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Lax pairs and r-matrices



Constructing completely integrable systems

Basic question:

How to construct completely integrable systems

in a systematic way?

Three steps:

1. Construct a (non-trivial) Poisson bracket {•, •} (or even

symplectic structure) on P.

2. Find (non-zero) functions (Hi )i∈I in involution, i.e.

{Hi ,Hj} = 0 for all i , j ∈ I .

3. Show that there is a maximal amount of independent such

functions.

Today, we will address 1. and 2. by using Lax pairs and the

Zakharov–Shabat construction.
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Lax pairs

Let (P, {•, •}) be a Poisson manifold. A Lax pair on P consists of

• two smooth maps L,M : P × I → gl(N), I ⊂ R an interval;

• they satisfy the Lax equation

L̇ := ∂L
∂t = [M, L].

Recall that the equations of motion of an integrable systems are

tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of L(t = 0) (cf.

Daniel’s talk): there exists g : P × I → GL(N) such that

L(t) = g(t)L(0)g−1(t), M = ġ(t)g−1(t).

In particular, if f is a function in the eigenvalues of L, e.g.

f = tr(∧iL), then f is a constant of motion. Are such functions in

involution?
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r-matrix

Answer:

the existence of an r-matrix is equivalent to the

eigenvalues of L being in involution (cf. Murad’s talk).

Recall that an r -matrix for (L,M) is a map

r = r12 : P × I → ⊗2gl(N), r =
∑
ij ,kl

rij ,klEij ⊗ Ekl ,

satisfying the equation

{L1, L2} = [r12, L1]− [r21, L2].

Here L1 = L⊗ 1, L2 = 1⊗ L.
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Zakharov–Shabat construction (I)

To systematically construct Lax pairs admitting an r -matrix, it is

convenient to introduce an additional spectral parameter λ.

In this

talk, λ is a valued in an open disk D ⊆ C centered at 0.

Neumann model

Motion of particle on sphere SN−1 = {X : ‖X‖2 = 1} with

harmonic forces with frequency ai in i-th direction. Set

K := XX t , J := XY t − YX t , L0 := diag(a1, . . . , aN).

Equations of motion: K̇ = −[J,K ], J̇ = [L0,K ]. (1)

Equivalent to a λ-dependent Lax pair:

L(λ) := L0 + 1
λJ −

1
λ2
K , M(λ) := − 1

λK (2)

satisfies the Lax equation L̇(λ) = [M(λ), L(λ)], equivalent to (1).
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Zakharov–Shabat construction (II)

In the following, we assume that L(λ) has a single pole at 0 ∈ D of

order n and M(λ) of order m.

Then we decompose

L(λ) = L(λ)+ + L(λ)−, L(λ)− =
−1∑

r=−n
Lrλ

r

and similarly M(λ) = M(λ)+ + M(λ)−.

Fact: If L(λ) has pairwise distinct eigenvalues close to λ = 0, then

there exists a regular gauge g = g(λ) such that

L = g A g−1 = L+ + (g A− g
−1)−

M = g B g−1 + ġ g−1 = M+ + (g B− g
−1)−

Here A = A(λ) is diagonal with pairwise distinct eigenvalues and a

pole of order n at λ = 0. The Lax equation implies that B = B(λ)

is diagonal as well.
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Zakharov–Shabat construction (III)

In fact, the structure of M− is determined by

M(λ)− = (F (L, λ))− , F (L, λ) =
N−1∑
r=0

ar (λ)L(λ) (3)

for appropriate rational functions ar (λ) and k ≥ 0. One key fact

for (3): Since A has pairwise distinct eigenvalues around λ = 0, its

powers Ak , k = 0, . . . ,N − 1 generate all diagonal matrices. Hence

B = F (A, λ) for a polynomial F as above.

Neumann model

In above notation, F (L, λ) = λL so that

M− = − 1
λK = (F (L, λ)))−.
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Zakharov–Shabat construction (IV)

Independent parameters of above (L(λ),M(λ))

• regular part L+

• singular diagonal matrix A(λ)=

−1∑
r=−n

Arλ
r

• regular gauge g =
n−1∑
r=0

grλ
r

• singular diagonal matrix B(λ)− = F (A, λ).

Note: the parameters for L are the dynamical parameters whereas

F (L, λ) determines the dynamical flow.
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Relation to coadjoint orbits (I)

Given parameters as above, we construct L− via

L− := (g A−g
−1)−. (4)

We next interpret this equation via coadjoint orbits in the (formal)

loop algebra. Eventually, this shows the existence of an r -matrix.

Lg := g[[λ]], g := gl(N).

Its dual (Lg)∗ is identified with polar polynomials

W (λ) =
∑
r<0

Wrλ
r via the pairing

〈W ,X 〉 = tr resλ=0(W (λ)X (λ)) =
∑
r

tr(W−r+1Xr ).
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Relation to coadjoint orbits (II)

The loop group LG := G [[λ]], G = GL(N), acts on (Lg)∗ via

(Ad∗g ·W (λ)) (X ) = W (g−1 X g).

Under the above identification, this becomes

Ad∗g ·W = (g W g−1)−

Hence the formula L− = (g A− g)− is the statement that L− is in

the coadjoint orbit O(A−) of A−.

Assumption in the following: L+ and A− are constant.

On (Lg)∗ we have the Kostant–Kirillov Poisson bracket given on

linear functions W 7→ 〈W ,X i 〉 (i = 1, 2) by

{W (X 1),W (X 2)} = 〈W , [X 1,X 2]〉.

The restriction of {•, •} to a coadjoint orbit comes from a

symplectic structure.
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Hence the formula L− = (g A− g)− is the statement that L− is in

the coadjoint orbit O(A−) of A−.

Assumption in the following: L+ and A− are constant.

On (Lg)∗ we have the Kostant–Kirillov Poisson bracket given on

linear functions W 7→ 〈W ,X i 〉 (i = 1, 2) by

{W (X 1),W (X 2)} = 〈W , [X 1,X 2]〉.
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Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that L(λ) maps

to O(A−). Then we pull back the KK Poisson bracket via L(λ).

Theorem

With the previous notation introduced for r -matrices, we have

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ) + L2(µ)]

for the r -matrix r12(λ, µ) = − C12
λ−µ and C12 =

∑
ij

Eij ⊗ Eji .

In particular, the functions Hk(λ) = tr(Lk(λ)) are in involution. At

this stage we cannot show that they are independent.

Nevertheless, the Zakharov–Shabat construction gives a systematic

way to produce symplectic manifolds with many

Poisson-commuting constants of motion.
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Elementary flows and wave functions



Elementary flows

We next examine all possible flows by examining the building

blocks of possible M(λ) in a Lax pair (only one pole at λ = 0,

P = {pt}?!). They are determined by, i := (n, α),

Mi := (g ξi g
−1)−, ξi := 1

λn Eαα.

The flow of L in ‘ti -direction’ is defined by

∂tiL = [Mi , L]. (5)

Note: each flow is a linear combination of elementary flows.

The crucial property of the hierarchy (5) is that is integrable:

Commutativity of flows

∂tiMj − ∂tjMi − [Mi ,Mj ] = 0. (6)

Key observation: ∂tjMi = [Mj , g ξi g
−1].
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Wave function

The commutativity of flows is equivalent to the flatness of the

(formal) connection

∇∂ti := ∂ti −Mi .

As in the finite-dimensional case, we are able to construct solutions

of ∇Ψ = 0: set ξ(λ, t) :=
∑
n,α

ξ(n,α)tn,α. One solution is then given

by the matrix-valued wave function (again t = (ti )i∈I )

Ψ(λ, t) := g(λ, t) eξ(λ,t) g−1(λ, 0). (7)

Here g(λ, t) satisfies

∂tig = Mi g − g ∂ti ξ.

Then ∇Ψ = 0 and Ψ(λ, 0) = 1.

But: Can the t-dependence be made more explicit?
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Riemann–Hilbert problem (I)

To answer the last question, define

L̂g := Lg+ ⊕ Lg− := Lg⊕ (Lg)∗ = g[λ−1][[λ]].

On the corresponding loop group L̂G we have (formally)

∀ĝ ∈ L̂G : ĝ = g−1− g+, g± ∈ LG±.

This factorization is best understood analytically via

Riemann–Hilbert problem

Let Γ ⊂ C be the unit circle in the λ-plane and ĝ(λ) defined on

Γ. Then there exist G -valued functions g+(λ) and g−(λ) analytic

inside and outside of Γ respectively such that

ĝ = g−1− Λ(λ) g+ on Γ. (8)

Here Λ(λ) = diag(λk1 , . . . , λkN ).
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Γ.

Then there exist G -valued functions g+(λ) and g−(λ) analytic

inside and outside of Γ respectively such that
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∀ĝ ∈ L̂G : ĝ = g−1− g+, g± ∈ LG±.

This factorization is best understood analytically via

Riemann–Hilbert problem

Let Γ ⊂ C be the unit circle in the λ-plane and ĝ(λ) defined on
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Riemann–Hilbert (II)

Geometrically: each holomorphic vector bundle on CP1 is

isomorphic to direct sums of O(k)’s.

To see the relation to our integrable hierarchy, we note that the

equations of motion ∂tiL = [Mi , L] are equivalent to (g = g+)

∂tig+ = Mi g − g ∂ti ξ = −(g+ ξi g
−1
+ )+ g+. (9)

Factorization problem and integrable hierarchy

Solving (9) for small enough time ti is equivalent to solving the

factorization problem

eξ(λ,t)g+(λ, 0)e−ξ(λ,t) = g−1− (λ, t)g+(λ, t). (10)
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Riemann–Hilbert (III)

On proof:

We have to show that g+ in the factorization (10)

satisfies ∂tig+ = −(g+ ξi g
−1
+ )+ g+. This is essentially shown by

applying ∂tj to (10), using ∂tj ξ(λ, t) = ξj and taking only the

positive powers in λ.

Concluding remarks:

• A slightly modified factorization problem yields a global

expression of the wave function Ψ with an explicit time

dependence.

• In fact, the wave function contains the time evolution of the

Lax matrix L(λ, t):

L(λ, t) = Ψ(λ, t) L(λ, 0)Ψ(λ, t)−1.
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Thank you!
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