tuple $(\mathcal{E}, \nabla, \tau)$ will be called a framed meromorphic connection.

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

- Consider a hol. extension of τ (denoted also by τ).

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

- Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in G L_{2}(\mathbb{C})[[w]]$ such that $\widehat{F}(0)=1$, and in the formal frame $\tau \cdot \widehat{F}$

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

- Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in G L_{2}(\mathbb{C})[[w]]$ such that $\widehat{F}(0)=1$, and in the formal frame $\tau \cdot \widehat{F}$

$$
\begin{equation*}
\nabla=d+A^{0}=d+A_{k}^{0} \frac{d w}{w^{k}}+A_{k-1}^{0} \frac{d w}{w^{k-1}}+\ldots+A_{1}^{0} \frac{d w}{w} \tag{17}
\end{equation*}
$$

with A_{j}^{0} diagonal and $A_{k}^{0}=A_{k}$.

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

- Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in G L_{2}(\mathbb{C})[[w]]$ such that $\widehat{F}(0)=1$, and in the formal frame $\tau \cdot \widehat{F}$

$$
\begin{equation*}
\nabla=d+A^{0}=d+A_{k}^{0} \frac{d w}{w^{k}}+A_{k-1}^{0} \frac{d w}{w^{k-1}}+\ldots+A_{1}^{0} \frac{d w}{w} \tag{17}
\end{equation*}
$$

with A_{j}^{0} diagonal and $A_{k}^{0}=A_{k}$.

- Useful to write

$$
\begin{equation*}
A^{0}=d Q+\Lambda \frac{d w}{w} \tag{18}
\end{equation*}
$$

where $Q(w)$ is a diagonal matrix with entries in $w^{-1} \mathbb{C}\left[w^{-1}\right]$ and $\Lambda=A_{1}^{0}$.

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

- Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in G L_{2}(\mathbb{C})[[w]]$ such that $\widehat{F}(0)=1$, and in the formal frame $\tau \cdot \widehat{F}$

$$
\begin{equation*}
\nabla=d+A^{0}=d+A_{k}^{0} \frac{d w}{w^{k}}+A_{k-1}^{0} \frac{d w}{w^{k-1}}+\ldots+A_{1}^{0} \frac{d w}{w} \tag{17}
\end{equation*}
$$

with A_{j}^{0} diagonal and $A_{k}^{0}=A_{k}$.

- Useful to write

$$
\begin{equation*}
A^{0}=d Q+\Lambda \frac{d w}{w} \tag{18}
\end{equation*}
$$

where $Q(w)$ is a diagonal matrix with entries in $w^{-1} \mathbb{C}\left[w^{-1}\right]$ and $\Lambda=A_{1}^{0}$.

- $(Q, \Lambda) \rightsquigarrow$ the formal type of (\mathcal{E}, ∇, g).

Let $(\mathcal{E}, \nabla, \tau) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be as before.

- Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in G L_{2}(\mathbb{C})[[w]]$ such that $\widehat{F}(0)=1$, and in the formal frame $\tau \cdot \widehat{F}$

$$
\begin{equation*}
\nabla=d+A^{0}=d+A_{k}^{0} \frac{d w}{w^{k}}+A_{k-1}^{0} \frac{d w}{w^{k-1}}+\ldots+A_{1}^{0} \frac{d w}{w} \tag{17}
\end{equation*}
$$

with A_{j}^{0} diagonal and $A_{k}^{0}=A_{k}$.

- Useful to write

$$
\begin{equation*}
A^{0}=d Q+\Lambda \frac{d w}{w} \tag{18}
\end{equation*}
$$

where $Q(w)$ is a diagonal matrix with entries in $w^{-1} \mathbb{C}\left[w^{-1}\right]$ and $\Lambda=A_{1}^{0}$.

- $(Q, \Lambda) \rightsquigarrow$ the formal type of (\mathcal{E}, ∇, g).
- $\wedge \rightsquigarrow$ exponent of formal monodromy.

Formal flat sections VS flat sections

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\Lambda} e^{-Q}$.

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\wedge} e^{-Q}$.
- Natural question:

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\wedge} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z=\infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \rightarrow \infty$?

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\wedge} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z=\infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \rightarrow \infty$?
- Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z=\infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \rightarrow \infty$?
- Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays \rightsquigarrow determined by Q.

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z=\infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \rightarrow \infty$?
- Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays \rightsquigarrow determined by Q.
- For ∇ with pole of order $k \rightsquigarrow 2 k-2$ Stokes rays.

Formal flat sections VS flat sections

- Natural frame of formal flat sections near $z=\infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z=\infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \rightarrow \infty$?
- Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays \rightsquigarrow determined by Q.
- For ∇ with pole of order $k \rightsquigarrow 2 k-2$ Stokes rays.
- The corresponding frames of flat sections exist on sectors determined by two consecutive Stokes rays. These have opening $\pi / 2+\pi /(k-1)$.
- We illustrate an example below, where

$$
\begin{equation*}
Q=\frac{1}{w^{2}} H=\operatorname{diag}\left(1 / w^{2},-1 / w^{2}\right) . \tag{19}
\end{equation*}
$$

In this case $k=3$, so we have 4 Stokes rays (the dotted rays bellow) and 4 sectors (determined by two Stokes rays with opening $\pi)$.

$(2,1)$

Stokes data
b) 9

Stokes data

Given the above sectorial flat frames:

Stokes data

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.

Stokes data

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant.

Stokes data

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant. For a pole of order k there are $2 k-2$, and they satisfy

$$
\begin{equation*}
S_{1} S_{2} \ldots S_{2 k-2} M_{0}^{-1}=1 \tag{20}
\end{equation*}
$$

where $M_{0}=e^{-2 \pi i \Lambda}$ is the counterclockwise formal monodromy.

Stokes data

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant. For a pole of order k there are $2 k-2$, and they satisfy

$$
\begin{equation*}
S_{1} S_{2} \ldots S_{2 k-2} M_{0}^{-1}=1 \tag{20}
\end{equation*}
$$

where $M_{0}=e^{-2 \pi i \Lambda}$ is the counterclockwise formal monodromy.

- The S_{i} 's with Λ are the Stokes data of $(\mathcal{E}, \nabla, \tau)$.

Stokes data

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant. For a pole of order k there are $2 k-2$, and they satisfy

$$
\begin{equation*}
S_{1} S_{2} \ldots S_{2 k-2} M_{0}^{-1}=1 \tag{20}
\end{equation*}
$$

where $M_{0}=e^{-2 \pi i \Lambda}$ is the counterclockwise formal monodromy.

- The S_{i} 's with Λ are the Stokes data of $(\mathcal{E}, \nabla, \tau)$.
- $\left(S_{1}, \ldots, S_{2 k-2}, \Lambda\right)$ completely characterizes the equivalence classes $[\mathcal{E}, \nabla, \tau]$ with fixed formal type (Q, \wedge).

Associating Stokes data to elements of $\mathfrak{X}^{\text {fr }}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

Associating Stokes data to elements of $\mathfrak{X}^{\text {fr }}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{f r}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Associating Stokes data to elements of $\mathfrak{X}^{\mathrm{fr}}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

- Because the Hitchin equation is satisfied, the connections

$$
\begin{equation*}
\nabla^{\xi}:=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger^{\dagger}} \text { for } \xi \in \mathbb{C}^{*} \tag{21}
\end{equation*}
$$

define flat bundles $\left(E, \nabla^{\xi}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$.

Associating Stokes data to elements of $\mathfrak{X}^{\mathrm{fr}}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

- Because the Hitchin equation is satisfied, the connections

$$
\begin{equation*}
\nabla^{\xi}:=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger^{\dagger}} \text { for } \xi \in \mathbb{C}^{*} \tag{21}
\end{equation*}
$$

define flat bundles $\left(E, \nabla^{\xi}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$.

- Now consider the holomorphic bundle
$\mathcal{E}^{\xi}:=\left(E, \bar{\partial}_{E}+\xi \theta^{\dagger}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$, with holomorphic (and flat) connection ∇^{ξ}.

Associating Stokes data to elements of $\mathfrak{X}^{\text {fr }}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{f r}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

- Because the Hitchin equation is satisfied, the connections

$$
\begin{equation*}
\nabla^{\xi}:=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger h} \text { for } \xi \in \mathbb{C}^{*} \tag{21}
\end{equation*}
$$

define flat bundles $\left(E, \nabla^{\xi}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$.

- Now consider the holomorphic bundle
$\mathcal{E}^{\xi}:=\left(E, \bar{\partial}_{E}+\xi \theta^{\dagger}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$, with holomorphic (and flat) connection ∇^{ξ}.
- We would like to extend $\mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}-\{\infty\}$ to a holomorphic bundle over $\mathbb{C} P^{1}$, in such a way that ∇^{ξ} is meromorphic.

Associating Stokes data to elements of $\mathfrak{X}^{\text {fr }}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

- Because the Hitchin equation is satisfied, the connections

$$
\begin{equation*}
\nabla^{\xi}:=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger h} \text { for } \xi \in \mathbb{C}^{*} \tag{21}
\end{equation*}
$$

define flat bundles $\left(E, \nabla^{\xi}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$.

- Now consider the holomorphic bundle
$\mathcal{E}^{\xi}:=\left(E, \bar{\partial}_{E}+\xi \theta^{\dagger \dagger}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$, with holomorphic (and flat) connection ∇^{ξ}.
- We would like to extend $\mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}-\{\infty\}$ to a holomorphic bundle over $\mathbb{C} P^{1}$, in such a way that ∇^{ξ} is meromorphic.
- Issue:

Associating Stokes data to elements of $\mathfrak{X}^{\text {fr }}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

- Because the Hitchin equation is satisfied, the connections

$$
\begin{equation*}
\nabla^{\xi}:=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger h} \text { for } \xi \in \mathbb{C}^{*} \tag{21}
\end{equation*}
$$

define flat bundles $\left(E, \nabla^{\xi}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$.

- Now consider the holomorphic bundle
$\mathcal{E}^{\xi}:=\left(E, \bar{\partial}_{E}+\xi \theta^{\dagger \dagger}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$, with holomorphic (and flat) connection ∇^{ξ}.
- We would like to extend $\mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}-\{\infty\}$ to a holomorphic bundle over $\mathbb{C} P^{1}$, in such a way that ∇^{ξ} is meromorphic.
- Issue: there is no unique way to achieve this.

Associating Stokes data to elements of $\mathfrak{X}^{\text {fr }}$

Let $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

- Because the Hitchin equation is satisfied, the connections

$$
\begin{equation*}
\nabla^{\xi}:=D\left(\bar{\partial}_{E}, h\right)+\xi^{-1} \theta+\xi \theta^{\dagger h} \text { for } \xi \in \mathbb{C}^{*} \tag{21}
\end{equation*}
$$

define flat bundles $\left(E, \nabla^{\xi}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$.

- Now consider the holomorphic bundle $\mathcal{E}^{\xi}:=\left(E, \bar{\partial}_{E}+\xi \theta^{\dagger \dagger}\right) \rightarrow \mathbb{C} P^{1}-\{\infty\}$, with holomorphic (and flat) connection ∇^{ξ}.
- We would like to extend $\mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}-\{\infty\}$ to a holomorphic bundle over $\mathbb{C} P^{1}$, in such a way that ∇^{ξ} is meromorphic.
- Issue: there is no unique way to achieve this. The following filtered structure will allow us to consider all such possible extensions "at the same time".

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- More precisely $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}=\left\{\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \mid a \in \mathbb{R}\right\}$ with $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}$ holomorphic bundles.

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- More precisely $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}=\left\{\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \mid a \in \mathbb{R}\right\}$ with $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}$ holomorphic bundles.
- Their space of sections satisfy $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\mathcal{E}^{\xi}(U)$ if $\infty \notin U$,

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- More precisely $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}=\left\{\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \mid a \in \mathbb{R}\right\}$ with $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}$ holomorphic bundles.
- Their space of sections satisfy $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$
\begin{equation*}
\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\left\{\left.s \in \mathcal{E}^{\xi}(U-\{\infty\})| | s\right|_{h}=\mathcal{O}\left(|w|^{-a}\right)\right\} \tag{22}
\end{equation*}
$$

if $\infty \in U$, where $w=1 / z$.

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- More precisely $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}=\left\{\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \mid a \in \mathbb{R}\right\}$ with $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}$ holomorphic bundles.
- Their space of sections satisfy $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$
\begin{equation*}
\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\left\{\left.s \in \mathcal{E}^{\xi}(U-\{\infty\})| | s\right|_{h}=\mathcal{O}\left(|w|^{-a}\right)\right\} \tag{22}
\end{equation*}
$$

if $\infty \in U$, where $w=1 / z$.

- $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ "contains" all holomorphic extensions of \mathcal{E}^{ξ} such that ∇^{ξ} is meromorphic on the extension.

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- More precisely $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}=\left\{\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \mid a \in \mathbb{R}\right\}$ with $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}$ holomorphic bundles.
- Their space of sections satisfy $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$
\begin{equation*}
\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\left\{\left.s \in \mathcal{E}^{\xi}(U-\{\infty\})| | s\right|_{h}=\mathcal{O}\left(|w|^{-a}\right)\right\} \tag{22}
\end{equation*}
$$

if $\infty \in U$, where $w=1 / z$.

- $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ "contains" all holomorphic extensions of \mathcal{E}^{ξ} such that ∇^{ξ} is meromorphic on the extension.
- For $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$, we can do a similar construction to get $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.

Associated framed filtered flat bundles

- h induces a filtered structure at $z=\infty \rightsquigarrow \mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- More precisely $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}=\left\{\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \mid a \in \mathbb{R}\right\}$ with $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi} \rightarrow \mathbb{C} P^{1}$ holomorphic bundles.
- Their space of sections satisfy $\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$
\begin{equation*}
\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}(U)=\left\{\left.s \in \mathcal{E}^{\xi}(U-\{\infty\})| | s\right|_{h}=\mathcal{O}\left(|w|^{-a}\right)\right\} \tag{22}
\end{equation*}
$$

if $\infty \in U$, where $w=1 / z$.

- $\mathcal{P}_{*}^{h} \mathcal{E}^{\xi} \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ "contains" all holomorphic extensions of \mathcal{E}^{ξ} such that ∇^{ξ} is meromorphic on the extension.
- For $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\text {fr }}$, we can do a similar construction to get $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- We call $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ for $\xi \in \mathbb{C}^{*}$ the associated framed filtered flat bundles.

Stokes data of a framed filtered flat bundle

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

- For each $a \in \mathbb{R}$, we have the Stokes data associated to

$$
\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)
$$

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.
\rightarrow For each $a \in \mathbb{R}$, we have the Stokes data associated to $\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.

- The S_{i} 's do not depend on $a \in \mathbb{R}$, while Λ does depend on $a \in \mathbb{R}$.

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

- For each $a \in \mathbb{R}$, we have the Stokes data associated to $\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
\rightarrow The S_{i} 's do not depend on $a \in \mathbb{R}$, while Λ does depend on $a \in \mathbb{R}$. However, $M_{0}=e^{-2 \pi i \Lambda}$ does not depend on $a \in \mathbb{R}$.

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

- For each $a \in \mathbb{R}$, we have the Stokes data associated to $\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
\rightarrow The S_{i} 's do not depend on $a \in \mathbb{R}$, while Λ does depend on $a \in \mathbb{R}$. However, $M_{0}=e^{-2 \pi i \Lambda}$ does not depend on $a \in \mathbb{R}$.
- We associate S_{i} 's and $M_{0}=e^{-2 \pi i \Lambda}$ to $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

- For each $a \in \mathbb{R}$, we have the Stokes data associated to $\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
\rightarrow The S_{i} 's do not depend on $a \in \mathbb{R}$, while Λ does depend on $a \in \mathbb{R}$. However, $M_{0}=e^{-2 \pi i \Lambda}$ does not depend on $a \in \mathbb{R}$.
- We associate S_{i} 's and $M_{0}=e^{-2 \pi i \Lambda}$ to $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- $S_{i}^{\prime} s$ and M_{0} only depends $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

- For each $a \in \mathbb{R}$, we have the Stokes data associated to $\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- The S_{i} 's do not depend on $a \in \mathbb{R}$, while \wedge does depend on $a \in \mathbb{R}$. However, $M_{0}=e^{-2 \pi i \Lambda}$ does not depend on $a \in \mathbb{R}$.
- We associate S_{i}^{\prime} 's and $M_{0}=e^{-2 \pi i \Lambda}$ to $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- $S_{i}^{\prime} s$ and M_{0} only depends $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right] \Longrightarrow$ can associate $S_{i}(\xi)$ and $M_{0}(\xi)$ for $\xi \in \mathbb{C}^{*}$ to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}$.

Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^{*}$, let $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$ be the framed filtered flat bundle associated to $\left(E, \bar{\partial}_{E}, \theta, h, g\right) \in \mathcal{H}^{\mathrm{fr}}$.

- For each $a \in \mathbb{R}$, we have the Stokes data associated to $\left(\mathcal{P}_{a}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{a}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- The S_{i} 's do not depend on $a \in \mathbb{R}$, while Λ does depend on $a \in \mathbb{R}$. However, $M_{0}=e^{-2 \pi i \Lambda}$ does not depend on $a \in \mathbb{R}$.
- We associate S_{i}^{\prime} 's and $M_{0}=e^{-2 \pi i \Lambda}$ to $\left(\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right) \rightarrow\left(\mathbb{C} P^{1}, \infty\right)$.
- $S_{i}^{\prime} s$ and M_{0} only depends $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right] \Longrightarrow$ can associate $S_{i}(\xi)$ and $M_{0}(\xi)$ for $\xi \in \mathbb{C}^{*}$ to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}$.
- The twistor family of Stokes data $\left(S_{1}(\xi), S_{2}(\xi), S_{3}(\xi), S_{4}(\xi), M_{0}(\xi)\right)$, satisfies:

$$
\begin{equation*}
S_{1}(\xi) S_{2}(\xi) S_{3}(\xi) S_{4}(\xi) M_{0}^{-1}(\xi)=1 \tag{23}
\end{equation*}
$$

The electric twistor coordinate in $\mathfrak{X}^{f r}$

The electric twistor coordinate in $\mathfrak{X}^{f r}$

- On $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

The electric twistor coordinate in $\mathfrak{X}^{f r}$

- On $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

$$
\begin{equation*}
\mathcal{X}_{e}^{\mathrm{ov}}(\xi):=\exp \left(\frac{\pi}{\xi} z+i \theta_{e}+\pi \xi \bar{z}\right) \quad z \in \mathcal{B}^{\mathrm{ov}}, \theta_{e}=2 \pi x^{3} \tag{24}
\end{equation*}
$$

The electric twistor coordinate in $\mathfrak{X}^{f r}$

- On $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

$$
\begin{equation*}
\mathcal{X}_{e}^{\mathrm{ov}}(\xi):=\exp \left(\frac{\pi}{\xi} z+i \theta_{e}+\pi \xi \bar{z}\right) \quad z \in \mathcal{B}^{\mathrm{ov}}, \theta_{e}=2 \pi x^{3} \tag{24}
\end{equation*}
$$

- For $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$ corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}, M_{0}$ equals:

The electric twistor coordinate in $\mathfrak{X}^{f r}$

- On $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

$$
\begin{equation*}
\mathcal{X}_{e}^{\mathrm{ov}}(\xi):=\exp \left(\frac{\pi}{\xi} z+i \theta_{e}+\pi \xi \bar{z}\right) \quad z \in \mathcal{B}^{\mathrm{ov}}, \theta_{e}=2 \pi x^{3} \tag{24}
\end{equation*}
$$

- For $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$ corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}, M_{0}$ equals:

$$
\exp \left[\begin{array}{cc}
-2 \pi i\left(-\xi^{-1} m+m^{(3)}+\xi \bar{m}\right) & 0 \tag{25}\\
0 & -2 \pi i\left(\xi^{-1} m-m^{(3)}-\xi \bar{m}\right)
\end{array}\right]
$$

The electric twistor coordinate in $\mathfrak{X}^{f r}$

- On $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

$$
\begin{equation*}
\mathcal{X}_{e}^{\mathrm{ov}}(\xi):=\exp \left(\frac{\pi}{\xi} z+i \theta_{e}+\pi \xi \bar{z}\right) \quad z \in \mathcal{B}^{\mathrm{ov}}, \theta_{e}=2 \pi x^{3} \tag{24}
\end{equation*}
$$

- For $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$ corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}, M_{0}$ equals:

$$
\exp \left[\begin{array}{cc}
-2 \pi i\left(-\xi^{-1} m+m^{(3)}+\xi \bar{m}\right) & 0 \tag{25}\\
0 & -2 \pi i\left(\xi^{-1} m-m^{(3)}-\xi \bar{m}\right)
\end{array}\right]
$$

- We then define

$$
\begin{equation*}
\mathcal{X}_{e}\left(\left[E, \bar{\partial}_{E}, \theta, h, g\right], \xi\right):=\exp \left(-2 \pi i\left(\xi^{-1} m-m^{(3)}-\xi \bar{m}\right)\right) \tag{26}
\end{equation*}
$$

The electric twistor coordinate in $\mathfrak{X}^{\text {fr }}$

- On $\mathcal{M}^{\mathrm{ov}}(\Lambda)$:

$$
\begin{equation*}
\mathcal{X}_{e}^{\mathrm{ov}}(\xi):=\exp \left(\frac{\pi}{\xi} z+i \theta_{e}+\pi \xi \bar{z}\right) \quad z \in \mathcal{B}^{\mathrm{ov}}, \theta_{e}=2 \pi x^{3} \tag{24}
\end{equation*}
$$

- For $\left[\mathcal{P}_{*}^{h} \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_{*}^{\xi}\right]$ corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}, M_{0}$ equals:

$$
\exp \left[\begin{array}{cc}
-2 \pi i\left(-\xi^{-1} m+m^{(3)}+\xi \bar{m}\right) & 0 \tag{25}\\
0 & -2 \pi i\left(\xi^{-1} m-m^{(3)}-\xi \bar{m}\right)
\end{array}\right]
$$

- We then define

$$
\begin{equation*}
\mathcal{X}_{e}\left(\left[E, \bar{\partial}_{E}, \theta, h, g\right], \xi\right):=\exp \left(-2 \pi i\left(\xi^{-1} m-m^{(3)}-\xi \bar{m}\right)\right) \tag{26}
\end{equation*}
$$

- Get correspondence:

$$
\begin{equation*}
z \Longleftrightarrow-2 i m, \quad \theta_{e} \Longleftrightarrow 2 \pi m^{(3)} \tag{27}
\end{equation*}
$$

The magnetic twistor coordinate of $\mathcal{M}^{\mathrm{ov}}(\Lambda)$

The magnetic twistor coordinate of $\mathcal{M}^{\text {ov }}(\Lambda)$

We start with $\mathcal{X}_{m}^{\text {ov }}(\xi)$ on $\mathcal{M}^{\text {ov }}(\Lambda)$:

The magnetic twistor coordinate of $\mathcal{M}^{\text {ov }}(\Lambda)$

We start with $\mathcal{X}_{m}^{\text {ov }}(\xi)$ on $\mathcal{M}^{\text {ov }}(\Lambda)$:
We write $\mathcal{X}_{m}^{\mathrm{ov}}(\xi)=\mathcal{X}_{m}^{\mathrm{sf}}(\xi) \mathcal{X}_{m}^{\text {inst }}(\xi)$ with

The magnetic twistor coordinate of $\mathcal{M}^{\text {ov }}(\Lambda)$

We start with $\mathcal{X}_{m}^{\text {ov }}(\xi)$ on $\mathcal{M}^{\text {ov }}(\Lambda)$:
We write $\mathcal{X}_{m}^{\mathrm{ov}}(\xi)=\mathcal{X}_{m}^{\mathrm{sf}}(\xi) \mathcal{X}_{m}^{\text {inst }}(\xi)$ with

$$
\begin{equation*}
\mathcal{X}_{m}^{\mathrm{sf}}(\xi)=\exp \left(\frac{1}{\xi} \frac{(z \log (z / \Lambda)-z)}{2 i}+i \theta_{m}-\xi \frac{(\bar{z} \log (\bar{z} / \bar{\Lambda})-\bar{z})}{2 i}\right) \tag{28}
\end{equation*}
$$

and

The magnetic twistor coordinate of $\mathcal{M}^{\text {ov }}(\Lambda)$

We start with $\mathcal{X}_{m}^{\text {ov }}(\xi)$ on $\mathcal{M}^{\text {ov }}(\Lambda)$:
We write $\mathcal{X}_{m}^{\text {ov }}(\xi)=\mathcal{X}_{m}^{\text {sf }}(\xi) \mathcal{X}_{m}^{\text {inst }}(\xi)$ with

$$
\begin{equation*}
\mathcal{X}_{m}^{\mathrm{sf}}(\xi)=\exp \left(\frac{1}{\xi} \frac{(z \log (z / \Lambda)-z)}{2 i}+i \theta_{m}-\xi \frac{(\bar{z} \log (\bar{z} / \bar{\Lambda})-\bar{z})}{2 i}\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{align*}
\mathcal{X}_{m}^{\mathrm{inst}}(\xi)= & \exp \left(\frac{i}{4 \pi} \int_{I_{+}(z)} \frac{d \xi^{\prime}}{\xi^{\prime}} \frac{\xi+\xi^{\prime}}{\xi^{\prime}-\xi} \log \left(1-\mathcal{X}_{e}^{\mathrm{ov}}\left(\xi^{\prime}\right)\right)\right. \\
& \left.-\frac{i}{4 \pi} \int_{I_{-}(z)} \frac{d \xi^{\prime}}{\xi^{\prime}} \frac{\xi+\xi^{\prime}}{\xi^{\prime}-\xi} \log \left(1-\left(\mathcal{X}_{e}^{\mathrm{ov}}\left(\xi^{\prime}\right)\right)^{-1}\right)\right) \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
I_{ \pm}(z)=\left\{\xi \in \mathbb{C}^{*} \mid \pm z / \xi<0\right\} \tag{30}
\end{equation*}
$$

Key properties of the magnetic twistor coordinate

Key properties of the magnetic twistor coordinate

- Jumps:

$$
\begin{array}{lll}
\mathcal{X}_{m}^{\text {ov }}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)\right)^{-1} & \text { along } & \xi \in I_{+}(z) \\
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)^{-1}\right) & \text { along } & \xi \in I_{-}(z) \tag{31}
\end{array}
$$

where the + or - on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.

Key properties of the magnetic twistor coordinate

- Jumps:

$$
\begin{array}{llll}
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)\right)^{-1} & \text { along } & \xi \in I_{+}(z) \\
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)^{-1}\right) & \text { along } & \xi \in I_{-}(z) \tag{31}
\end{array}
$$

where the + or - on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.

- Asymptotics:

$$
\mathcal{X}_{m}^{\mathrm{ov}}(\xi) \sim\left\{\begin{array}{l}
\exp \left(-\frac{i}{2 \xi}(z \log (z / \Lambda)-z)+i \theta_{m}+r\left(z, \theta_{e}\right)\right) \text { as } \xi \rightarrow 0 \tag{32}\\
\exp \left(\frac{i \xi}{2}(\bar{z} \log (\bar{z} / \bar{\Lambda})-\bar{z})+i \theta_{m}-r\left(z, \theta_{e}\right)\right) \text { as } \xi \rightarrow \infty
\end{array}\right.
$$

Key properties of the magnetic twistor coordinate

- Jumps:

$$
\begin{array}{lll}
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)\right)^{-1} & \text { along } & \xi \in I_{+}(z) \\
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)^{-1}\right) & \text { along } & \xi \in I_{-}(z) \tag{31}
\end{array}
$$

where the + or - on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.

- Asymptotics:

$$
\mathcal{X}_{m}^{\mathrm{ov}}(\xi) \sim\left\{\begin{array}{l}
\exp \left(-\frac{i}{2 \xi}(z \log (z / \Lambda)-z)+i \theta_{m}+r\left(z, \theta_{e}\right)\right) \text { as } \xi \rightarrow 0 \tag{32}\\
\exp \left(\frac{i \xi}{2}(\bar{z} \log (\bar{z} / \bar{\Lambda})-\bar{z})+i \theta_{m}-r\left(z, \theta_{e}\right)\right) \text { as } \xi \rightarrow \infty
\end{array}\right.
$$

- Reality condition:

$$
\begin{equation*}
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)={\overline{\mathcal{X}_{m}^{\mathrm{ov}}(-1 / \bar{\xi})}}^{-1} \tag{33}
\end{equation*}
$$

Key properties of the magnetic twistor coordinate

- Jumps:

$$
\begin{array}{lll}
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)\right)^{-1} & \text { along } & \xi \in I_{+}(z) \\
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{+}=\mathcal{X}_{m}^{\mathrm{ov}}(\xi)^{-}\left(1-\mathcal{X}_{e}^{\mathrm{ov}}(\xi)^{-1}\right) & \text { along } & \xi \in I_{-}(z) \tag{31}
\end{array}
$$

where the + or - on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.

- Asymptotics:

$$
\mathcal{X}_{m}^{\mathrm{ov}}(\xi) \sim\left\{\begin{array}{l}
\exp \left(-\frac{i}{2 \xi}(z \log (z / \Lambda)-z)+i \theta_{m}+r\left(z, \theta_{e}\right)\right) \text { as } \xi \rightarrow 0 \tag{32}\\
\exp \left(\frac{i \xi}{2}(\bar{z} \log (\bar{z} / \bar{\Lambda})-\bar{z})+i \theta_{m}-r\left(z, \theta_{e}\right)\right) \text { as } \xi \rightarrow \infty
\end{array}\right.
$$

- Reality condition:

$$
\begin{equation*}
\mathcal{X}_{m}^{\mathrm{ov}}(\xi)={\overline{\mathcal{X}_{m}^{\mathrm{ov}}(-1 / \bar{\xi})}}^{-1} \tag{33}
\end{equation*}
$$

This properties uniquely determine $\mathcal{X}_{m}^{\text {ov }}(\xi)$! They are used to determine the analogous magnetic coordinate for $\mathfrak{X}^{\text {fr }}$.

Magnetic twistor coordinate on $\mathfrak{X}^{\text {fr }}$

Magnetic twistor coordinate on $\mathfrak{X}^{\text {fr }}$

We consider $\left(S_{1}(\xi), S_{2}(\xi), S_{3}(\xi), S_{4}(\xi), M_{0}(\xi)\right)$ for $\xi \in \mathbb{C}^{*}$, corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}$.

Magnetic twistor coordinate on $\mathfrak{X}^{\text {fr }}$

We consider $\left(S_{1}(\xi), S_{2}(\xi), S_{3}(\xi), S_{4}(\xi), M_{0}(\xi)\right)$ for $\xi \in \mathbb{C}^{*}$, corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}$.

- Let $a(\xi)$ and $b(\xi)$ be the non-trivial off-diagonal elements of $S_{1}(\xi)$ and $S_{2}(\xi)$.

Magnetic twistor coordinate on $\mathfrak{X}^{\text {fr }}$

We consider $\left(S_{1}(\xi), S_{2}(\xi), S_{3}(\xi), S_{4}(\xi), M_{0}(\xi)\right)$ for $\xi \in \mathbb{C}^{*}$, corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathfrak{X}^{\text {fr }}$.

- Let $a(\xi)$ and $b(\xi)$ be the non-trivial off-diagonal elements of $S_{1}(\xi)$ and $S_{2}(\xi)$. Away from the locus where $m=0$:

Magnetic twistor coordinate on $\mathfrak{X}^{\text {fr }}$

We consider $\left(S_{1}(\xi), S_{2}(\xi), S_{3}(\xi), S_{4}(\xi), M_{0}(\xi)\right)$ for $\xi \in \mathbb{C}^{*}$, corresponding to $\left[E, \bar{\partial}_{E}, \theta, h, g\right] \in \mathcal{X}^{\text {fr }}$.

- Let $a(\xi)$ and $b(\xi)$ be the non-trivial off-diagonal elements of $S_{1}(\xi)$ and $S_{2}(\xi)$. Away from the locus where $m=0$:

$$
\mathcal{X}_{m}\left(\left[E, \overline{\partial_{E}}, \theta, h, g\right], \xi\right):= \begin{cases}a(\xi) & \text { for } \tag{34}\\ \xi \in \mathbb{H}_{m} \\ -1 / b(\xi) & \text { for } \xi \in \mathbb{H}_{-m}\end{cases}
$$

We then verify:

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m)$

We then verify:
$\rightarrow \mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*}$

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$).

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial,

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed.

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial

We then verify:

- $\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.
- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we:

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off $\Lambda=4 i$,

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off $\Lambda=4 i$, and define corresponding θ_{m} on $\mathfrak{X}^{\mathrm{fr}}$.

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off $\Lambda=4 i$, and define corresponding θ_{m} on $\mathfrak{X}^{\mathrm{fr}}$. It satisfies
$\theta_{m}\left(e^{i \theta} \cdot[E, \bar{\partial}, \theta, h, g]\right)=\theta_{m}([E, \bar{\partial}, \theta, h, g])+\theta$

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off $\Lambda=4 i$, and define corresponding θ_{m} on $\mathfrak{X}^{\mathrm{fr}}$. It satisfies
$\theta_{m}\left(e^{i \theta} \cdot[E, \bar{\partial}, \theta, h, g]\right)=\theta_{m}([E, \bar{\partial}, \theta, h, g])+\theta$
- The reality condition also holds: $\mathcal{X}_{m}(\xi)={\overline{\mathcal{X}_{m}(-1 / \bar{\xi})}}^{-1}$.

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off $\Lambda=4 i$, and define corresponding θ_{m} on $\mathfrak{X}^{\text {fr }}$. It satisfies $\theta_{m}\left(e^{i \theta} \cdot[E, \bar{\partial}, \theta, h, g]\right)=\theta_{m}([E, \bar{\partial}, \theta, h, g])+\theta$

- From these results, one is able to identify $\mathcal{X}_{m}(\xi)$ with $\mathcal{X}_{m}^{\circ v}(\xi)$ (under $z \Longleftrightarrow-2 i m, 2 \pi m^{(3)} \Longleftrightarrow \theta_{e}$ and $\left.\Lambda=4 i\right)$.

We then verify:
$-\mathcal{X}_{m}(\xi)$ has the correct jumps along $I_{ \pm}(-2 i m) \rightsquigarrow$ study of how Stokes data changes as we vary the twistor parameter $\xi \in \mathbb{C}^{*}$.

- Stokes data depends holomorphically on $\xi \in \mathbb{C}^{*} \Longrightarrow \mathcal{X}_{m}(\xi)$ depends holomorphically on ξ (away from $I_{ \pm}(-2 i m)$). This is not trivial, requires "isomonodromic deformations" \rightsquigarrow Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_{m}(\xi)$ are computed. Also not trivial \rightsquigarrow requires study of asymptotics in $\xi \in \mathbb{C}^{*}$ of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off $\Lambda=4 i$, and define corresponding θ_{m} on $\mathfrak{X}^{\text {fr }}$. It satisfies $\theta_{m}\left(e^{i \theta} \cdot[E, \bar{\partial}, \theta, h, g]\right)=\theta_{m}([E, \bar{\partial}, \theta, h, g])+\theta$
- The reality condition also holds: $\mathcal{X}_{m}(\xi)={\overline{\mathcal{X}_{m}(-1 / \bar{\xi})}}^{-1}$.
- From these results, one is able to identify $\mathcal{X}_{m}(\xi)$ with $\mathcal{X}_{m}^{\circ \mathrm{v}}(\xi)$ (under $z \Longleftrightarrow-2 i m, 2 \pi m^{(3)} \Longleftrightarrow \theta_{e}$ and $\left.\Lambda=4 i\right)$.
- From the previous results, one can identify the subset $\mathfrak{X}^{f r}(4 i) \subset \mathfrak{X}^{f r}$ with $\mathcal{M}^{\text {ov }}(4 i)$.

Thanks!

