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The Hitchin moduli space

We fix a compact Riemann surface Σ and k ∈ Z>0.

A harmonic bundle over Σ is a tuple (E , ∂E , θ, h) such that:

I (E , ∂E )→ Σ is a rank k holomorphic vector bundle, with hermitian
metric h.

I θ is a holomorphic section of End(E )⊗ KΣ, called the Higgs field.

I The Hitchin equation is satisfied:

F (D(∂E , h)) + [θ, θ†h ] = 0 (1)

We denote by MHit(Σ) the moduli space of harmonic bundles.

MHit(Σ) has two important structures:

I It carries a hyperkähler metric.

I There is one of the complex structures in which it is a
complex integrable system π : (MHit(Σ), I ,ΩI )→ B(Σ). The
base B(Σ) is called the Hitchin base.
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Formulation of the problem

Main motivation: try to get a better understanding of the hyperkähler
metric g of MHit(Σ).

Why?

I In mathematics: hyperkähler metrics give examples of very rigid and
rich geometries. They tend to be very hard to describe explicitly.

I In physics: certain versions of MHit(Σ) are expected to describe the
Coulomb branch of certain 4d N = 2 theories (compactified on S1).

How? Clues from the work of Gaiotto-Moore-Neitzke:

I Asymptotically near infinite ends of MHit(Σ): g ∼ gsf , where gsf is
a simpler “semi-flat” hyperkähler metric.

I Near “generic” part of singular locus of the Hitchin base, the
Ooguri-Vafa metric should be part of an approximate model of g.

Natural question: Is there a way to interpret the Ooguri-Vafa space in
terms of certain harmonic bundles?

Answer: Yes! The Ooguri-Vafa space can be interpreted as a certain
class of (framed) wild harmonic bundles.
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The Ooguri-Vafa space

One way to build the O.V. space is via the Gibbons-Hawking ansatz:

From V : U ⊂ R3 → R>0 with ∆V = 0 and [?dV ] ∈ H2(U,Z) 
(X , g , I1, I2, I3) hyperkähler!
I Consider the harmonic function on R3 − {(0, 0, n)}n∈Z defined by

V (x1, x2, x3) :=
1

4π

∞∑
n=−∞

( 1√
(x1)2 + (x2)2 + (x3 + n)2

− cn
)

(2)

= − 1

2π
Log
( |z |
|Λ|

)
+

1

2π

∑
n 6=0,n∈Z

e2πinx3

K0(2π|nz |) (3)

I Over U := B ×R− {(0, 0, n)}n∈Z ⊂ R3 where V > 0, we can take a
U(1)-principal bundle with connection π : (X ,Θ)→ U with:

dΘ = π∗(2πi ? dV ) (4)

I Furthermore, on the total space X we can define the three real
symplectic forms:

ωj = (
i

2π
Θ) ∧ π∗dx j + π∗(V ? dx j) (5)
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I Finally, from the ωi we can obtain the Ii ’s and

g = V−1(
i

2π
Θ)⊗ (

i

2π
Θ) +Vπ∗(dx1⊗dx1 +dx2⊗dx2 +dx3⊗dx3)

(6)

I Extra piece of structure: V invariant under Z-shifts of x3. Can lift Z
action to X (non-uniquely) and consider X/Z. We define
Mov(Λ) := X/Z, where the phase Λ/|Λ| records the choice of lift.

I Furthermore, we have the U(1)-principal bundle
π :Mov(Λ)→ B × S1 − {pt}.

I One can add a point to Mov(Λ), and extend π to a map
π :Mov(Λ)→ B × S1. The HK structure also extends smoothly.
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Picture of Mov(Λ)

Composing π :Mov(Λ)→ B × S1 with B × S1 → B we get the following
picture of Mov(Λ):

 should think of Mov(Λ) as a “model HK space”.
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Framed wild harmonic bundles

We will consider a specific subset of tuples (E , ∂E , θ, h, g), where:

I (E , ∂E , θ, h)→ CP1 − {∞} is a harmonic bundle. That is:
I (E , ∂E )→ CP1 − {∞} is a holomorphic vector bundle, with

hermitian metric h.
I θ is a holomorphic section of End(E)⊗ KΣ, called the Higgs field.
I The Hitchin equation is satisfied:

F (D(∂E , h)) + [θ, θ†h ] = 0 (7)

I (E , h)→ CP1 and the fiber E∞ carries a certain choice of framing g .

I The Higgs field θ has a pole of order > 1 at ∞ (thus, we are on the
“wild case”).

I Hence the name “framed wild harmonic bundles”.

I The reason for including framings in not obvious at this point, but it
will become clear in the future.
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Definition of the moduli space of framed W.H.B.

Let Hfr be the set of tuples (E , ∂E , θ, h, g), where:

I (E , h)→ CP1  SU(2)-vector bundle.

I (E , ∂E , θ, h)→ CP1 − {∞} is a harmonic bundle such that
Tr(θ) = 0 and Det(θ) = −(z2 + 2m)dz2 for some m ∈ C.

I g is an SU(2)-frame of E∞, having an extension to a local
SU(2)-frame where θ and ∂E have the following form:

For w = 1/z and H =

[
1 0
0 −1

]
.

θ = −H dw

w3
−mH

dw

w
+ regular terms (8)

∂E = ∂ − m(3)

2
H
dw

w
+ regular terms for some m(3) ∈ (−1

2
,

1

2
]

(9)

We call g a compatible frame; and the equivalence classes of Hfr

we denote by Xfr.
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Picture of Xfr

I For m ∈ C and m(3) ∈ (−1/2, 1/2], let Xfr(m,m(3)) ⊂ Xfr  
elements whose singularity is determined by m,m(3).

I If m 6= 0 or m(3) 6= 0 =⇒ Xfr(m,m3) is a U(1)-torsor. U(1) acts
by:

e iθ · [E , ∂E , θ, h, g ] = [E , ∂E , θ, h, e
i θ2 · g ] (10)

For g = (e1, e2):

e i
θ
2 · g = (e i

θ
2 e1, e

−i θ2 e2) (11)

I If m = m(3) = 0 =⇒ Xfr(0, 0) = {pt} “most symmetric” point in
Xfr:

E = CP1×C2, ∂E = ∂, θ = zHdz , h(ei , ej) = δij , g = (e1, e2)|∞
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HK spaces and their twistor family of holomorphic
symplectic forms

Let (M, g , I1, I2, I3) be a hyperkähler manifold.

I M is holomorphic symplectic in a “CP1” worth of ways: for
ξ ∈ C∗ ⊂ CP1, we have (M, Iξ,Ω(ξ)), where

Ω(ξ) = − i

2
ξ−1(ω1 + iω2) + ω3 −

i

2
ξ(ω1 − iω2) (12)

for ξ = 0 or ξ =∞ we take ξΩ(ξ)|ξ=0 or ξ−1Ω(ξ)|ξ=∞, respectively.

I Ω(ξ) encodes the H.K. structure of M! (i.e. can recover ωi ’s, and
hence Ii ’s and g).

I Manifestation of the fact that (M, g , I1, I2, I3) can be encoded
holomorphically in the associated twistor space of M
 (Z(M), I,Ω, τ).
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Main ideas for the correspondence

Main ideas:

I work with the twistor description of Mov(Λ):
There are “twistor coordinates” X ov

e (ξ) and X ov
m (ξ), such that:

Ωov(ξ) = − 1

4π2

dX ov
e (ξ)

X ov
e (ξ)

∧ dX ov
m (ξ)

X ov
m (ξ)

(13)

I For [E , ∂E , θ, h, g ] ∈ Xfr and ξ ∈ C∗  “framed filtered flat

bundle” [Ph
∗Eξ,∇ξ, τ

ξ
∗ ], where

∇ξ = D(∂E , h) + ξ−1θ + ξθ†h (14)

which in turn is associated to Stokes data  “refined monodromy
data”.

I We define “twistor coordinates” Xe(ξ) and Xm(ξ) of Xfr using

Stokes data of [Ph
∗Eξ,∇ξ, τ

ξ
∗ ].

I Xe(ξ) and Xm(ξ) will be matched with X ov
e (ξ) and X ov

m (ξ) by
certain properties that characterize them uniquely.
I Remark: we need framings so that Stokes data can be used as

coordinates.
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Main Theorem

Consider Mov(Λ) with Λ ∈ C∗,

and let B be the base of the singular
torus fibration Mov(Λ)→ B. Furthermore, let

Xfr(Λ) := {[E , ∂E , θ, h, g ] ∈ Xfr | Det(θ) = −(z2+2m)dz2 =⇒ −2im ∈ B }

Theorem [I.T.]: If Λ = 4i , then Xfr(4i) can be identified with Mov(4i).
Under this identification Xfr(4i) gets an induced hyperkähler structure,
whose twistor family of holomorphic symplectic forms Ω(ξ) is described
by

Ω(ξ) = − 1

4π2

dXe(ξ)

Xe(ξ)
∧ dXm(ξ)

Xm(ξ)
for ξ ∈ C∗ (15)
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18/31

Stokes data of a framed meromorphic connection

Consider E → CP1 a rank 2 holomorphic bundle, with ∇ a meromorphic
connection with a pole at z =∞.

I In w = 1/z , and a holomorphic trivialization we have:

∇ = d+Ak
dw

wk
+Ak−1

dw

wk−1
+ ... +A1

dw

w
+ holomorphic (1, 0) terms

(16)
with Aj ∈ End(C2).

I We assume Ak is diagonalizable with distinct eigenvalues.

I A frame τ of E∞ is called compatible if it extends to a holomorphic
frame where Ak is diagonal.

I The tuple (E ,∇, τ) will be called a framed meromorphic
connection.
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Let (E ,∇, τ)→ (CP1,∞) be as before.

I Consider a hol. extension of τ (denoted also by τ). There is a unique

F̂ ∈ GL2(C)[[w ]] such that F̂ (0) = 1, and in the formal frame τ · F̂

∇ = d + A0 = d + A0
k

dw

wk
+ A0

k−1

dw

wk−1
+ ... + A0

1

dw

w
(17)

with A0
j diagonal and A0

k = Ak .

I Useful to write

A0 = dQ + Λ
dw

w
(18)

where Q(w) is a diagonal matrix with entries in w−1C[w−1] and
Λ = A0

1.

I (Q,Λ) the formal type of (E ,∇, g).

I Λ exponent of formal monodromy.
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Formal flat sections VS flat sections

I Natural frame of formal flat sections near z =∞ τ · F̂w−Λe−Q .

I Natural question: is there a frame of flat sections of the form
τ · Σ(F̂ )w−Λe−Q in a neighborhood of z =∞, such that Σ(F̂ ) ∼ F̂
as z →∞?

I Answer: no, unless we restrict to certain sectors, determined by the
so called Stokes rays  determined by Q.

I For ∇ with pole of order k  2k − 2 Stokes rays.

I The corresponding frames of flat sections exist on sectors
determined by two consecutive Stokes rays. These have opening
π/2 + π/(k − 1).
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I We illustrate an example below, where

Q =
1

w2
H = diag(1/w2,−1/w2). (19)

In this case k = 3, so we have 4 Stokes rays (the dotted rays
bellow) and 4 sectors (determined by two Stokes rays with opening
π).
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Stokes data

Given the above sectorial flat frames:

I The matrix determining the gauge change from one sectorial frame
of flat sections to another is called a Stokes matrix.

I Stokes matrices are unipotent and constant. For a pole of order k
there are 2k − 2, and they satisfy

S1S2...S2k−2M
−1
0 = 1 (20)

where M0 = e−2πiΛ is the counterclockwise formal monodromy.

I The Si ’s with Λ are the Stokes data of (E ,∇, τ).

I (S1, ...,S2k−2,Λ) completely characterizes the equivalence classes
[E ,∇, τ ] with fixed formal type (Q,Λ).
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Associating Stokes data to elements of Xfr

Let (E , ∂E , θ, h, g) ∈ Hfr.

In order to associate Stokes data, we would
like to produce (E ,∇, τ) as before.

I Because the Hitchin equation is satisfied, the connections

∇ξ := D(∂E , h) + ξ−1θ + ξθ†h for ξ ∈ C∗ (21)

define flat bundles (E ,∇ξ)→ CP1 − {∞}.
I Now consider the holomorphic bundle
Eξ := (E , ∂E + ξθ†h)→ CP1 − {∞}, with holomorphic (and flat)
connection ∇ξ.

I We would like to extend Eξ → CP1 − {∞} to a holomorphic bundle
over CP1, in such a way that ∇ξ is meromorphic.

I Issue: there is no unique way to achieve this. The following filtered
structure will allow us to consider all such possible extensions “at
the same time”.
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Associated framed filtered flat bundles

I h induces a filtered structure at z =∞  Ph
∗Eξ → (CP1,∞).

I More precisely Ph
∗Eξ = {Ph

a Eξ | a ∈ R } with Ph
a Eξ → CP1

holomorphic bundles.

I Their space of sections satisfy Ph
a Eξ(U) = Eξ(U) if ∞ 6∈ U, and

Ph
a Eξ(U) = {s ∈ Eξ(U − {∞}) | |s|h = O(|w |−a)} (22)

if ∞ ∈ U, where w = 1/z .

I Ph
∗Eξ → (CP1,∞) ”contains” all holomorphic extensions of Eξ such

that ∇ξ is meromorphic on the extension.

I For (E , ∂E , θ, h, g) ∈ Hfr, we can do a similar construction to get

(Ph
∗Eξ,∇ξ, τ

ξ
∗ )→ (CP1,∞).

I We call (Ph
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ξ
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Stokes data of a framed filtered flat bundle

For each ξ ∈ C∗, let (Ph
∗Eξ,∇ξ, τ

ξ
∗ )→ (CP1,∞) be the framed filtered

flat bundle associated to (E , ∂E , θ, h, g) ∈ Hfr.

I For each a ∈ R, we have the Stokes data associated to
(Ph

a Eξ,∇ξ, τ ξa )→ (CP1,∞).

I The Si ’s do not depend on a ∈ R, while Λ does depend on a ∈ R.
However, M0 = e−2πiΛ does not depend on a ∈ R.

I We associate Si ’s and M0 = e−2πiΛ to (Ph
∗Eξ,∇ξ, τ

ξ
∗ )→ (CP1,∞).

I S ′i s and M0 only depends [Ph
∗Eξ,∇ξ, τ

ξ
∗ ] =⇒ can associate Si (ξ)

and M0(ξ) for ξ ∈ C∗ to [E , ∂E , θ, h, g ] ∈ Xfr.

I The twistor family of Stokes data (S1(ξ),S2(ξ),S3(ξ),S4(ξ),M0(ξ)),
satisfies:

S1(ξ)S2(ξ)S3(ξ)S4(ξ)M−1
0 (ξ) = 1 (23)
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The electric twistor coordinate in Xfr

I On Mov(Λ):

X ov
e (ξ) := exp

(π
ξ
z + iθe + πξz

)
z ∈ Bov, θe = 2πx3 (24)

I For [Ph
∗Eξ,∇ξ, τ

ξ
∗ ] corresponding to [E , ∂E , θ, h, g ] ∈ Xfr, M0 equals:

exp

[
−2πi(−ξ−1m + m(3) + ξm) 0

0 −2πi(ξ−1m −m(3) − ξm)

]
(25)

I We then define

Xe([E , ∂E , θ, h, g ], ξ) := exp(−2πi(ξ−1m −m(3) − ξm)) (26)

I Get correspondence:

z ⇐⇒ −2im, θe ⇐⇒ 2πm(3) (27)
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The magnetic twistor coordinate of Mov(Λ)

We start with X ov
m (ξ) on Mov(Λ):

We write X ov
m (ξ) = X sf

m (ξ)X inst
m (ξ) with

X sf
m (ξ) = exp

(1

ξ

(zLog(z/Λ)− z)

2i
+ iθm − ξ

(zLog(z/Λ)− z)

2i

)
(28)

and

X inst
m (ξ) =exp

( i

4π

∫
l+(z)

dξ′

ξ′
ξ + ξ′

ξ′ − ξ
Log(1−X ov

e (ξ′))

− i

4π

∫
l−(z)

dξ′

ξ′
ξ + ξ′

ξ′ − ξ
Log(1− (X ov

e (ξ′))−1)
) (29)

where
l±(z) = {ξ ∈ C∗ | ± z/ξ < 0} (30)
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Key properties of the magnetic twistor coordinate

I Jumps:

X ov
m (ξ)+ = X ov

m (ξ)−(1−X ov
e (ξ))−1 along ξ ∈ l+(z)

X ov
m (ξ)+ = X ov

m (ξ)−(1−X ov
e (ξ)−1) along ξ ∈ l−(z)

(31)
where the + or − on the coordinate denotes the clockwise or
counterclockwise limit to the ray, respectively.

I Asymptotics:

X ov
m (ξ) ∼

{
exp(− i

2ξ (zLog(z/Λ)− z) + iθm + r(z , θe)) as ξ → 0

exp( iξ
2 (zLog(z/Λ)− z) + iθm − r(z , θe)) as ξ →∞

(32)

I Reality condition:

X ov
m (ξ) = X ov

m (−1/ξ)
−1

(33)

This properties uniquely determine X ov
m (ξ)! They are used to determine

the analogous magnetic coordinate for Xfr.
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Magnetic twistor coordinate on Xfr

We consider (S1(ξ),S2(ξ),S3(ξ),S4(ξ),M0(ξ)) for ξ ∈ C∗, corresponding
to [E , ∂E , θ, h, g ] ∈ Xfr.

I Let a(ξ) and b(ξ) be the non-trivial off-diagonal elements of S1(ξ)
and S2(ξ). Away from the locus where m = 0:

Xm([E , ∂E , θ, h, g ], ξ) :=


a(ξ) for ξ ∈ Hm

−1/b(ξ) for ξ ∈ H−m
(34)
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We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im)

 study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗

=⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).

This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial,

requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed.

Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial

 
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we:

fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,

and define corresponding θm on Xfr. It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).



30/31

We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr.

It satisfies
θm(e iθ · [E , ∂, θ, h, g ]) = θm([E , ∂, θ, h, g ]) + θ

I The reality condition also holds: Xm(ξ) = Xm(−1/ξ)
−1

.

I From these results, one is able to identify Xm(ξ) with X ov
m (ξ) (under

z ⇐⇒ −2im, 2πm(3) ⇐⇒ θe and Λ = 4i).

I From the previous results, one can identify the subset Xfr(4i) ⊂ Xfr

with Mov(4i).
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We then verify:

I Xm(ξ) has the correct jumps along l±(−2im) study of how
Stokes data changes as we vary the twistor parameter ξ ∈ C∗.

I Stokes data depends holomorphically on ξ ∈ C∗ =⇒ Xm(ξ)
depends holomorphically on ξ (away from l±(−2im)).This is not
trivial, requires ”isomonodromic deformations”  Takuro
Mochizuki.

I The asymptotics in ξ of Xm(ξ) are computed. Also not trivial  
requires study of asymptotics in ξ ∈ C∗ of twistor families of flat
sections.

I By matching with O.V. asymptotics we: fix value of cut-off Λ = 4i ,
and define corresponding θm on Xfr. It satisfies
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