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Perturbative expansions

In physics and engineering, exact solutions are rare.

Examples of what I mean by exact: harmonic oscillator,
hydrogenic atom, shallow wave equation (Korteweg–de Vries),
2D Ising model, etc.

However, problems of interest are often “close” to ones that
we can exactly solve.

Strategy: Add order-by-order corrections in some perturbative
parameter λ.

Hope: Resulting series converges when λ is small.
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Real quartic potential in zero dimensions

A real-valued field configuration u : {p} → R on a point p is
just a real number u(p), so space of field configurations F is
just R.

The action Sλ : F → R is an ordinary function and the path
integral Z (λ) = (2π)−1/2

∫
F du e−Sλ(u) is an ordinary integral.

Consider the action with quartic potential Sλ = 1
2u

2 + λu4

where λ > 0.

Z (0) is just a Gaussian integral that we can exactly solve, so
we perturb around it as a series in λ.
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Feynman’s strategy

An illegal move

Z (λ) =

∫
F

du√
2π

e−
u2

2

∞∑
n=0

u4n

n!
(−λ)n

?
=
∞∑
n=0

1

n!
(−λ)n

∫
F

du√
2π

u4ne−
u2

2 .

(1)

Figure: Feynman diagrammatics, from Kleiss, Pictures, paths, particles,
processes
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Dyson’s argument

Coefficient of (−λ)n/n! = (4!)n× number of Feynman
diagrams with n vertices × symmetry factor.

Number of Feynman diagrams with n vertices grows factorially
with n.

A typical Feynman diagram has symmetry factor 1.

Conclusion: Perturbative expansions in QFT generically have
zero radius of convergence.

Case in point: Z (λ) =
∑∞

n=0 cn (−λ)n, where

cn = (4n)!
n!(2n)!4n ∼ 16nn!.
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Optimal truncc

Note that |cn(−λ)n| usually decreases with n at first, say until
n = N before increasing.

The optimal truncation heuristic prescribes truncating the
series at n = N.

Not only does this work in practice, it in fact works better
than actual convergent series!

Carrier’s rule

Divergent series converge faster than convergent series because
they don’t have to converge.
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Question 1

Why does optimal truncation work?
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Asymptotic series

Z (λ) =
∑∞

n=0
(4n)!

n!(2n)!4n (−λ)n is an asymptotic series.

Asymptotic series

A series
∑∞

n=0 Fnλ
n is said be an asymptotic series for F (λ)

around λ = 0 if given a positive integer N, we have

lim
λ→0

1

λN

∣∣∣∣∣F (λ)−
N∑

n=0

Fnλ
n

∣∣∣∣∣ = 0.
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Convergent series

Convergent series

In contrast, a series
∑∞

n=0 Fnλ
n is said be an convergent series for

F (λ) in an open set U 3 0 if given a λ ∈ U, we have

lim
N→∞

∣∣∣∣∣F (λ)−
N∑

n=0

Fnλ
n

∣∣∣∣∣ = 0.
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Asymptotic series in other contexts

Asymptotic series arise whenever we try to use the method of
Frobenius to solve ODEs around an irregular singularity.

In our case, Z (λ) can be obtained as a solution to the
following ODE with irregular singularity at λ = 0.

Via Ward identities

d2Z

dλ2
+ P(λ)

dZ

dλ
+ Q(λ)Z = 0 where

P(λ) =
2

λ
+

1

16λ2
, Q(λ) =

3

16λ2
.
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Method of Frobenius

Substitute Z (λ) =
∑∞

n=0 cnλ
n−ε into the ODE.

Indicial equation and recurrence

ε = 0, (16n(n − 3) + 3)cn − (n + 1)cn+1 = 0

The ODE is second order, so it should have two linearly
independent solutions.

But the method of Frobenius gives only one asymptotic series.
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Question 1

Why does optimal truncation work?

Question 2

What is the origin of the ambiguity in asymptotic series?
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Airy integral

Let Tz(u) = 1
3u

3 + zu and define the Airy integral as

Ai(z) = (2π)−1
∫
F du e iTz (u).

The integral was introduced by Airy to study the propagation
of S-shaped wavefronts that arise in the formation of rainbows
by raindrops.

The Airy function (of the first kind) Ai(z) solves the ODE
Ai′′(z)− z Ai(z) = 0, which has an irregular singularity at
infinity.

The Airy function of the second kind Bi(z) is another linear
independent solution of the Airy ODE and is related to Ai(z)
by a phase difference.
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Asymptotic behaviour of the Airy functions

Figure: Airy functions, from Wikimedia Commons
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Stokes phenomenon

Asymptotic behaviour as z → +∞

Ai(+z) ∼ e−
2
3
z3/2

2
√
πz1/4

, Ai(−z) ∼
sin
(
2
3z

3/2 + π
4

)
√
πz1/4

A clearer picture emerges on allowing z to be complex; the
asymptotic behaviour jumps across certain “Stokes rays.”

A given analytic function can have different asymptotic
behaviour in different sectors.

Given asymptotic behaviour may correspond to different
analytic functions in different sectors.
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Question 1

Why does optimal truncation work?

Question 2

What is the origin of the ambiguity in asymptotic series?

Question 3

Why does Stokes phenomenon occur?
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Borel transform

Set z = 1/λ and remove the classical term in Z (λ).

Borel transform

The Borel transform B : z−1C[[z−1]]→ C[[ζ]] is given by

∞∑
n=0

Fn+1z
−n−1 7→

∞∑
n=0

Fn+1
ζn

n!
.

Proposition

If F =
∑∞

n=0 Fn+1z
−n−1 is such that Fn+1 ∼ O(Cnn!) (Gevrey

type 1), then B(F ) has a nonzero radius of convergence around
ζ = 0.
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Undoing the Borel transform

Option A: Multiply the coefficients Fn+1 by n! order by order.

Option B: Use the fact that
∫∞
0 dζ ζne−ζ = n!, or more

generally
∫ e iθ∞
0 dζ ζne−ζ = n!.

Directional Laplace transform

Lθ[F̂ ](z) =

∫ e iθ∞

0
dζ e−zζ F̂ (ζ)

Proposition

If U is the set of analytical functions on the half-plane <(ze iθ) > r
and V the set of O(er |ζ|) analytical functions on e iθR+, then
Lθ ◦ B|U = idU and B ◦ Lθ|V = idV .
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Two wrongs make a right

Another illegal move

∞∑
n=0

Fn+1z
−n−1 =

∞∑
n=0

Fn+1

∫ e iθ∞

0
dζ e−zζ

ζn

n!

?
=

∫ e iθ∞

0
dζ e−zζ

∞∑
n=0

Fn+1
ζn

n!

(2)

Borel resummation

The Borel resummation SθF of a formal series F ∈ z−1C[[z−1]] is
defined to be Sθ[F ] = Lθ ◦ B[F ].
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Borel resummation with constant terms

The Borel trasform turns multiplication into convolution i.e.
B[F · G ] = B[F ] ∗ B[G ].

So B[1] must be the identity for convolution, which doesn’t
exist.

We therefore introduce a formal identity δ = B[1] (Dirac
delta) and let the range of B be δC⊕ C[[ζ]].

Now, the definition of the Borel sum can be extended to
formal series with constant terms as well.
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Quartic potential revisited

Quartic potential

Z (z−1) =
∞∑
n=0

(4n)!

n!(2n)!4n
(−z)−n

B[Z ◦ (·)−1](ζ) = δ −
∞∑
n=1

(4n)!

(n!)2(2n)!4n
(−ζ)n−1

= δ +
1

ζ

[
2π−1

(1 + 16ζ)1/4
K

(√
1 + 16ζ − 1

2
√

1 + 16ζ

)
− 1

]
,

where K (s) =
1

2

∫ 1

0

dt√
t(1− t)(1− st)
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A first look at exponential smallness

Error

Let F =
∑∞

n=0 Fnz
−n, where Fn+1 = α(−C )nn!, with α,C > 0.

S0F −
N∑

n=0

Fnz
−n =

∫ ∞
0

dζ e−zζ
∞∑

n=N

Fn+1
ζn

n!

=

∫ ∞
0

dζ e−zζ
∞∑

n=N

α(−Cζ)n

= α

∫ ∞
0

dζ
e−zζ(−Cζ)N

1 + Cζ

=
α

C
e−z/CN! Γ

(
−N, z

C

)
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A first look at exponential smallness

As z →∞, the error is ∼ α
CN!

(
C
z

)N+1
= C−1FN+1z

−N−1.
Optimal truncation thus minimises this error given a large z .
The minimum error is at N + 1 ≈ z/C and is e−z/C = e−1/Cλ.

Figure: Exponential smallness in optimal truncation, from John Boyd,
“The Devil’s Invention”
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0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

λ

e
−
1
/
λ

Derivatives of all orders, and hence the power series expansion, of
e−1/λ at λ = 0 vanishes.
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θ-dependence of Borel resummation

Multiplying the coefficients Fn+1 by n! order by order doesn’t
depend on θ but Sθ does, so what gives?

Contours can be deformed as long as as they don’t pass
through singularities, but formal series whose Borel transforms
have no singularities are convergent to begin with.

Consider B[Z ] for the quartic potential, which has a branch
point at ζ = −1/16, so we should expect a jump when θ
crosses π.

This jump is essentially the reason for Stokes phenomenon.
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A second look at exponential smallness

Figure: Hankel contour, from Dorigoni, “Introduction to trans-series,
resurgence, and alien calculus”

(Sπ+ − Sπ−)Z (z−1) is given by an integral along the branch cut at
ζ = −1/16 which gives terms of order ez/16 = e1/16λ and higher.
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Complexifying the path integral

In order to understand what is physically going on as the
phase of λ varies, we have to first make sense of the
complexification of the path integral Z .

Note that for <(λ) < 0, the path integral along the real line
diverges.

So to give it meaning, we either have to smoothly deform the
contour as we vary λ, or equivalently, make the change of
variables u = λ−1/4v =: µ1/2v while keeping the contour
fixed.

The complexified path integral therefore can be written as

Z (µ−2) =
√

µ
2π

∫
R dv e−S̃µ(v) where S̃µ(v) = 1

2µv
2 + v4.
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Instantons and Lefshetz thimbles

v = 0 is not the only solution of S̃ ′µ(v) = 0 i.e. it is not the
only classical solution.

There are in fact two other classical solutions given by
v = v± = ± i

2

√
µ, and referred to as “instantons.”

Through each of the classical solutions, we have contours of
steepest descent aka Lefshetz thimbles.

The thimbles may be “good” (the path integral along them is
well-defined) or “bad” (otherwise), and the real line can
generically be uniquely decomposed into good thimbles.

Applying Feynman’s strategy around these points yields terms
that can be organised into
e−S̃λ(v±)Z± = eµ

2/16Z± = e1/16λZ± where Z± is again an
asymptotic series.
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Instantons and Lefschetz thimbles, visualised

Figure: Instantons and thimbles for µ = 2(1 + i), from Gert Aarts,
“Langevin and Laguerre”
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Stokes phenomenon via Lefschetz thimbles

The coefficients in the decomposition of the real line into
good thimbles can jump upon crossing a Stokes ray.

Figure: Stokes jump across arg(µ) = π/2, from Gerald Dunne, “A
Beginners Guide to Resurgence and Trans-series in Quantum Theories”

36 / 45



Paradise lost
Paradise resummed

Summary

Borel summation
Trans-series

Trans-series matter

Asymptotic series should thus be regarded as “incomplete”
formal representations of analytic functions.

Instead asymptotic series should be augmented to include
exponentially small terms.

Trans-series of height 1

F =
∑
m,n

F
(m)
n λne

∑
l mlSl

∏
I

σml
l =:

∑
m

F (m)e
∑

l mlSlσm

This is an example of a trans-series where σ = (σl) is a formal
parameter keeping track of the instantons (labelled l) with
m = (ml) telling us how many (anti-)instantons of what type
are simultaneously contributing.

SθF (m) and the σ simultaneously jump across Stokes rays in a
way such that F is continuous.
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Optimal truncation of an asymptotic series approximates the
true value so well because it differs from it by an exponentially
small quantity.

Stokes phenomenon occurs because of an exponentially small
ambiguity in asymptotic series corresponding to different
integration contours in the convolutive model.

This ambiguity can be repaired by passing to trans-series,
which capture instanton contributions.

Thus, nonperturative information which näıvely appears to be
invisible to perturbative expansions does resurge in the
behavior of late terms.
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A Zen koan

Before you study physics, perturbative expansions capture all
information about a system.

While you’re studying physics, perturbative expansions barely
capture any information about a system.

After you’ve studied physics, perturbative expansions again
capture all information about a system.
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Université de Paris-Sud, Département de Mathématique, Orsay
(1980).

Daniele Dorigoni.
An introduction to resurgence, trans-series and alien calculus.
arXiv: hep-th/1411.3585.

Gerald V. Dunne, Mithat Ünsal.
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Ward identities

Let f be a function of u and 〈f 〉λ = (2π)−
∫
F du f (u)eSλ(u). For

any such f , we have a Ward identity 〈fS ′〉 = 〈f ′〉. In particular:

〈u(u + 4λu3)〉λ = 〈1〉λ
〈u3(u + 4λu3)〉λ = 〈3u2〉λ
〈u5(u + 4λu3)〉λ = 〈5u4〉λ, resulting in

〈u8〉λ − P(λ)〈u4〉λ + Q(λ)〈1〉λ = 0

Now use the fact Z ′(λ) = −〈u4〉λ and Z ′′(λ) = 〈u8〉λ to obtain an
ODE for Z.
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Integration along the Hankel contour

The Hankel contour integral takes the form∮
dζ

e−zζ ĝ(ζ)

ζ + 1
16

+

∫ −∞
−1/16

dζ e−zζ ĥ(ζ),

where ĝ , ĥ are holomorphic functions of ζ with at most polynomial
growth. Using the residue formula for the first term and carrying
out a change of variables ζ = ξ − 1/16 for the second, we get
ez/16ĝ(−1/16) + ez/16Lπ[ĥ](z).
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Stokes phenomenon for Airy integral

Figure: Thimble decompositions for Airy integral, from Falk Bruckmann,
“Towards resurgence and trans-series”
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