The Ooguri-Vafa space as a moduli space of framed wild harmonic bundles

Ivan Tulli

Universität Hamburg

July 14, 2020

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ○ 1/31</p>

Table of Contents

- Motivation and statement of the problem
- Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles
- Main Idea of the correspondence and the main theorem
- Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

Table of Contents

• Motivation and statement of the problem

• Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles

• Main Idea of the correspondence and the main theorem

• Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ _{3/31}

<□ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶ Ξ → ⊙ < ⊙ 4/31

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

• $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ● ■ ⑦ Q ♀ 4/31

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- ► The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(1)

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ で 4/31

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger h}] = 0$$
(1)

・ロ ・ ・ 回 ・ ・ 目 ・ 目 ・ り へ や 4/31

We denote by $\mathcal{M}_{Hit}(\Sigma)$ the moduli space of harmonic bundles.

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(1)

・ロ ・ ・ 回 ・ ・ 目 ・ 目 ・ り へ や 4/31

We denote by $\mathcal{M}_{Hit}(\Sigma)$ the moduli space of harmonic bundles.

 $\mathcal{M}_{Hit}(\Sigma)$ has two important structures:

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(1)

・ロ ・ ・ 回 ・ ・ 目 ・ 目 ・ り へ や 4/31

We denote by $\mathcal{M}_{Hit}(\Sigma)$ the moduli space of harmonic bundles.

 $\mathcal{M}_{Hit}(\Sigma)$ has two important structures:

It carries a hyperkähler metric.

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(1)

We denote by $\mathcal{M}_{Hit}(\Sigma)$ the moduli space of harmonic bundles.

 $\mathcal{M}_{Hit}(\Sigma)$ has two important structures:

- It carries a hyperkähler metric.
- There is one of the complex structures in which it is a complex integrable system π : (M_{Hit}(Σ), I, Ω_I) → B(Σ).

We fix a compact Riemann surface Σ and $k \in \mathbb{Z}_{>0}$.

A harmonic bundle over Σ is a tuple $(E, \overline{\partial}_E, \theta, h)$ such that:

- $(E,\overline{\partial}_E) \to \Sigma$ is a rank k holomorphic vector bundle, with hermitian metric h.
- ▶ θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
- The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(1)

We denote by $\mathcal{M}_{Hit}(\Sigma)$ the moduli space of harmonic bundles.

 $\mathcal{M}_{Hit}(\Sigma)$ has two important structures:

- It carries a hyperkähler metric.
- There is one of the complex structures in which it is a complex integrable system π : (M_{Hit}(Σ), I, Ω_I) → B(Σ). The base B(Σ) is called the Hitchin base.

<□ ▶ < @ ▶ < \ > ▶ < \ > ▷ ○ ○ ○ 5/31

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ○ 5/31

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of M_{Hit}(Σ) are expected to describe the Coulomb branch of certain 4d N = 2 theories (compactified on S¹).

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ○ 5/31

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of M_{Hit}(Σ) are expected to describe the Coulomb branch of certain 4d N = 2 theories (compactified on S¹).

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ○ 5/31

How? Clues from the work of Gaiotto-Moore-Neitzke:

Main motivation: try to get a better understanding of the hyperkähler metric *g* of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of M_{Hit}(Σ) are expected to describe the Coulomb branch of certain 4d N = 2 theories (compactified on S¹).

How? Clues from the work of Gaiotto-Moore-Neitzke:

Asymptotically near infinite ends of M_{Hit}(Σ): g ~ g_{sf}, where g_{sf} is a simpler "semi-flat" hyperkähler metric.

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of M_{Hit}(Σ) are expected to describe the Coulomb branch of certain 4d N = 2 theories (compactified on S¹).

How? Clues from the work of Gaiotto-Moore-Neitzke:

Asymptotically near infinite ends of M_{Hit}(Σ): g ~ g_{sf}, where g_{sf} is a simpler "semi-flat" hyperkähler metric.

< □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ _{5/31}

Near "generic" part of singular locus of the Hitchin base, the Ooguri-Vafa metric should be part of an approximate model of g.

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of M_{Hit}(Σ) are expected to describe the Coulomb branch of certain 4d N = 2 theories (compactified on S¹).

How? Clues from the work of Gaiotto-Moore-Neitzke:

- Asymptotically near infinite ends of M_{Hit}(Σ): g ~ g_{sf}, where g_{sf} is a simpler "semi-flat" hyperkähler metric.
- Near "generic" part of singular locus of the Hitchin base, the Ooguri-Vafa metric should be part of an approximate model of g.

Natural question: Is there a way to interpret the Ooguri-Vafa space in terms of certain harmonic bundles?

Main motivation: try to get a better understanding of the hyperkähler metric g of $\mathcal{M}_{Hit}(\Sigma)$.

Why?

- In mathematics: hyperkähler metrics give examples of very rigid and rich geometries. They tend to be very hard to describe explicitly.
- In physics: certain versions of M_{Hit}(Σ) are expected to describe the Coulomb branch of certain 4d N = 2 theories (compactified on S¹).

How? Clues from the work of Gaiotto-Moore-Neitzke:

- Asymptotically near infinite ends of M_{Hit}(Σ): g ~ g_{sf}, where g_{sf} is a simpler "semi-flat" hyperkähler metric.
- Near "generic" part of singular locus of the Hitchin base, the Ooguri-Vafa metric should be part of an approximate model of g.

Natural question: Is there a way to interpret the Ooguri-Vafa space in terms of certain harmonic bundles?

Answer: Yes! The Ooguri-Vafa space can be interpreted as a certain class of (framed) wild harmonic bundles.

Table of Contents

• Motivation and statement of the problem

• Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles

• Main Idea of the correspondence and the main theorem

• Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ℃ 6/31

<□ ▶ < @ ▶ < \ = ▶ < \ = ♪ ○ < ♡ < ♡ < 7/31

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From $V: U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow$

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ♡ _{7/31}

From $V : U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow (X, g, l_1, l_2, l_3)$ hyperkähler!

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From $V : U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow (X, g, l_1, l_2, l_3)$ hyperkähler!

▶ Consider the harmonic function on $\mathbb{R}^3 - \{(0,0,n)\}_{n \in \mathbb{Z}}$ defined by

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ♡ _{7/31}

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From $V : U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow (X, g, l_1, l_2, l_3)$ hyperkähler!

▶ Consider the harmonic function on $\mathbb{R}^3 - \{(0,0,n)\}_{n \in \mathbb{Z}}$ defined by

$$V(x^{1}, x^{2}, x^{3}) := \frac{1}{4\pi} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\sqrt{(x^{1})^{2} + (x^{2})^{2} + (x^{3} + n)^{2}}} - c_{n} \right)$$
(2)

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ♡ _{7/31}

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From $V : U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow (X, g, l_1, l_2, l_3)$ hyperkähler!

▶ Consider the harmonic function on $\mathbb{R}^3 - \{(0,0,n)\}_{n \in \mathbb{Z}}$ defined by

$$V(x^{1}, x^{2}, x^{3}) := \frac{1}{4\pi} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\sqrt{(x^{1})^{2} + (x^{2})^{2} + (x^{3} + n)^{2}}} - c_{n} \right)$$
(2)
$$= -\frac{1}{2\pi} \log\left(\frac{|z|}{|\Lambda|}\right) + \frac{1}{2\pi} \sum_{n \neq 0, n \in \mathbb{Z}} e^{2\pi i n x^{3}} \mathcal{K}_{0}(2\pi |nz|)$$
(3)

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ♡ _{7/31}

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From $V : U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow (X, g, l_1, l_2, l_3)$ hyperkähler!

▶ Consider the harmonic function on $\mathbb{R}^3 - \{(0,0,n)\}_{n \in \mathbb{Z}}$ defined by

$$V(x^{1}, x^{2}, x^{3}) := \frac{1}{4\pi} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\sqrt{(x^{1})^{2} + (x^{2})^{2} + (x^{3} + n)^{2}}} - c_{n} \right)$$
(2)
$$= -\frac{1}{2\pi} \log\left(\frac{|z|}{|\Lambda|}\right) + \frac{1}{2\pi} \sum_{n \neq 0, n \in \mathbb{Z}} e^{2\pi i n x^{3}} K_{0}(2\pi |nz|)$$
(3)

• Over $U := \mathcal{B} \times \mathbb{R} - \{(0,0,n)\}_{n \in \mathbb{Z}} \subset \mathbb{R}^3$ where V > 0, we can take a U(1)-principal bundle with connection $\pi : (X, \Theta) \to U$ with:

$$d\Theta = \pi^* (2\pi i \star dV) \tag{4}$$

< □ > < □ > < Ξ > < Ξ > Ξ の < ?/31

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From $V : U \subset \mathbb{R}^3 \to \mathbb{R}_{>0}$ with $\Delta V = 0$ and $[\star dV] \in H^2(U, \mathbb{Z}) \rightsquigarrow (X, g, l_1, l_2, l_3)$ hyperkähler!

▶ Consider the harmonic function on $\mathbb{R}^3 - \{(0,0,n)\}_{n \in \mathbb{Z}}$ defined by

$$V(x^{1}, x^{2}, x^{3}) := \frac{1}{4\pi} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\sqrt{(x^{1})^{2} + (x^{2})^{2} + (x^{3} + n)^{2}}} - c_{n} \right)$$
(2)
$$= -\frac{1}{2\pi} \log\left(\frac{|z|}{|\Lambda|}\right) + \frac{1}{2\pi} \sum_{n \neq 0, n \in \mathbb{Z}} e^{2\pi i n x^{3}} K_{0}(2\pi |nz|)$$
(3)

Over U := B × ℝ − {(0,0, n)}_{n∈ℤ} ⊂ ℝ³ where V > 0, we can take a U(1)-principal bundle with connection π : (X, Θ) → U with:

$$d\Theta = \pi^* (2\pi i \star dV) \tag{4}$$

Furthermore, on the total space X we can define the three real symplectic forms:

$$\omega_j = \left(\frac{i}{2\pi}\Theta\right) \wedge \pi^* dx^j + \pi^* \left(V \star dx^j\right) \tag{5}$$

Finally, from the ω_i we can obtain the l_i 's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

・ロト 4 回 ト 4 目 ト 4 目 ト 目 の Q (8/31)

Finally, from the ω_i we can obtain the l_i 's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 ∽ S < 8/31

Extra piece of structure: V invariant under \mathbb{Z} -shifts of x^3 .

Finally, from the ω_i we can obtain the l_i 's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

► Extra piece of structure: V invariant under Z-shifts of x³. Can lift Z action to X (non-uniquely) and consider X/Z.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ♀ ○ 8/31
Finally, from the ω_i we can obtain the I_i 's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

Extra piece of structure: V invariant under Z-shifts of x³. Can lift Z action to X (non-uniquely) and consider X/Z. We define M^{ov}(Λ) := X/Z, where the phase Λ/|Λ| records the choice of lift.

> (ロト (日) (王) (王) (王) (王) (200 m) 8/31

Finally, from the ω_i we can obtain the I_i 's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

Extra piece of structure: V invariant under Z-shifts of x³. Can lift Z action to X (non-uniquely) and consider X/Z. We define M^{ov}(Λ) := X/Z, where the phase Λ/|Λ| records the choice of lift.

Furthermore, we have the U(1)-principal bundle π : M^{ov}(Λ) → B × S¹ − {pt}. Finally, from the ω_i we can obtain the I_i's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

Extra piece of structure: V invariant under Z-shifts of x³. Can lift Z action to X (non-uniquely) and consider X/Z. We define M^{ov}(Λ) := X/Z, where the phase Λ/|Λ| records the choice of lift.

- Furthermore, we have the U(1)-principal bundle π : M^{ov}(Λ) → B × S¹ − {pt}.
- One can add a point to $\mathcal{M}^{ov}(\Lambda)$, and extend π to a map $\pi : \mathcal{M}^{ov}(\Lambda) \to \mathcal{B} \times S^1$.

Finally, from the ω_i we can obtain the I_i 's and

$$g = V^{-1}\left(\frac{i}{2\pi}\Theta\right) \otimes \left(\frac{i}{2\pi}\Theta\right) + V\pi^*\left(dx^1 \otimes dx^1 + dx^2 \otimes dx^2 + dx^3 \otimes dx^3\right)$$
(6)

- Extra piece of structure: V invariant under Z-shifts of x³. Can lift Z action to X (non-uniquely) and consider X/Z. We define M^{ov}(Λ) := X/Z, where the phase Λ/|Λ| records the choice of lift.
- Furthermore, we have the U(1)-principal bundle π : M^{ov}(Λ) → B × S¹ − {pt}.
- One can add a point to M^{ov}(Λ), and extend π to a map π : M^{ov}(Λ) → B × S¹. The HK structure also extends smoothly.

(ロト (日) (王) (王) (王) (王) (200 m) 8/31

Picture of $\mathcal{M}^{ov}(\Lambda)$

Composing $\pi : \mathcal{M}^{ov}(\Lambda) \to \mathcal{B} \times S^1$ with $\mathcal{B} \times S^1 \to \mathcal{B}$ we get the following picture of $\mathcal{M}^{ov}(\Lambda)$:

Picture of $\mathcal{M}^{ov}(\Lambda)$

Composing $\pi : \mathcal{M}^{ov}(\Lambda) \to \mathcal{B} \times S^1$ with $\mathcal{B} \times S^1 \to \mathcal{B}$ we get the following picture of $\mathcal{M}^{ov}(\Lambda)$:

Picture of $\mathcal{M}^{ov}(\Lambda)$

Composing $\pi : \mathcal{M}^{ov}(\Lambda) \to \mathcal{B} \times S^1$ with $\mathcal{B} \times S^1 \to \mathcal{B}$ we get the following picture of $\mathcal{M}^{ov}(\Lambda)$:

 \rightsquigarrow should think of $\mathcal{M}^{ov}(\Lambda)$ as a "model HK space".

We will consider a specific subset of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

• $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 - \{\infty\}$ is a harmonic bundle. That is:

- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - $(E,\overline{\partial}_E) \to \mathbb{C}P^1 \{\infty\}$ is a holomorphic vector bundle, with hermitian metric *h*.

- $(E,\overline{\partial}_E,\theta,h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - $(E,\overline{\partial}_E) \to \mathbb{C}P^1 \{\infty\}$ is a holomorphic vector bundle, with hermitian metric *h*.
 - θ is a holomorphic section of $End(E) \otimes K_{\Sigma}$, called the Higgs field.

We will consider a specific subset of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

- $(E,\overline{\partial}_E,\theta,h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - (E, ∂_E) → CP¹ {∞} is a holomorphic vector bundle, with hermitian metric h.
 - θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
 - The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(7)

We will consider a specific subset of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - (E, ∂_E) → CP¹ {∞} is a holomorphic vector bundle, with hermitian metric h.
 - θ is a holomorphic section of $End(E) \otimes K_{\Sigma}$, called the Higgs field.
 - The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger_h}] = 0$$
(7)

• $(E,h) \rightarrow \mathbb{C}P^1$ and the fiber E_{∞} carries a certain choice of framing g.

- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - (E, ∂_E) → CP¹ {∞} is a holomorphic vector bundle, with hermitian metric h.
 - θ is a holomorphic section of $End(E) \otimes K_{\Sigma}$, called the Higgs field.
 - The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger h}] = 0$$
(7)

- $(E,h) \rightarrow \mathbb{C}P^1$ and the fiber E_{∞} carries a certain choice of framing g.
- The Higgs field θ has a pole of order > 1 at ∞ (thus, we are on the "wild case").

- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - (E, ∂_E) → CP¹ {∞} is a holomorphic vector bundle, with hermitian metric h.
 - θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
 - The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger h}] = 0$$
(7)

- ▶ $(E,h) \rightarrow \mathbb{C}P^1$ and the fiber E_∞ carries a certain choice of framing g.
- The Higgs field θ has a pole of order > 1 at ∞ (thus, we are on the "wild case").
- Hence the name "framed wild harmonic bundles".

- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle. That is:
 - (E, ∂_E) → CP¹ {∞} is a holomorphic vector bundle, with hermitian metric h.
 - θ is a holomorphic section of $\text{End}(E) \otimes K_{\Sigma}$, called the Higgs field.
 - The Hitchin equation is satisfied:

$$F(D(\overline{\partial}_E, h)) + [\theta, \theta^{\dagger h}] = 0$$
(7)

- ▶ $(E,h) \rightarrow \mathbb{C}P^1$ and the fiber E_∞ carries a certain choice of framing g.
- The Higgs field θ has a pole of order > 1 at ∞ (thus, we are on the "wild case").
- Hence the name "framed wild harmonic bundles".
- The reason for including framings in not obvious at this point, but it will become clear in the future.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (P 11/31)

Let \mathcal{H}^{fr} be the set of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

Let $\mathcal{H}^{\mathsf{fr}}$ be the set of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

• $(E, h) \rightarrow \mathbb{C}P^1 \rightsquigarrow SU(2)$ -vector bundle.

Let \mathcal{H}^{fr} be the set of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

- $(E, h) \rightarrow \mathbb{C}P^1 \rightsquigarrow SU(2)$ -vector bundle.
- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle such that $Tr(\theta) = 0$ and $Det(\theta) = -(z^2 + 2m)dz^2$ for some $m \in \mathbb{C}$.

< □ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 11/31

Let $\mathcal{H}^{\mathsf{fr}}$ be the set of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

- $(E, h) \rightarrow \mathbb{C}P^1 \rightsquigarrow SU(2)$ -vector bundle.
- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle such that $Tr(\theta) = 0$ and $Det(\theta) = -(z^2 + 2m)dz^2$ for some $m \in \mathbb{C}$.
- ▶ g is an SU(2)-frame of E_{∞} , having an extension to a local SU(2)-frame where θ and $\overline{\partial}_E$ have the following form:

Let \mathcal{H}^{fr} be the set of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

- $(E, h) \rightarrow \mathbb{C}P^1 \rightsquigarrow SU(2)$ -vector bundle.
- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle such that $Tr(\theta) = 0$ and $Det(\theta) = -(z^2 + 2m)dz^2$ for some $m \in \mathbb{C}$.
- ▶ g is an SU(2)-frame of E_{∞} , having an extension to a local SU(2)-frame where θ and $\overline{\partial}_E$ have the following form:

For
$$w = 1/z$$
 and $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

$$\theta = -H\frac{dw}{w^3} - mH\frac{dw}{w} + \text{regular terms}$$
(8)

$$\overline{\partial}_E = \overline{\partial} - \frac{m^{(3)}}{2} H \frac{d\overline{w}}{\overline{w}} + \text{regular terms} \quad \text{for some} \quad m^{(3)} \in \left(-\frac{1}{2}, \frac{1}{2}\right]$$
(9)

Let \mathcal{H}^{fr} be the set of tuples $(E, \overline{\partial}_E, \theta, h, g)$, where:

- $(E, h) \rightarrow \mathbb{C}P^1 \rightsquigarrow SU(2)$ -vector bundle.
- $(E, \overline{\partial}_E, \theta, h) \to \mathbb{C}P^1 \{\infty\}$ is a harmonic bundle such that $Tr(\theta) = 0$ and $Det(\theta) = -(z^2 + 2m)dz^2$ for some $m \in \mathbb{C}$.
- ▶ g is an SU(2)-frame of E_{∞} , having an extension to a local SU(2)-frame where θ and $\overline{\partial}_E$ have the following form:

For
$$w = 1/z$$
 and $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

$$\theta = -H\frac{dw}{w^3} - mH\frac{dw}{w} + \text{regular terms}$$
(8)

$$\overline{\partial}_E = \overline{\partial} - \frac{m^{(3)}}{2} H \frac{d\overline{w}}{\overline{w}} + \text{regular terms} \quad \text{for some} \quad m^{(3)} \in (-\frac{1}{2}, \frac{1}{2}]$$
(9)

We call g a **compatible frame**; and the **equivalence classes** of \mathcal{H}^{fr} we denote by \mathfrak{X}^{fr} .

Picture of \mathfrak{X}^{fr}

◆□ → < ⑦ → < ミ → < ミ → ミ の へ ^{12/31}

Picture of $\mathfrak{X}^{\mathsf{fr}}$

▶ For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.

- ▶ For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \implies \mathfrak{X}^{fr}(m, m^3)$ is a U(1)-torsor.

- ▶ For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \implies \mathfrak{X}^{fr}(m, m^3)$ is a U(1)-torsor. U(1) acts by:

$$e^{i\theta} \cdot [E, \overline{\partial}_E, \theta, h, g] = [E, \overline{\partial}_E, \theta, h, e^{i\frac{\theta}{2}} \cdot g]$$
(10)

- ▶ For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \implies \mathfrak{X}^{fr}(m, m^3)$ is a U(1)-torsor. U(1) acts by:

$$e^{i\theta} \cdot [E, \overline{\partial}_E, \theta, h, g] = [E, \overline{\partial}_E, \theta, h, e^{i\frac{\theta}{2}} \cdot g]$$
(10)

For
$$g = (e_1, e_2)$$
:
 $e^{i\frac{\theta}{2}} \cdot g = (e^{i\frac{\theta}{2}}e_1, e^{-i\frac{\theta}{2}}e_2)$ (11)

- ▶ For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \implies \mathfrak{X}^{fr}(m, m^3)$ is a U(1)-torsor. U(1) acts by:

$$e^{i\theta} \cdot [E, \overline{\partial}_E, \theta, h, g] = [E, \overline{\partial}_E, \theta, h, e^{i\frac{\theta}{2}} \cdot g]$$
(10)

For
$$g = (e_1, e_2)$$
:
 $e^{i\frac{\theta}{2}} \cdot g = (e^{i\frac{\theta}{2}}e_1, e^{-i\frac{\theta}{2}}e_2)$ (11)

• If
$$m = m^{(3)} = 0 \implies \mathfrak{X}^{fr}(0,0) = \{\mathsf{pt}\}$$

- ▶ For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \implies \mathfrak{X}^{fr}(m, m^3)$ is a U(1)-torsor. U(1) acts by:

$$e^{i\theta} \cdot [E, \overline{\partial}_E, \theta, h, g] = [E, \overline{\partial}_E, \theta, h, e^{i\frac{\theta}{2}} \cdot g]$$
(10)

For
$$g = (e_1, e_2)$$
:
 $e^{i\frac{\theta}{2}} \cdot g = (e^{i\frac{\theta}{2}}e_1, e^{-i\frac{\theta}{2}}e_2)$ (11)

▶ If
$$m = m^{(3)} = 0 \implies \mathfrak{X}^{fr}(0,0) = \{pt\} \rightarrow \text{``most symmetric'' point in } \mathfrak{X}^{fr}$$
:

- For $m \in \mathbb{C}$ and $m^{(3)} \in (-1/2, 1/2]$, let $\mathfrak{X}^{fr}(m, m^{(3)}) \subset \mathfrak{X}^{fr} \rightsquigarrow$ elements whose singularity is determined by $m, m^{(3)}$.
- If $m \neq 0$ or $m^{(3)} \neq 0 \implies \mathfrak{X}^{fr}(m, m^3)$ is a U(1)-torsor. U(1) acts by:

$$e^{i\theta} \cdot [E, \overline{\partial}_E, \theta, h, g] = [E, \overline{\partial}_E, \theta, h, e^{i\frac{\theta}{2}} \cdot g]$$
(10)

For
$$g = (e_1, e_2)$$
:
 $e^{i\frac{\theta}{2}} \cdot g = (e^{i\frac{\theta}{2}}e_1, e^{-i\frac{\theta}{2}}e_2)$ (11)

▶ If $m = m^{(3)} = 0 \implies \mathfrak{X}^{fr}(0,0) = \{pt\} \rightsquigarrow$ "most symmetric" point in \mathfrak{X}^{fr} :

$$E = \mathbb{C}P^1 \times \mathbb{C}^2, \quad \overline{\partial}_E = \overline{\partial}, \quad \theta = zHdz, \quad h(e_i, e_j) = \delta_{ij}, \quad g = (e_1, e_2)|_{\infty}$$

Table of Contents

• Motivation and statement of the problem

• Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles

• Main Idea of the correspondence and the main theorem

• Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ ∽ ♀ ♀ 14/31

Let (M, g, I_1, I_2, I_3) be a hyperkähler manifold.

Let (M, g, I_1, I_2, I_3) be a hyperkähler manifold.

• M is holomorphic symplectic in a " $\mathbb{C}P^{1}$ " worth of ways:

Let (M, g, I_1, I_2, I_3) be a hyperkähler manifold.

• M is holomorphic symplectic in a " $\mathbb{C}P^1$ " worth of ways: for $\xi \in \mathbb{C}^* \subset \mathbb{C}P^1$, we have $(M, I_{\xi}, \Omega(\xi))$, where

$$\Omega(\xi) = -\frac{i}{2}\xi^{-1}(\omega_1 + i\omega_2) + \omega_3 - \frac{i}{2}\xi(\omega_1 - i\omega_2)$$
HK spaces and their twistor family of holomorphic symplectic forms

Let (M, g, l_1, l_2, l_3) be a hyperkähler manifold.

• M is holomorphic symplectic in a " $\mathbb{C}P^1$ " worth of ways: for $\xi \in \mathbb{C}^* \subset \mathbb{C}P^1$, we have $(M, I_{\xi}, \Omega(\xi))$, where

$$\Omega(\xi) = -\frac{i}{2}\xi^{-1}(\omega_1 + i\omega_2) + \omega_3 - \frac{i}{2}\xi(\omega_1 - i\omega_2)$$
(12)

for $\xi = 0$ or $\xi = \infty$ we take $\xi \Omega(\xi)|_{\xi=0}$ or $\xi^{-1}\Omega(\xi)|_{\xi=\infty}$, respectively.

HK spaces and their twistor family of holomorphic symplectic forms

Let (M, g, l_1, l_2, l_3) be a hyperkähler manifold.

• M is holomorphic symplectic in a " $\mathbb{C}P^1$ " worth of ways: for $\xi \in \mathbb{C}^* \subset \mathbb{C}P^1$, we have $(M, I_{\xi}, \Omega(\xi))$, where

$$\Omega(\xi) = -\frac{i}{2}\xi^{-1}(\omega_1 + i\omega_2) + \omega_3 - \frac{i}{2}\xi(\omega_1 - i\omega_2)$$
(12)

for $\xi = 0$ or $\xi = \infty$ we take $\xi \Omega(\xi)|_{\xi=0}$ or $\xi^{-1}\Omega(\xi)|_{\xi=\infty}$, respectively.

• $\Omega(\xi)$ encodes the H.K. structure of M! (i.e. can recover ω_i 's, and hence I_i 's and g).

HK spaces and their twistor family of holomorphic symplectic forms

Let (M, g, l_1, l_2, l_3) be a hyperkähler manifold.

• M is holomorphic symplectic in a " $\mathbb{C}P^1$ " worth of ways: for $\xi \in \mathbb{C}^* \subset \mathbb{C}P^1$, we have $(M, I_{\xi}, \Omega(\xi))$, where

$$\Omega(\xi) = -\frac{i}{2}\xi^{-1}(\omega_1 + i\omega_2) + \omega_3 - \frac{i}{2}\xi(\omega_1 - i\omega_2)$$
(12)

for $\xi = 0$ or $\xi = \infty$ we take $\xi \Omega(\xi)|_{\xi=0}$ or $\xi^{-1}\Omega(\xi)|_{\xi=\infty}$, respectively.

- $\Omega(\xi)$ encodes the H.K. structure of M! (i.e. can recover ω_i 's, and hence I_i 's and g).
- Manifestation of the fact that (M, g, l₁, l₂, l₃) can be encoded holomorphically in the associated twistor space of M → (Z(M), I, Ω, τ).

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (P 15/31)

Main ideas:

Main ideas:

• work with the twistor description of $\mathcal{M}^{ov}(\Lambda)$:

Main ideas:

• work with the twistor description of $\mathcal{M}^{ov}(\Lambda)$:

There are "twistor coordinates" $\mathcal{X}_e^{ov}(\xi)$ and $\mathcal{X}_m^{ov}(\xi)$, such that:

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ → ⊃ < ♡ 15/31

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

▶ For $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{\mathsf{fr}}$ and $\xi \in \mathbb{C}^*$

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

For [E, ∂
E, θ, h, g] ∈ X^{fr} and ξ ∈ C^{*} → "framed filtered flat bundle" [P^h{*}E^ξ, ∇^ξ, τ^ξ_{*}],

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

For [E, ∂
E, θ, h, g] ∈ X^{fr} and ξ ∈ C^{*} → "framed filtered flat bundle" [P^h{*}E^ξ, ∇^ξ, τ^ξ_{*}], where

$$\nabla^{\xi} = D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}}$$

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

For [E, ∂_E, θ, h, g] ∈ X^{fr} and ξ ∈ C^{*} → "framed filtered flat bundle" [P^h_{*}E^ξ, ∇^ξ, τ^ξ_{*}], where

$$\nabla^{\xi} = D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}}$$
(14)

which in turn is associated to ${\bf Stokes}\ {\bf data} \rightsquigarrow$ "refined monodromy data".

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

For [E, ∂_E, θ, h, g] ∈ X^{fr} and ξ ∈ C^{*} → "framed filtered flat bundle" [P^h_{*}E^ξ, ∇^ξ, τ^ξ_{*}], where

$$\nabla^{\xi} = D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}}$$
(14)

which in turn is associated to ${\bf Stokes}\ {\bf data} \rightsquigarrow$ "refined monodromy data".

We define "twistor coordinates" X_e(ξ) and X_m(ξ) of X^{fr} using Stokes data of [P^h_{*}E^ξ, ∇^ξ, τ^ξ_{*}].

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

For [E, ∂
E, θ, h, g] ∈ X^{fr} and ξ ∈ C^{*} → "framed filtered flat bundle" [P^h{*}E^ξ, ∇^ξ, τ^ξ_{*}], where

$$\nabla^{\xi} = D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}}$$
(14)

which in turn is associated to ${\bf Stokes\ data} \rightsquigarrow$ "refined monodromy data".

- We define "twistor coordinates" X_e(ξ) and X_m(ξ) of X^{fr} using Stokes data of [P^h_{*}E^ξ, ∇^ξ, τ^ξ_{*}].
- $\mathcal{X}_e(\xi)$ and $\mathcal{X}_m(\xi)$ will be matched with $\mathcal{X}_e^{ov}(\xi)$ and $\mathcal{X}_m^{ov}(\xi)$ by certain properties that characterize them uniquely.

Main ideas:

 work with the twistor description of M^{ov}(Λ): There are "twistor coordinates" X^{ov}_e(ξ) and X^{ov}_m(ξ), such that:

$$\Omega^{\rm ov}(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e^{\rm ov}(\xi)}{\mathcal{X}_e^{\rm ov}(\xi)} \wedge \frac{d\mathcal{X}_m^{\rm ov}(\xi)}{\mathcal{X}_m^{\rm ov}(\xi)}$$
(13)

For [E, ∂
E, θ, h, g] ∈ X^{fr} and ξ ∈ C^{*} → "framed filtered flat bundle" [P^h{*}E^ξ, ∇^ξ, τ^ξ_{*}], where

$$\nabla^{\xi} = D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}}$$
(14)

which in turn is associated to $\textbf{Stokes data} \rightsquigarrow$ "refined monodromy data".

- We define "twistor coordinates" X_e(ξ) and X_m(ξ) of X^{fr} using Stokes data of [P^h_{*}E^ξ, ∇^ξ, τ^ξ_{*}].
- $\mathcal{X}_e(\xi)$ and $\mathcal{X}_m(\xi)$ will be matched with $\mathcal{X}_e^{ov}(\xi)$ and $\mathcal{X}_m^{ov}(\xi)$ by certain properties that characterize them uniquely.
 - ► Remark: we need framings so that Stokes data can be used as coordinates.

Consider $\mathcal{M}^{ov}(\Lambda)$ with $\Lambda \in \mathbb{C}^*$,

Consider $\mathcal{M}^{ov}(\Lambda)$ with $\Lambda \in \mathbb{C}^*$, and let \mathcal{B} be the base of the singular torus fibration $\mathcal{M}^{ov}(\Lambda) \to \mathcal{B}$.

Consider $\mathcal{M}^{ov}(\Lambda)$ with $\Lambda \in \mathbb{C}^*$, and let \mathcal{B} be the base of the singular torus fibration $\mathcal{M}^{ov}(\Lambda) \to \mathcal{B}$. Furthermore, let

 $\mathfrak{X}^{\mathsf{fr}}(\Lambda) := \{ [E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{\mathsf{fr}} \mid \mathsf{Det}(\theta) = -(z^2 + 2m)dz^2 \implies -2im \in \mathcal{B} \}$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ● □ • • ○ ○ 16/31

Consider $\mathcal{M}^{ov}(\Lambda)$ with $\Lambda \in \mathbb{C}^*$, and let \mathcal{B} be the base of the singular torus fibration $\mathcal{M}^{ov}(\Lambda) \to \mathcal{B}$. Furthermore, let

$$\mathfrak{X}^{\mathsf{fr}}(\Lambda) := \{ [E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{\mathsf{fr}} \mid \mathsf{Det}(\theta) = -(z^2 + 2m)dz^2 \implies -2im \in \mathcal{B} \}$$

Theorem [I.T.]: If $\Lambda = 4i$, then $\mathfrak{X}^{fr}(4i)$ can be identified with $\mathcal{M}^{ov}(4i)$. Under this identification $\mathfrak{X}^{fr}(4i)$ gets an induced hyperkähler structure, whose twistor family of holomorphic symplectic forms $\Omega(\xi)$ is described by

$$\Omega(\xi) = -\frac{1}{4\pi^2} \frac{d\mathcal{X}_e(\xi)}{\mathcal{X}_e(\xi)} \wedge \frac{d\mathcal{X}_m(\xi)}{\mathcal{X}_m(\xi)} \text{ for } \xi \in \mathbb{C}^*$$
(15)

Table of Contents

• Motivation and statement of the problem

• Defining the objects involved: the Ooguri-Vafa space and framed wild harmonic bundles

• Main Idea of the correspondence and the main theorem

• Finding the analog of the O.V. twistor coordinates in the moduli space of framed W.H.B.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (P 18/31)

Consider $\mathcal{E} \to \mathbb{C}P^1$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z = \infty$.

Consider $\mathcal{E} \to \mathbb{C}P^1$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z = \infty$.

ln w = 1/z, and a holomorphic trivialization we have:

$$\nabla = d + A_k \frac{dw}{w^k} + A_{k-1} \frac{dw}{w^{k-1}} + \dots + A_1 \frac{dw}{w} + \text{holomorphic } (1,0) \text{ terms}$$
(16)
with $A_j \in \text{End}(\mathbb{C}^2)$.

Consider $\mathcal{E} \to \mathbb{C}P^1$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z = \infty$.

ln w = 1/z, and a holomorphic trivialization we have:

$$\nabla = d + A_k \frac{dw}{w^k} + A_{k-1} \frac{dw}{w^{k-1}} + \dots + A_1 \frac{dw}{w} + \text{holomorphic } (1,0) \text{ terms}$$
(16)
with $A_j \in \text{End}(\mathbb{C}^2)$.

▶ We assume *A_k* is diagonalizable with distinct eigenvalues.

Consider $\mathcal{E} \to \mathbb{C}P^1$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z = \infty$.

ln w = 1/z, and a holomorphic trivialization we have:

$$\nabla = d + A_k \frac{dw}{w^k} + A_{k-1} \frac{dw}{w^{k-1}} + \dots + A_1 \frac{dw}{w} + \text{holomorphic } (1,0) \text{ terms}$$
(16)
with $A_i \in \text{End}(\mathbb{C}^2).$

• We assume A_k is diagonalizable with distinct eigenvalues.

A frame τ of *E*_∞ is called **compatible** if it extends to a holomorphic frame where *A_k* is diagonal.

Consider $\mathcal{E} \to \mathbb{C}P^1$ a rank 2 holomorphic bundle, with ∇ a meromorphic connection with a pole at $z = \infty$.

ln w = 1/z, and a holomorphic trivialization we have:

$$\nabla = d + A_k \frac{dw}{w^k} + A_{k-1} \frac{dw}{w^{k-1}} + \dots + A_1 \frac{dw}{w} + \text{holomorphic (1,0) terms}$$
(16)
with $A_i \in \text{End}(\mathbb{C}^2)$

with $A_j \in \text{End}(\mathbb{C}^2)$.

- We assume A_k is diagonalizable with distinct eigenvalues.
- A frame τ of *E*_∞ is called **compatible** if it extends to a holomorphic frame where *A_k* is diagonal.
- The tuple (E, ∇, τ) will be called a framed meromorphic connection.

<□ > < □ > < □ > < 三 > < 三 > 三 の < ⊙ 19/31

• Consider a hol. extension of τ (denoted also by τ).

• Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in GL_2(\mathbb{C})[[w]]$ such that $\widehat{F}(0) = 1$, and in the formal frame $\tau \cdot \widehat{F}$

• Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in GL_2(\mathbb{C})[[w]]$ such that $\widehat{F}(0) = 1$, and in the formal frame $\tau \cdot \widehat{F}$

$$\nabla = d + A^{0} = d + A^{0}_{k} \frac{dw}{w^{k}} + A^{0}_{k-1} \frac{dw}{w^{k-1}} + \dots + A^{0}_{1} \frac{dw}{w}$$
(17)

with A_j^0 diagonal and $A_k^0 = A_k$.

Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in GL_2(\mathbb{C})[[w]]$ such that $\widehat{F}(0) = 1$, and in the formal frame $\tau \cdot \widehat{F}$

$$\nabla = d + A^0 = d + A^0_k \frac{dw}{w^k} + A^0_{k-1} \frac{dw}{w^{k-1}} + \dots + A^0_1 \frac{dw}{w} \qquad (17)$$

with A_j^0 diagonal and $A_k^0 = A_k$.

Useful to write

$$A^{0} = dQ + \Lambda \frac{dw}{w} \tag{18}$$

where Q(w) is a diagonal matrix with entries in $w^{-1}\mathbb{C}[w^{-1}]$ and $\Lambda = A_1^0$.

Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in GL_2(\mathbb{C})[[w]]$ such that $\widehat{F}(0) = 1$, and in the formal frame $\tau \cdot \widehat{F}$

$$\nabla = d + A^0 = d + A^0_k \frac{dw}{w^k} + A^0_{k-1} \frac{dw}{w^{k-1}} + \dots + A^0_1 \frac{dw}{w} \qquad (17)$$

with A_j^0 diagonal and $A_k^0 = A_k$.

Useful to write

$$A^{0} = dQ + \Lambda \frac{dw}{w} \tag{18}$$

where Q(w) is a diagonal matrix with entries in $w^{-1}\mathbb{C}[w^{-1}]$ and $\Lambda = A_1^0$.

• $(Q, \Lambda) \rightsquigarrow$ the **formal type** of (\mathcal{E}, ∇, g) .

Consider a hol. extension of τ (denoted also by τ). There is a unique $\widehat{F} \in GL_2(\mathbb{C})[[w]]$ such that $\widehat{F}(0) = 1$, and in the formal frame $\tau \cdot \widehat{F}$

$$\nabla = d + A^0 = d + A^0_k \frac{dw}{w^k} + A^0_{k-1} \frac{dw}{w^{k-1}} + \dots + A^0_1 \frac{dw}{w} \qquad (17)$$

with A_j^0 diagonal and $A_k^0 = A_k$.

Useful to write

$$A^{0} = dQ + \Lambda \frac{dw}{w}$$
(18)

where Q(w) is a diagonal matrix with entries in $w^{-1}\mathbb{C}[w^{-1}]$ and $\Lambda = A_1^0$.

- $(Q, \Lambda) \rightsquigarrow$ the **formal type** of (\mathcal{E}, ∇, g) .
- $\Lambda \rightsquigarrow$ exponent of formal monodromy.

Formal flat sections VS flat sections

<□ ▶ < @ ▶ < E ▶ < E ▶ E の へ ? 20/31

Formal flat sections VS flat sections

▶ Natural frame of **formal** flat sections near $z = \infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\Lambda} e^{-Q}$.

Formal flat sections VS flat sections

Natural frame of formal flat sections near z = ∞ → τ · F̂w^{-∧}e^{-Q}.
 Natural question:
- ▶ Natural frame of **formal** flat sections near $z = \infty \rightsquigarrow \tau \cdot \widehat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z = \infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \to \infty$?

- ▶ Natural frame of **formal** flat sections near $z = \infty \rightsquigarrow \tau \cdot \hat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form τ · Σ(F̂)w^{-Λ}e^{-Q} in a neighborhood of z = ∞, such that Σ(F̂) ~ F̂ as z → ∞?
- Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays

- ▶ Natural frame of **formal** flat sections near $z = \infty \rightsquigarrow \tau \cdot \hat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z = \infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \to \infty$?
- ► Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays ~→ determined by Q.

- ▶ Natural frame of **formal** flat sections near $z = \infty \rightsquigarrow \tau \cdot \hat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z = \infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \to \infty$?
- ► Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays ~→ determined by Q.
- For ∇ with pole of order $k \rightsquigarrow 2k 2$ Stokes rays.

- ▶ Natural frame of **formal** flat sections near $z = \infty \rightsquigarrow \tau \cdot \hat{F} w^{-\Lambda} e^{-Q}$.
- Natural question: is there a frame of flat sections of the form $\tau \cdot \Sigma(\widehat{F}) w^{-\Lambda} e^{-Q}$ in a neighborhood of $z = \infty$, such that $\Sigma(\widehat{F}) \sim \widehat{F}$ as $z \to \infty$?
- ► Answer: no, unless we restrict to certain sectors, determined by the so called Stokes rays ~→ determined by Q.
- For ∇ with pole of order $k \rightsquigarrow 2k 2$ Stokes rays.
- The corresponding frames of flat sections exist on sectors determined by two consecutive Stokes rays. These have opening π/2 + π/(k - 1).

▶ We illustrate an example below, where

$$Q = \frac{1}{w^2} H = \text{diag}(1/w^2, -1/w^2). \tag{19}$$

In this case k = 3, so we have 4 **Stokes rays** (the dotted rays bellow) and 4 sectors (determined by two Stokes rays with opening π).

・ロ ・ ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・ つ へ へ 21/31

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • • • • • ● ● ● 22/31

Given the above sectorial flat frames:

Given the above sectorial flat frames:

The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.

<□ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ ≡ ∽ ♀ ? _{22/31}

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are **unipotent and constant**.

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant. For a pole of order k there are 2k - 2, and they satisfy

$$S_1 S_2 \dots S_{2k-2} M_0^{-1} = 1 \tag{20}$$

where $M_0 = e^{-2\pi i \Lambda}$ is the counterclockwise formal monodromy.

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant. For a pole of order k there are 2k - 2, and they satisfy

$$S_1 S_2 \dots S_{2k-2} M_0^{-1} = 1 \tag{20}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < つ < ℃ 22/31

where $M_0 = e^{-2\pi i \Lambda}$ is the counterclockwise formal monodromy.

• The S_i 's with Λ are the **Stokes data** of $(\mathcal{E}, \nabla, \tau)$.

Given the above sectorial flat frames:

- The matrix determining the gauge change from one sectorial frame of flat sections to another is called a Stokes matrix.
- Stokes matrices are unipotent and constant. For a pole of order k there are 2k - 2, and they satisfy

$$S_1 S_2 \dots S_{2k-2} M_0^{-1} = 1 \tag{20}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 22/31

where $M_0 = e^{-2\pi i \Lambda}$ is the counterclockwise formal monodromy.

- The S_i 's with Λ are the **Stokes data** of $(\mathcal{E}, \nabla, \tau)$.
- (S₁,..., S_{2k-2}, Λ) completely characterizes the equivalence classes
 [E, ∇, τ] with fixed formal type (Q, Λ).

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{fr}$.

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\text{fr}}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\text{fr}}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Because the Hitchin equation is satisfied, the connections

$$\nabla^{\xi} := D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}} \text{ for } \xi \in \mathbb{C}^{*}$$
(21)

define flat bundles $(E, \nabla^{\xi}) \to \mathbb{C}P^1 - \{\infty\}.$

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{fr}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Because the Hitchin equation is satisfied, the connections

$$\nabla^{\xi} := D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}} \text{ for } \xi \in \mathbb{C}^{*}$$
(21)

define flat bundles $(E, \nabla^{\xi}) \to \mathbb{C}P^1 - \{\infty\}.$

٦

Now consider the holomorphic bundle *E*^ξ := (*E*, ∂_E + ξθ^{†_b}) → ℂ*P*¹ − {∞}, with holomorphic (and flat) connection ∇^ξ.

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\text{fr}}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Because the Hitchin equation is satisfied, the connections

$$\nabla^{\xi} := D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}} \text{ for } \xi \in \mathbb{C}^{*}$$
(21)

define flat bundles $(E, \nabla^{\xi}) \to \mathbb{C}P^1 - \{\infty\}.$

٦

- Now consider the holomorphic bundle ε^ξ := (E, ∂_E + ξθ^{†_b}) → CP¹ - {∞}, with holomorphic (and flat) connection ∇^ξ.
- We would like to extend E^ξ → CP¹ {∞} to a holomorphic bundle over CP¹, in such a way that ∇^ξ is meromorphic.

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{fr}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Because the Hitchin equation is satisfied, the connections

$$\nabla^{\xi} := D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}} \text{ for } \xi \in \mathbb{C}^{*}$$
(21)

define flat bundles $(E, \nabla^{\xi}) \to \mathbb{C}P^1 - \{\infty\}.$

- Now consider the holomorphic bundle ε^ξ := (E, ∂_E + ξθ^{†_b}) → CP¹ - {∞}, with holomorphic (and flat) connection ∇^ξ.
- We would like to extend E^ξ → CP¹ {∞} to a holomorphic bundle over CP¹, in such a way that ∇^ξ is meromorphic.

Issue:

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{fr}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Because the Hitchin equation is satisfied, the connections

$$\nabla^{\xi} := D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}} \text{ for } \xi \in \mathbb{C}^{*}$$
(21)

define flat bundles $(E, \nabla^{\xi}) \to \mathbb{C}P^1 - \{\infty\}.$

٦

- Now consider the holomorphic bundle ε^ξ := (E, ∂_E + ξθ^{†_b}) → CP¹ - {∞}, with holomorphic (and flat) connection ∇^ξ.
- We would like to extend E^ξ → CP¹ {∞} to a holomorphic bundle over CP¹, in such a way that ∇^ξ is meromorphic.
- Issue: there is no unique way to achieve this.

Let $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\text{fr}}$. In order to associate Stokes data, we would like to produce $(\mathcal{E}, \nabla, \tau)$ as before.

Because the Hitchin equation is satisfied, the connections

$$\nabla^{\xi} := D(\overline{\partial}_{E}, h) + \xi^{-1}\theta + \xi\theta^{\dagger_{h}} \text{ for } \xi \in \mathbb{C}^{*}$$
(21)

define flat bundles $(E, \nabla^{\xi}) \to \mathbb{C}P^1 - \{\infty\}.$

٦

- Now consider the holomorphic bundle ε^ξ := (E, ∂_E + ξθ^{†_h}) → CP¹ - {∞}, with holomorphic (and flat) connection ∇^ξ.
- We would like to extend E^ξ → CP¹ {∞} to a holomorphic bundle over CP¹, in such a way that ∇^ξ is meromorphic.
- Issue: there is no unique way to achieve this. The following filtered structure will allow us to consider all such possible extensions "at the same time".

▶ *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.

• *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.

More precisely P^h_{*}E^ξ = {P^h_aE^ξ | a ∈ ℝ } with P^h_aE^ξ → ℂP¹ holomorphic bundles.

▶ *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.

More precisely P^h_{*}E^ξ = {P^h_aE^ξ | a ∈ ℝ } with P^h_aE^ξ → ℂP¹ holomorphic bundles.

▶ Their space of sections satisfy $\mathcal{P}_a^h \mathcal{E}^{\xi}(U) = \mathcal{E}^{\xi}(U)$ if $\infty \notin U$,

- ▶ *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.
- More precisely P^h_{*}E^ξ = {P^h_aE^ξ | a ∈ ℝ } with P^h_aE^ξ → ℂP¹ holomorphic bundles.
- ▶ Their space of sections satisfy $\mathcal{P}^h_a \mathcal{E}^{\xi}(U) = \mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$\mathcal{P}_{a}^{h}\mathcal{E}^{\xi}(U) = \{s \in \mathcal{E}^{\xi}(U - \{\infty\}) \mid |s|_{h} = \mathcal{O}(|w|^{-a})\}$$
(22)

 $\text{ if } \infty \in \textit{U}, \text{ where } w = 1/z.$

- ▶ *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.
- More precisely P^h_{*}E^ξ = {P^h_aE^ξ | a ∈ ℝ } with P^h_aE^ξ → ℂP¹ holomorphic bundles.
- ▶ Their space of sections satisfy $\mathcal{P}^h_a \mathcal{E}^{\xi}(U) = \mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$\mathcal{P}_{a}^{h}\mathcal{E}^{\xi}(U) = \{s \in \mathcal{E}^{\xi}(U - \{\infty\}) \mid |s|_{h} = \mathcal{O}(|w|^{-a})\}$$
(22)

if $\infty \in U$, where w = 1/z.

▶ $\mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C} \mathcal{P}^1, \infty)$ "contains" all holomorphic extensions of \mathcal{E}^{ξ} such that ∇^{ξ} is meromorphic on the extension.

- ▶ *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.
- More precisely P^h_{*}E^ξ = {P^h_aE^ξ | a ∈ ℝ } with P^h_aE^ξ → ℂP¹ holomorphic bundles.
- ▶ Their space of sections satisfy $\mathcal{P}^h_a \mathcal{E}^{\xi}(U) = \mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$\mathcal{P}_{a}^{h}\mathcal{E}^{\xi}(U) = \{s \in \mathcal{E}^{\xi}(U - \{\infty\}) \mid |s|_{h} = \mathcal{O}(|w|^{-a})\}$$
(22)

if $\infty \in U$, where w = 1/z.

- ▶ $\mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C} \mathcal{P}^1, \infty)$ "contains" all holomorphic extensions of \mathcal{E}^{ξ} such that ∇^{ξ} is meromorphic on the extension.
- ▶ For $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\text{fr}}$, we can do a similar construction to get $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty).$

- ▶ *h* induces a filtered structure at $z = \infty \rightsquigarrow \mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C}P^1, \infty)$.
- More precisely P^h_{*}E^ξ = {P^h_aE^ξ | a ∈ ℝ } with P^h_aE^ξ → ℂP¹ holomorphic bundles.
- ▶ Their space of sections satisfy $\mathcal{P}^h_a \mathcal{E}^{\xi}(U) = \mathcal{E}^{\xi}(U)$ if $\infty \notin U$, and

$$\mathcal{P}_{a}^{h}\mathcal{E}^{\xi}(U) = \{s \in \mathcal{E}^{\xi}(U - \{\infty\}) \mid |s|_{h} = \mathcal{O}(|w|^{-a})\}$$
(22)

if $\infty \in U$, where w = 1/z.

- ▶ $\mathcal{P}^h_* \mathcal{E}^{\xi} \to (\mathbb{C} \mathcal{P}^1, \infty)$ "contains" all holomorphic extensions of \mathcal{E}^{ξ} such that ∇^{ξ} is meromorphic on the extension.
- ▶ For $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\text{fr}}$, we can do a similar construction to get $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty).$
- We call (P^h_{*}E^ξ, ∇^ξ, τ^ξ_{*}) → (ℂP¹, ∞) for ξ ∈ ℂ^{*} the associated framed filtered flat bundles.

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ → ● ○ ○ 25/31

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

For each a ∈ ℝ, we have the Stokes data associated to (𝒫^h_a𝔅^ξ, 𝒱^ξ, τ^ξ_a) → (ℂР¹, ∞).

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

For each a ∈ ℝ, we have the Stokes data associated to (𝒫^h_a𝔅^ξ, 𝒱^ξ, τ^ξ_a) → (𝔅𝒫¹,∞).

▶ The S_i 's **do not** depend on $a \in \mathbb{R}$, while Λ **does** depend on $a \in \mathbb{R}$.

・ロ · ・ () · ・ ミ · ・ ミ · の へ · 25/31

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

- ▶ For each $a \in \mathbb{R}$, we have the Stokes data associated to $(\mathcal{P}_a^h \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_a^{\xi}) \rightarrow (\mathbb{C}P^1, \infty).$
- ► The S_i 's **do not** depend on $a \in \mathbb{R}$, while Λ **does** depend on $a \in \mathbb{R}$. However, $M_0 = e^{-2\pi i \Lambda}$ **does not** depend on $a \in \mathbb{R}$.

・ロ · ・ () · ・ ミ · ・ ミ · の へ · 25/31

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

- For each a ∈ ℝ, we have the Stokes data associated to (𝒫^h_a𝔅^ξ, ∇^ξ, τ^ξ_a) → (𝔅Р¹,∞).
- The S_i's do not depend on a ∈ ℝ, while Λ does depend on a ∈ ℝ. However, M₀ = e^{-2πiΛ} does not depend on a ∈ ℝ.

• We associate
$$S_i$$
's and $M_0 = e^{-2\pi i \Lambda}$ to $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty).$

・ロ · ・ () · ・ ミ · ・ ミ · の へ · 25/31

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

- For each a ∈ ℝ, we have the Stokes data associated to (𝒫^h_a𝔅^ξ, ∇^ξ, τ^ξ_a) → (𝔅Р¹,∞).
- The S_i's do not depend on a ∈ ℝ, while Λ does depend on a ∈ ℝ. However, M₀ = e^{-2πiΛ} does not depend on a ∈ ℝ.
- ▶ We associate S_i 's and $M_0 = e^{-2\pi i \Lambda}$ to $(\mathcal{P}^h_* \mathcal{E}^\xi, \nabla^\xi, \tau^\xi_*) \to (\mathbb{C}P^1, \infty).$
- $S'_i s$ and M_0 only depends $[\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*]$

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

- For each a ∈ ℝ, we have the Stokes data associated to (𝒫^h_a𝔅^ξ, 𝒱^ξ, τ^ξ_a) → (𝔅𝒫¹,∞).
- The S_i's do not depend on a ∈ ℝ, while Λ does depend on a ∈ ℝ. However, M₀ = e^{-2πiΛ} does not depend on a ∈ ℝ.
- ▶ We associate S_i 's and $M_0 = e^{-2\pi i \Lambda}$ to $(\mathcal{P}^h_* \mathcal{E}^\xi, \nabla^\xi, \tau^\xi_*) \to (\mathbb{C}P^1, \infty).$
- ► $S'_i s$ and M_0 only depends $[\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*] \implies$ can associate $S_i(\xi)$ and $M_0(\xi)$ for $\xi \in \mathbb{C}^*$ to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{\mathrm{fr}}$.
Stokes data of a framed filtered flat bundle

For each $\xi \in \mathbb{C}^*$, let $(\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*) \to (\mathbb{C}P^1, \infty)$ be the framed filtered flat bundle associated to $(E, \overline{\partial}_E, \theta, h, g) \in \mathcal{H}^{\mathrm{fr}}$.

- For each a ∈ ℝ, we have the Stokes data associated to (𝒫^h_a𝔅^ξ, ∇^ξ, τ^ξ_a) → (ℂР¹, ∞).
- The S_i's do not depend on a ∈ ℝ, while Λ does depend on a ∈ ℝ. However, M₀ = e^{-2πiΛ} does not depend on a ∈ ℝ.
- ▶ We associate S_i 's and $M_0 = e^{-2\pi i \Lambda}$ to $(\mathcal{P}^h_* \mathcal{E}^\xi, \nabla^\xi, \tau^\xi_*) \to (\mathbb{C}P^1, \infty).$
- ► $S'_i s$ and M_0 only depends $[\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*] \implies$ can associate $S_i(\xi)$ and $M_0(\xi)$ for $\xi \in \mathbb{C}^*$ to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{\mathrm{fr}}$.
- The twistor family of Stokes data (S₁(ξ), S₂(ξ), S₃(ξ), S₄(ξ), M₀(ξ)), satisfies:

$$S_1(\xi)S_2(\xi)S_3(\xi)S_4(\xi)M_0^{-1}(\xi) = 1$$
(23)

► On $\mathcal{M}^{ov}(\Lambda)$:

► On
$$\mathcal{M}^{ov}(\Lambda)$$
:

$$\mathcal{X}_{e}^{\mathsf{ov}}(\xi) := \exp\left(\frac{\pi}{\xi}z + i\theta_{e} + \pi\xi\overline{z}\right) \quad z \in \mathcal{B}^{\mathsf{ov}}, \ \theta_{e} = 2\pi x^{3}$$
(24)

$$\mathcal{X}_{e}^{\mathsf{ov}}(\xi) := \exp\left(\frac{\pi}{\xi}z + i\theta_{e} + \pi\xi\overline{z}\right) \quad z \in \mathcal{B}^{\mathsf{ov}}, \ \theta_{e} = 2\pi x^{3}$$
(24)

▶ For $[\mathcal{P}^h_* \mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_*]$ corresponding to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{fr}$, M_0 equals:

► On
$$\mathcal{M}^{ov}(\Lambda)$$
:

$$\mathcal{X}_{e}^{\mathsf{ov}}(\xi) := \exp\left(\frac{\pi}{\xi}z + i\theta_{e} + \pi\xi\overline{z}\right) \quad z \in \mathcal{B}^{\mathsf{ov}}, \ \theta_{e} = 2\pi x^{3}$$
(24)

► For
$$[\mathcal{P}_*^h \mathcal{E}^{\xi}, \nabla^{\xi}, \tau_*^{\xi}]$$
 corresponding to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{\text{fr}}$, M_0 equals:

$$\exp \begin{bmatrix} -2\pi i (-\xi^{-1}m + m^{(3)} + \xi \overline{m}) & 0\\ 0 & -2\pi i (\xi^{-1}m - m^{(3)} - \xi \overline{m}) \end{bmatrix}$$
(25)

► On
$$\mathcal{M}^{ov}(\Lambda)$$
:

$$\mathcal{X}_{e}^{\mathsf{ov}}(\xi) := \exp\left(\frac{\pi}{\xi}z + i\theta_{e} + \pi\xi\overline{z}\right) \quad z \in \mathcal{B}^{\mathsf{ov}}, \ \theta_{e} = 2\pi x^{3}$$
(24)

For
$$[\mathcal{P}^{h}_{*}\mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_{*}]$$
 corresponding to $[E, \overline{\partial}_{E}, \theta, h, g] \in \mathfrak{X}^{\text{fr}}$, M_{0} equals:

$$\exp \begin{bmatrix} -2\pi i(-\xi^{-1}m + m^{(3)} + \xi\overline{m}) & 0\\ 0 & -2\pi i(\xi^{-1}m - m^{(3)} - \xi\overline{m}) \end{bmatrix}$$
(25)

We then define

$$\mathcal{X}_{e}([E,\overline{\partial}_{E},\theta,h,g],\xi) := \exp(-2\pi i(\xi^{-1}m - m^{(3)} - \xi\overline{m}))$$
(26)

► On
$$\mathcal{M}^{ov}(\Lambda)$$
:

$$\mathcal{X}_{e}^{\mathsf{ov}}(\xi) := \exp\left(\frac{\pi}{\xi}z + i\theta_{e} + \pi\xi\overline{z}\right) \quad z \in \mathcal{B}^{\mathsf{ov}}, \ \theta_{e} = 2\pi x^{3}$$
(24)

For
$$[\mathcal{P}^{h}_{*}\mathcal{E}^{\xi}, \nabla^{\xi}, \tau^{\xi}_{*}]$$
 corresponding to $[E, \overline{\partial}_{E}, \theta, h, g] \in \mathfrak{X}^{\text{fr}}, M_{0}$ equals:

$$\exp \begin{bmatrix} -2\pi i(-\xi^{-1}m + m^{(3)} + \xi\overline{m}) & 0\\ 0 & -2\pi i(\xi^{-1}m - m^{(3)} - \xi\overline{m}) \end{bmatrix}$$
(25)

• We then define $\mathcal{X}_{e}([E,\overline{\partial}_{E},\theta,h,g],\xi) := \exp(-2\pi i (\xi^{-1}m - m^{(3)} - \xi\overline{m})) \qquad (26)$

► Get correspondence:

$$z \iff -2im, \quad \theta_e \iff 2\pi m^{(3)}$$
 (27)

< □ ▶ < 酉 ▶ < 壹 ▶ < ⋽ ▶ Ξ ∽ Q (26/31

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ♪ ● ○ ○ 27/31

We start with $\mathcal{X}_m^{ov}(\xi)$ on $\mathcal{M}^{ov}(\Lambda)$:

We start with $\mathcal{X}_m^{ov}(\xi)$ on $\mathcal{M}^{ov}(\Lambda)$: We write $\mathcal{X}_m^{ov}(\xi) = \mathcal{X}_m^{sf}(\xi)\mathcal{X}_m^{inst}(\xi)$ with

We start with $\mathcal{X}_m^{ov}(\xi)$ on $\mathcal{M}^{ov}(\Lambda)$: We write $\mathcal{X}_m^{ov}(\xi) = \mathcal{X}_m^{sf}(\xi)\mathcal{X}_m^{inst}(\xi)$ with

$$\mathcal{X}_{m}^{\rm sf}(\xi) = \exp\left(\frac{1}{\xi} \frac{(z \log(z/\Lambda) - z)}{2i} + i\theta_{m} - \xi \frac{(\overline{z} \log(\overline{z}/\overline{\Lambda}) - \overline{z})}{2i}\right) \quad (28)$$

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ● E ♥ Q @ 27/31

and

We start with
$$\mathcal{X}_{m}^{ov}(\xi)$$
 on $\mathcal{M}^{ov}(\Lambda)$:
We write $\mathcal{X}_{m}^{ov}(\xi) = \mathcal{X}_{m}^{sf}(\xi)\mathcal{X}_{m}^{inst}(\xi)$ with

$$\mathcal{X}_{m}^{\rm sf}(\xi) = \exp\left(\frac{1}{\xi} \frac{(z \log(z/\Lambda) - z)}{2i} + i\theta_{m} - \xi \frac{(\overline{z} \log(\overline{z}/\Lambda) - \overline{z})}{2i}\right) \quad (28)$$

 and

$$\mathcal{X}_{m}^{\text{inst}}(\xi) = \exp\left(\frac{i}{4\pi} \int_{l_{+}(z)} \frac{d\xi'}{\xi'} \frac{\xi + \xi'}{\xi' - \xi} \text{Log}(1 - \mathcal{X}_{e}^{\text{ov}}(\xi')) - \frac{i}{4\pi} \int_{l_{-}(z)} \frac{d\xi'}{\xi'} \frac{\xi + \xi'}{\xi' - \xi} \text{Log}(1 - (\mathcal{X}_{e}^{\text{ov}}(\xi'))^{-1})\right)$$
(29)

where

$$I_{\pm}(z) = \{\xi \in \mathbb{C}^* \mid \pm z/\xi < 0\}$$
(30)

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ♪ ● ○ ○ 28/31

$$\mathcal{X}_m^{\mathsf{ov}}(\xi)^+ = \mathcal{X}_m^{\mathsf{ov}}(\xi)^- (1 - \mathcal{X}_e^{\mathsf{ov}}(\xi))^{-1} \text{ along } \xi \in I_+(z)$$

 $\mathcal{X}_m^{\mathsf{ov}}(\xi)^+ = \mathcal{X}_m^{\mathsf{ov}}(\xi)^- (1 - \mathcal{X}_e^{\mathsf{ov}}(\xi)^{-1}) \text{ along } \xi \in I_-(z)$

where the + or - on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.

(31)

$$\mathcal{X}_{m}^{\text{ov}}(\xi)^{+} = \mathcal{X}_{m}^{\text{ov}}(\xi)^{-}(1 - \mathcal{X}_{e}^{\text{ov}}(\xi))^{-1} \quad \text{along} \quad \xi \in l_{+}(z)$$
$$\mathcal{X}_{m}^{\text{ov}}(\xi)^{+} = \mathcal{X}_{m}^{\text{ov}}(\xi)^{-}(1 - \mathcal{X}_{e}^{\text{ov}}(\xi)^{-1}) \quad \text{along} \quad \xi \in l_{-}(z)$$
(31)

where the + or - on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.

Asymptotics:

$$\mathcal{X}_{m}^{\text{ov}}(\xi) \sim \begin{cases} \exp(-\frac{i}{2\xi}(z\text{Log}(z/\Lambda) - z) + i\theta_{m} + r(z,\theta_{e})) \text{ as } \xi \to 0\\ \exp(\frac{i\xi}{2}(\overline{z}\text{Log}(\overline{z}/\overline{\Lambda}) - \overline{z}) + i\theta_{m} - r(z,\theta_{e})) \text{ as } \xi \to \infty \end{cases}$$
(32)

$$\mathcal{X}_m^{\mathrm{ov}}(\xi)^+ = \mathcal{X}_m^{\mathrm{ov}}(\xi)^- (1 - \mathcal{X}_e^{\mathrm{ov}}(\xi))^{-1} \text{ along } \xi \in l_+(z)$$

 $\mathcal{X}_m^{\mathrm{ov}}(\xi)^+ = \mathcal{X}_m^{\mathrm{ov}}(\xi)^- (1 - \mathcal{X}_e^{\mathrm{ov}}(\xi)^{-1}) \text{ along } \xi \in l_-(z)$

where the $+\mbox{ or }-\mbox{ on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.$

Asymptotics:

$$\mathcal{X}_{m}^{\text{ov}}(\xi) \sim \begin{cases} \exp(-\frac{i}{2\xi}(z\text{Log}(z/\Lambda) - z) + i\theta_{m} + r(z,\theta_{e})) \text{ as } \xi \to 0\\ \exp(\frac{i\xi}{2}(\overline{z}\text{Log}(\overline{z}/\overline{\Lambda}) - \overline{z}) + i\theta_{m} - r(z,\theta_{e})) \text{ as } \xi \to \infty \end{cases}$$
(32)

Reality condition:

$$\mathcal{X}_{m}^{\mathrm{ov}}(\xi) = \overline{\mathcal{X}_{m}^{\mathrm{ov}}(-1/\overline{\xi})}^{-1}$$
(33)

(31)

$$\mathcal{X}_{m}^{\text{ov}}(\xi)^{+} = \mathcal{X}_{m}^{\text{ov}}(\xi)^{-}(1 - \mathcal{X}_{e}^{\text{ov}}(\xi))^{-1} \quad \text{along} \quad \xi \in l_{+}(z)$$
$$\mathcal{X}_{m}^{\text{ov}}(\xi)^{+} = \mathcal{X}_{m}^{\text{ov}}(\xi)^{-}(1 - \mathcal{X}_{e}^{\text{ov}}(\xi)^{-1}) \quad \text{along} \quad \xi \in l_{-}(z)$$
(31)

where the $+\mbox{ or }-\mbox{ on the coordinate denotes the clockwise or counterclockwise limit to the ray, respectively.$

Asymptotics:

$$\mathcal{X}_{m}^{\text{ov}}(\xi) \sim \begin{cases} \exp(-\frac{i}{2\xi}(z\text{Log}(z/\Lambda) - z) + i\theta_{m} + r(z,\theta_{e})) \text{ as } \xi \to 0\\ \exp(\frac{i\xi}{2}(\overline{z}\text{Log}(\overline{z}/\overline{\Lambda}) - \overline{z}) + i\theta_{m} - r(z,\theta_{e})) \text{ as } \xi \to \infty \end{cases}$$
(32)

Reality condition:

$$\mathcal{X}_m^{\text{ov}}(\xi) = \overline{\mathcal{X}_m^{\text{ov}}(-1/\overline{\xi})}^{-1}$$
(33)

This properties **uniquely** determine $\mathcal{X}_m^{ov}(\xi)$! They are used to determine the analogous magnetic coordinate for \mathfrak{X}^{fr} .

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ 29/31

We consider $(S_1(\xi), S_2(\xi), S_3(\xi), S_4(\xi), M_0(\xi))$ for $\xi \in \mathbb{C}^*$, corresponding to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{fr}$.

- We consider $(S_1(\xi), S_2(\xi), S_3(\xi), S_4(\xi), M_0(\xi))$ for $\xi \in \mathbb{C}^*$, corresponding to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{fr}$.
 - Let a(ξ) and b(ξ) be the non-trivial off-diagonal elements of S₁(ξ) and S₂(ξ).

We consider $(S_1(\xi), S_2(\xi), S_3(\xi), S_4(\xi), M_0(\xi))$ for $\xi \in \mathbb{C}^*$, corresponding to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{fr}$.

Let a(ξ) and b(ξ) be the non-trivial off-diagonal elements of S₁(ξ) and S₂(ξ). Away from the locus where m = 0:

We consider $(S_1(\xi), S_2(\xi), S_3(\xi), S_4(\xi), M_0(\xi))$ for $\xi \in \mathbb{C}^*$, corresponding to $[E, \overline{\partial}_E, \theta, h, g] \in \mathfrak{X}^{fr}$.

Let a(ξ) and b(ξ) be the non-trivial off-diagonal elements of S₁(ξ) and S₂(ξ). Away from the locus where m = 0:

$$\mathcal{X}_{m}([E,\overline{\partial_{E}},\theta,h,g],\xi) := \begin{cases} \mathsf{a}(\xi) & \text{for } \xi \in \mathbb{H}_{m} \\ \\ -1/b(\xi) & \text{for } \xi \in \mathbb{H}_{-m} \end{cases}$$
(34)

< □ > < □ > < □ > < Ξ > < Ξ > Ξ → ○ < ♡ < ○ 30/31

• $\mathcal{X}_m(\xi)$ has the correct jumps along $l_{\pm}(-2im)$

X_m(ξ) has the correct jumps along *I*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.

X_m(ξ) has the correct jumps along *I*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.

▶ Stokes data depends **holomorphically** on $\xi \in \mathbb{C}^*$

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C^{*} ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(−2im)).

- *X_m*(ξ) has the correct jumps along *l*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C^{*} ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(−2im)). This is not trivial,

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(−2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.

- *X_m*(ξ) has the correct jumps along *l*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The **asymptotics** in ξ of $\mathcal{X}_m(\xi)$ are computed.

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(−2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of $\mathcal{X}_m(\xi)$ are computed. Also **not** trivial

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- By matching with O.V. asymptotics we:

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- ▶ By matching with O.V. asymptotics we: fix value of cut-off $\Lambda = 4i$,

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C^{*} ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- ▶ By matching with O.V. asymptotics we: fix value of cut-off $\Lambda = 4i$, and define corresponding θ_m on \mathfrak{X}^{fr} .
- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off Λ = 4*i*, and define corresponding θ_m on X^{fr}. It satisfies θ_m(e^{iθ} · [E, ∂, θ, h, g]) = θ_m([E, ∂, θ, h, g]) + θ

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off Λ = 4*i*, and define corresponding θ_m on X^{fr}. It satisfies θ_m(e^{iθ} · [E, ∂, θ, h, g]) = θ_m([E, ∂, θ, h, g]) + θ

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 30/31

• The **reality** condition also holds: $\mathcal{X}_m(\xi) = \overline{\mathcal{X}_m(-1/\overline{\xi})}^{-1}$.

- *X_m*(ξ) has the correct jumps along *I*_±(−2*im*)→ study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off Λ = 4*i*, and define corresponding θ_m on X^{fr}. It satisfies θ_m(e^{iθ} · [E, ∂, θ, h, g]) = θ_m([E, ∂, θ, h, g]) + θ
- The **reality** condition also holds: $\mathcal{X}_m(\xi) = \overline{\mathcal{X}_m(-1/\overline{\xi})}^{-1}$.
- From these results, one is able to identify $\mathcal{X}_m(\xi)$ with $\mathcal{X}_m^{ov}(\xi)$ (under $z \iff -2im, 2\pi m^{(3)} \iff \theta_e$ and $\Lambda = 4i$).

- *X_m*(ξ) has the correct jumps along *l*_±(−2*im*) → study of how Stokes data changes as we vary the twistor parameter ξ ∈ C^{*}.
- Stokes data depends holomorphically on ξ ∈ C* ⇒ X_m(ξ) depends holomorphically on ξ (away from l_±(-2im)). This is not trivial, requires "isomonodromic deformations" → Takuro Mochizuki.
- The asymptotics in ξ of X_m(ξ) are computed. Also not trivial → requires study of asymptotics in ξ ∈ C* of twistor families of flat sections.
- By matching with O.V. asymptotics we: fix value of cut-off Λ = 4*i*, and define corresponding θ_m on X^{fr}. It satisfies θ_m(e^{iθ} · [E, ∂, θ, h, g]) = θ_m([E, ∂, θ, h, g]) + θ
- The **reality** condition also holds: $\mathcal{X}_m(\xi) = \overline{\mathcal{X}_m(-1/\overline{\xi})}^{-1}$.
- From these results, one is able to identify $\mathcal{X}_m(\xi)$ with $\mathcal{X}_m^{ov}(\xi)$ (under $z \iff -2im, 2\pi m^{(3)} \iff \theta_e$ and $\Lambda = 4i$).

From the previous results, one can identify the subset X^{fr}(4i) ⊂ X^{fr} with M^{ov}(4i).

Thanks!