On constructing integrable systems and elementary flows

Florian Beck
May 12, 2020

String Math Seminar (Summer 2020)

Lax pairs and r-matrices

Constructing completely integrable systems

Basic question:

Constructing completely integrable systems

Basic question: How to construct completely integrable systems in a systematic way?

Constructing completely integrable systems

Basic question: How to construct completely integrable systems in a systematic way?

Three steps:

Constructing completely integrable systems

Basic question: How to construct completely integrable systems in a systematic way?

Three steps:

1. Construct a (non-trivial) Poisson bracket $\{\bullet \bullet \bullet\}$ (or even symplectic structure) on P.

Constructing completely integrable systems

Basic question: How to construct completely integrable systems in a systematic way?

Three steps:

1. Construct a (non-trivial) Poisson bracket $\{\bullet \bullet \bullet\}$ (or even symplectic structure) on P.
2. Find (non-zero) functions $\left(H_{i}\right)_{i \in I}$ in involution, i.e. $\left\{H_{i}, H_{j}\right\}=0$ for all $i, j \in I$.

Constructing completely integrable systems

Basic question: How to construct completely integrable systems in a systematic way?

Three steps:

1. Construct a (non-trivial) Poisson bracket $\{\bullet \bullet \bullet\}$ (or even symplectic structure) on P.
2. Find (non-zero) functions $\left(H_{i}\right)_{i \in I}$ in involution, i.e. $\left\{H_{i}, H_{j}\right\}=0$ for all $i, j \in I$.
3. Show that there is a maximal amount of independent such functions.

Constructing completely integrable systems

Basic question: How to construct completely integrable systems in a systematic way?

Three steps:

1. Construct a (non-trivial) Poisson bracket $\{\bullet \bullet \bullet$ (or even symplectic structure) on P.
2. Find (non-zero) functions $\left(H_{i}\right)_{i \in I}$ in involution, i.e. $\left\{H_{i}, H_{j}\right\}=0$ for all $i, j \in I$.
3. Show that there is a maximal amount of independent such functions.

Today, we will address 1. and 2. by using Lax pairs and the Zakharov-Shabat construction.

Lax pairs

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold.

Lax pairs

Let $(P,\{\bullet \bullet \bullet)$ be a Poisson manifold. A Lax pair on P consists of

Lax pairs

Let $(P,\{\bullet \bullet \bullet)$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N)$,

Lax pairs

Let $(P,\{\bullet \bullet \bullet)$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;

Lax pairs

Let $(P,\{\bullet \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf. Daniel's talk):

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf.
Daniel's talk): there exists $g: P \times I \rightarrow G L(N)$ such that

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf.
Daniel's talk): there exists $g: P \times I \rightarrow G L(N)$ such that

$$
L(t)=g(t) L(0) g^{-1}(t), \quad M=\dot{g}(t) g^{-1}(t)
$$

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf.
Daniel's talk): there exists $g: P \times I \rightarrow G L(N)$ such that

$$
L(t)=g(t) L(0) g^{-1}(t), \quad M=\dot{g}(t) g^{-1}(t)
$$

In particular, if f is a function in the eigenvalues of L,

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf.
Daniel's talk): there exists $g: P \times I \rightarrow G L(N)$ such that

$$
L(t)=g(t) L(0) g^{-1}(t), \quad M=\dot{g}(t) g^{-1}(t)
$$

In particular, if f is a function in the eigenvalues of L, e.g.
$f=\operatorname{tr}\left(\wedge^{i} L\right)$,

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf.
Daniel's talk): there exists $g: P \times I \rightarrow G L(N)$ such that

$$
L(t)=g(t) L(0) g^{-1}(t), \quad M=\dot{g}(t) g^{-1}(t)
$$

In particular, if f is a function in the eigenvalues of L, e.g. $f=\operatorname{tr}\left(\wedge^{i} L\right)$, then f is a constant of motion.

Lax pairs

Let $(P,\{\bullet, \bullet\})$ be a Poisson manifold. A Lax pair on P consists of

- two smooth maps $L, M: P \times I \rightarrow \mathfrak{g l}(N), I \subset \mathbb{R}$ an interval;
- they satisfy the Lax equation

$$
\dot{L}:=\frac{\partial L}{\partial t}=[M, L] .
$$

Recall that the equations of motion of an integrable systems are tautologically expressible as a Lax equation.

The evolution of L is along the adjoint orbit of $L(t=0)$ (cf.
Daniel's talk): there exists $g: P \times I \rightarrow G L(N)$ such that

$$
L(t)=g(t) L(0) g^{-1}(t), \quad M=\dot{g}(t) g^{-1}(t)
$$

In particular, if f is a function in the eigenvalues of L, e.g. $f=\operatorname{tr}\left(\wedge^{i} L\right)$, then f is a constant of motion. Are such functions in involution?

r-matrix

Answer:

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

Recall that an r-matrix for (L, M) is a map

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

Recall that an r-matrix for (L, M) is a map

$$
r=r_{12}: P \times I \rightarrow \otimes^{2} \mathfrak{g l}(N)
$$

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

Recall that an r-matrix for (L, M) is a map

$$
r=r_{12}: P \times I \rightarrow \otimes^{2} \mathfrak{g l}(N), \quad r=\sum_{i j, k l} r_{i j, k l} E_{i j} \otimes E_{k l},
$$

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

Recall that an r-matrix for (L, M) is a map

$$
r=r_{12}: P \times I \rightarrow \otimes^{2} \mathfrak{g l}(N), \quad r=\sum_{i j, k l} r_{i j, k l} E_{i j} \otimes E_{k l},
$$

satisfying the equation

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

Recall that an r-matrix for (L, M) is a map

$$
r=r_{12}: P \times I \rightarrow \otimes^{2} \mathfrak{g l}(N), \quad r=\sum_{i j, k l} r_{i j, k l} E_{i j} \otimes E_{k l},
$$

satisfying the equation

$$
\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1}\right]-\left[r_{21}, L_{2}\right]
$$

r-matrix

Answer: the existence of an r-matrix is equivalent to the eigenvalues of L being in involution (cf. Murad's talk).

Recall that an r-matrix for (L, M) is a map

$$
r=r_{12}: P \times I \rightarrow \otimes^{2} \mathfrak{g l}(N), \quad r=\sum_{i j, k l} r_{i j, k l} E_{i j} \otimes E_{k l},
$$

satisfying the equation

$$
\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1}\right]-\left[r_{21}, L_{2}\right]
$$

Here $L_{1}=L \otimes 1, L_{2}=1 \otimes L$.

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ.

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with harmonic forces with frequency a_{i} in i-th direction.

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with
harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with
harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Equations of motion: $\dot{K}=-[J, K]$,

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Equations of motion: $\dot{K}=-[J, K], \quad j=\left[L_{0}, K\right]$.

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Equations of motion: $\dot{K}=-[J, K], \quad j=\left[L_{0}, K\right]$.
Equivalent to a λ-dependent Lax pair:

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Equations of motion: $\dot{K}=-[J, K], \quad j=\left[L_{0}, K\right]$.
Equivalent to a λ-dependent Lax pair:

$$
L(\lambda):=L_{0}+\frac{1}{\lambda} J-\frac{1}{\lambda^{2}} K
$$

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Equations of motion: $\dot{K}=-[J, K], \quad j=\left[L_{0}, K\right]$.
Equivalent to a λ-dependent Lax pair:

$$
\begin{equation*}
L(\lambda):=L_{0}+\frac{1}{\lambda} J-\frac{1}{\lambda^{2}} K, \quad M(\lambda):=-\frac{1}{\lambda} K \tag{2}
\end{equation*}
$$

Zakharov-Shabat construction (I)

To systematically construct Lax pairs admitting an r-matrix, it is convenient to introduce an additional spectral parameter λ. In this talk, λ is a valued in an open disk $D \subseteq \mathbb{C}$ centered at 0 .

Neumann model

Motion of particle on sphere $S^{N-1}=\left\{X:\|X\|^{2}=1\right\}$ with harmonic forces with frequency a_{i} in i-th direction. Set $K:=X X^{t}, J:=X Y^{t}-Y X^{t}, L_{0}:=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$.

Equations of motion: $\quad \dot{K}=-[J, K], \quad j=\left[L_{0}, K\right]$.
Equivalent to a λ-dependent Lax pair:

$$
\begin{equation*}
L(\lambda):=L_{0}+\frac{1}{\lambda} J-\frac{1}{\lambda^{2}} K, \quad M(\lambda):=-\frac{1}{\lambda} K \tag{2}
\end{equation*}
$$

satisfies the Lax equation $\dot{L}(\lambda)=[M(\lambda), L(\lambda)]$, equivalent to (1).

Zakharov-Shabat construction

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m.

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.
Fact:

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.
Fact: If $L(\lambda)$ has pairwise distinct eigenvalues close to $\lambda=0$,

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.
Fact: If $L(\lambda)$ has pairwise distinct eigenvalues close to $\lambda=0$, then there exists a regular gauge $g=g(\lambda)$ such that

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.
Fact: If $L(\lambda)$ has pairwise distinct eigenvalues close to $\lambda=0$, then there exists a regular gauge $g=g(\lambda)$ such that

$$
\begin{gathered}
L=g A g^{-1}=L_{+}+\left(g A_{-} g^{-1}\right)_{-} \\
M=g B g^{-1}+\dot{g} g^{-1}=M_{+}+\left(g B_{-} g^{-1}\right)_{-}
\end{gathered}
$$

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.
Fact: If $L(\lambda)$ has pairwise distinct eigenvalues close to $\lambda=0$, then there exists a regular gauge $g=g(\lambda)$ such that

$$
\begin{gathered}
L=g A g^{-1}=L_{+}+\left(g A_{-} g^{-1}\right)_{-} \\
M=g B g^{-1}+\dot{g} g^{-1}=M_{+}+\left(g B_{-} g^{-1}\right)_{-}
\end{gathered}
$$

Here $A=A(\lambda)$ is diagonal with pairwise distinct eigenvalues and a pole of order n at $\lambda=0$.

Zakharov-Shabat construction (II)

In the following, we assume that $L(\lambda)$ has a single pole at $0 \in D$ of order n and $M(\lambda)$ of order m. Then we decompose

$$
L(\lambda)=L(\lambda)_{+}+L(\lambda)_{-}, \quad L(\lambda)_{-}=\sum_{r=-n}^{-1} L_{r} \lambda^{r}
$$

and similarly $M(\lambda)=M(\lambda)_{+}+M(\lambda)_{-}$.
Fact: If $L(\lambda)$ has pairwise distinct eigenvalues close to $\lambda=0$, then there exists a regular gauge $g=g(\lambda)$ such that

$$
\begin{gathered}
L=g A g^{-1}=L_{+}+\left(g A_{-} g^{-1}\right)_{-} \\
M=g B g^{-1}+\dot{g} g^{-1}=M_{+}+\left(g B_{-} g^{-1}\right)_{-}
\end{gathered}
$$

Here $A=A(\lambda)$ is diagonal with pairwise distinct eigenvalues and a pole of order n at $\lambda=0$. The Lax equation implies that $B=B(\lambda)$ is diagonal as well.

Zakharov-Shabat construction (III)

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
M(\lambda)_{-}=(F(L, \lambda))_{-},
$$

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

for appropriate rational functions $a_{r}(\lambda)$ and $k \geq 0$.

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

for appropriate rational functions $a_{r}(\lambda)$ and $k \geq 0$. One key fact for (3):

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

for appropriate rational functions $a_{r}(\lambda)$ and $k \geq 0$. One key fact for (3): Since A has pairwise distinct eigenvalues around $\lambda=0$, its powers $A^{k}, k=0, \ldots, N-1$ generate all diagonal matrices.

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

for appropriate rational functions $a_{r}(\lambda)$ and $k \geq 0$. One key fact for (3): Since A has pairwise distinct eigenvalues around $\lambda=0$, its powers $A^{k}, k=0, \ldots, N-1$ generate all diagonal matrices. Hence $B=F(A, \lambda)$ for a polynomial F as above.

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

for appropriate rational functions $a_{r}(\lambda)$ and $k \geq 0$. One key fact for (3): Since A has pairwise distinct eigenvalues around $\lambda=0$, its powers $A^{k}, k=0, \ldots, N-1$ generate all diagonal matrices. Hence $B=F(A, \lambda)$ for a polynomial F as above.

Neumann model

In above notation, $F(L, \lambda)=\lambda L$ so that

Zakharov-Shabat construction (III)

In fact, the structure of M_{-}is determined by

$$
\begin{equation*}
M(\lambda)_{-}=(F(L, \lambda))_{-}, \quad F(L, \lambda)=\sum_{r=0}^{N-1} a_{r}(\lambda) L(\lambda) \tag{3}
\end{equation*}
$$

for appropriate rational functions $a_{r}(\lambda)$ and $k \geq 0$. One key fact for (3): Since A has pairwise distinct eigenvalues around $\lambda=0$, its powers $A^{k}, k=0, \ldots, N-1$ generate all diagonal matrices. Hence $B=F(A, \lambda)$ for a polynomial F as above.

Neumann model

In above notation, $F(L, \lambda)=\lambda L$ so that

$$
\left.M_{-}=-\frac{1}{\lambda} K=(F(L, \lambda))\right)_{-}
$$

Zakharov-Shabat construction (IV)

Independent parameters of above $(L(\lambda), M(\lambda))$

Zakharov-Shabat construction (IV)

Independent parameters of above $(L(\lambda), M(\lambda))$

- regular part L_{+}

Zakharov-Shabat construction (IV)

Independent parameters of above $(L(\lambda), M(\lambda))$

- regular part L_{+}
- singular diagonal matrix $A(\lambda)=\sum_{r=-n}^{-1} A_{r} \lambda^{r}$

Zakharov-Shabat construction (IV)

Independent parameters of above $(L(\lambda), M(\lambda))$

- regular part L_{+}
- singular diagonal matrix $A(\lambda)=\sum_{r=-n}^{-1} A_{r} \lambda^{r}$
- regular gauge $g=\sum_{r=0}^{n-1} g_{r} \lambda^{r}$

Zakharov-Shabat construction (IV)

Independent parameters of above $(L(\lambda), M(\lambda))$

- regular part L_{+}
- singular diagonal matrix $A(\lambda)=\sum_{r=-n}^{-1} A_{r} \lambda^{r}$
- regular gauge $g=\sum_{r=0}^{n-1} g_{r} \lambda^{r}$
- singular diagonal matrix $B(\lambda)_{-}=F(A, \lambda)$.

Zakharov-Shabat construction (IV)

Independent parameters of above $(L(\lambda), M(\lambda))$

- regular part L_{+}
- singular diagonal matrix $A(\lambda)=\sum_{r=-n}^{-1} A_{r} \lambda^{r}$
- regular gauge $g=\sum_{r=0}^{n-1} g_{r} \lambda^{r}$
- singular diagonal matrix $B(\lambda)_{-}=F(A, \lambda)$.

Note: the parameters for L are the dynamical parameters whereas $F(L, \lambda)$ determines the dynamical flow.

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

$$
\begin{equation*}
L_{-}:=\left(g A_{-} g^{-1}\right)_{-} . \tag{4}
\end{equation*}
$$

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

$$
\begin{equation*}
L_{-}:=\left(g A_{-} g^{-1}\right)_{-} . \tag{4}
\end{equation*}
$$

We next interpret this equation via coadjoint orbits in the (formal) loop algebra.

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

$$
\begin{equation*}
L_{-}:=\left(g A_{-} g^{-1}\right)_{-} . \tag{4}
\end{equation*}
$$

We next interpret this equation via coadjoint orbits in the (formal) loop algebra. Eventually, this shows the existence of an r-matrix.

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

$$
\begin{equation*}
L_{-}:=\left(g A_{-} g^{-1}\right)_{-} . \tag{4}
\end{equation*}
$$

We next interpret this equation via coadjoint orbits in the (formal) loop algebra. Eventually, this shows the existence of an r-matrix.

$$
L \mathfrak{g}:=\mathfrak{g}[[\lambda]], \quad \mathfrak{g}:=\mathfrak{g l}(N) .
$$

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

$$
\begin{equation*}
L_{-}:=\left(g A_{-} g^{-1}\right)_{-} . \tag{4}
\end{equation*}
$$

We next interpret this equation via coadjoint orbits in the (formal) loop algebra. Eventually, this shows the existence of an r-matrix.

$$
L \mathfrak{g}:=\mathfrak{g}[[\lambda]], \quad \mathfrak{g}:=\mathfrak{g l}(N)
$$

Its dual $(L \mathfrak{g})^{*}$ is identified with polar polynomials
$W(\lambda)=\sum_{r<0} W_{r} \lambda^{r}$ via the pairing

Relation to coadjoint orbits (I)

Given parameters as above, we construct L_{-}via

$$
\begin{equation*}
L_{-}:=\left(g A_{-} g^{-1}\right)_{-} . \tag{4}
\end{equation*}
$$

We next interpret this equation via coadjoint orbits in the (formal) loop algebra. Eventually, this shows the existence of an r-matrix.

$$
L \mathfrak{g}:=\mathfrak{g}[[\lambda]], \quad \mathfrak{g}:=\mathfrak{g l}(N)
$$

Its dual $(L \mathfrak{g})^{*}$ is identified with polar polynomials
$W(\lambda)=\sum_{r<0} W_{r} \lambda^{r}$ via the pairing

$$
\langle W, X\rangle=\operatorname{tr} \operatorname{res}_{\lambda=0}(W(\lambda) X(\lambda))=\sum_{r} \operatorname{tr}\left(W_{-r+1} X_{r}\right)
$$

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

$$
\mathrm{Ad}^{*} g \cdot W=\left(g W g^{-1}\right)_{-}
$$

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

$$
\mathrm{Ad}^{*} g \cdot W=\left(g W g^{-1}\right)_{-}
$$

Hence the formula $L_{-}=\left(g A_{-} g\right)_{-}$is the statement that L_{-}is in the coadjoint orbit $O\left(A_{-}\right)$of A_{-}.

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

$$
\mathrm{Ad}^{*} g \cdot W=\left(g W g^{-1}\right)_{-}
$$

Hence the formula $L_{-}=\left(g A_{-} g\right)_{-}$is the statement that L_{-}is in the coadjoint orbit $O\left(A_{-}\right)$of A_{-}.

Assumption in the following: L_{+}and A_{-}are constant.

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

$$
\mathrm{Ad}^{*} g \cdot W=\left(g W g^{-1}\right)_{-}
$$

Hence the formula $L_{-}=\left(g A_{-} g\right)_{-}$is the statement that L_{-}is in the coadjoint orbit $O\left(A_{-}\right)$of A_{-}.

Assumption in the following: L_{+}and A_{-}are constant.
On $(L \mathfrak{g})^{*}$ we have the Kostant-Kirillov Poisson bracket given on linear functions $W \mapsto\left\langle W, X^{i}\right\rangle(i=1,2)$ by

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

$$
\mathrm{Ad}^{*} g \cdot W=\left(g W g^{-1}\right)_{-}
$$

Hence the formula $L_{-}=\left(g A_{-} g\right)_{-}$is the statement that L_{-}is in the coadjoint orbit $O\left(A_{-}\right)$of A_{-}.

Assumption in the following: L_{+}and A_{-}are constant.
On $(L \mathfrak{g})^{*}$ we have the Kostant-Kirillov Poisson bracket given on linear functions $W \mapsto\left\langle W, X^{i}\right\rangle(i=1,2)$ by

$$
\left\{W\left(X^{1}\right), W\left(X^{2}\right)\right\}=\left\langle W,\left[X^{1}, X^{2}\right]\right\rangle
$$

Relation to coadjoint orbits (II)

The loop group $L G:=G[[\lambda]], G=G L(N)$, acts on $(L \mathfrak{g})^{*}$ via

$$
\left(\operatorname{Ad}^{*} g \cdot W(\lambda)\right)(X)=W\left(g^{-1} X g\right)
$$

Under the above identification, this becomes

$$
\mathrm{Ad}^{*} g \cdot W=\left(g W g^{-1}\right)_{-}
$$

Hence the formula $L_{-}=\left(g A_{-} g\right)_{-}$is the statement that L_{-}is in the coadjoint orbit $O\left(A_{-}\right)$of A_{-}.

Assumption in the following: L_{+}and A_{-}are constant.
On $(L \mathfrak{g})^{*}$ we have the Kostant-Kirillov Poisson bracket given on linear functions $W \mapsto\left\langle W, X^{i}\right\rangle(i=1,2)$ by

$$
\left\{W\left(X^{1}\right), W\left(X^{2}\right)\right\}=\left\langle W,\left[X^{1}, X^{2}\right]\right\rangle
$$

The restriction of $\{\bullet, \bullet\}$ to a coadjoint orbit comes from a symplectic structure.

Relation to coadjoint orbits (III)

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$.

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

$$
\left\{L_{1}(\lambda), L_{2}(\mu)\right\}=\left[r_{12}(\lambda, \mu), L_{1}(\lambda)+L_{2}(\mu)\right]
$$

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

$$
\left\{L_{1}(\lambda), L_{2}(\mu)\right\}=\left[r_{12}(\lambda, \mu), L_{1}(\lambda)+L_{2}(\mu)\right]
$$

for the r-matrix $r_{12}(\lambda, \mu)=-\frac{C_{12}}{\lambda-\mu}$

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

$$
\left\{L_{1}(\lambda), L_{2}(\mu)\right\}=\left[r_{12}(\lambda, \mu), L_{1}(\lambda)+L_{2}(\mu)\right]
$$

for the r-matrix $r_{12}(\lambda, \mu)=-\frac{C_{12}}{\lambda-\mu}$ and $C_{12}=\sum_{i j} E_{i j} \otimes E_{j i}$.

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

$$
\left\{L_{1}(\lambda), L_{2}(\mu)\right\}=\left[r_{12}(\lambda, \mu), L_{1}(\lambda)+L_{2}(\mu)\right]
$$

for the r-matrix $r_{12}(\lambda, \mu)=-\frac{C_{12}}{\lambda-\mu}$ and $C_{12}=\sum_{i j} E_{i j} \otimes E_{j i}$.
In particular, the functions $H_{k}(\lambda)=\operatorname{tr}\left(L^{k}(\lambda)\right)$ are in involution.

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

$$
\left\{L_{1}(\lambda), L_{2}(\mu)\right\}=\left[r_{12}(\lambda, \mu), L_{1}(\lambda)+L_{2}(\mu)\right]
$$

for the r-matrix $r_{12}(\lambda, \mu)=-\frac{C_{12}}{\lambda-\mu}$ and $C_{12}=\sum_{i j} E_{i j} \otimes E_{j i}$.
In particular, the functions $H_{k}(\lambda)=\operatorname{tr}\left(L^{k}(\lambda)\right)$ are in involution. At this stage we cannot show that they are independent.

Relation to coadjoint orbits (III)

Under our assumptions, the Lax equation implies that $L(\lambda)$ maps to $O\left(A_{-}\right)$. Then we pull back the KK Poisson bracket via $L(\lambda)$.

Theorem

With the previous notation introduced for r-matrices, we have

$$
\left\{L_{1}(\lambda), L_{2}(\mu)\right\}=\left[r_{12}(\lambda, \mu), L_{1}(\lambda)+L_{2}(\mu)\right]
$$

for the r-matrix $r_{12}(\lambda, \mu)=-\frac{C_{12}}{\lambda-\mu}$ and $C_{12}=\sum_{i j} E_{i j} \otimes E_{j i}$.

In particular, the functions $H_{k}(\lambda)=\operatorname{tr}\left(L^{k}(\lambda)\right)$ are in involution. At this stage we cannot show that they are independent.
Nevertheless, the Zakharov-Shabat construction gives a systematic way to produce symplectic manifolds with many Poisson-commuting constants of motion.

Elementary flows and wave functions

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$.

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

$$
M_{i}:=\left(g \xi_{i} g^{-1}\right)_{-}, \quad \xi_{i}:=\frac{1}{\lambda^{n}} E_{\alpha \alpha} .
$$

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

$$
M_{i}:=\left(g \xi_{i} g^{-1}\right)_{-}, \quad \xi_{i}:=\frac{1}{\lambda^{n}} E_{\alpha \alpha} .
$$

The flow of L in ' t_{i}-direction' is defined by

$$
\begin{equation*}
\partial_{t_{i}} L=\left[M_{i}, L\right] \tag{5}
\end{equation*}
$$

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

$$
M_{i}:=\left(g \xi_{i} g^{-1}\right)_{-}, \quad \xi_{i}:=\frac{1}{\lambda^{n}} E_{\alpha \alpha} .
$$

The flow of L in ' t_{i}-direction' is defined by

$$
\begin{equation*}
\partial_{t_{i}} L=\left[M_{i}, L\right] \tag{5}
\end{equation*}
$$

Note: each flow is a linear combination of elementary flows.

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

$$
M_{i}:=\left(g \xi_{i} g^{-1}\right)_{-}, \quad \xi_{i}:=\frac{1}{\lambda^{n}} E_{\alpha \alpha} .
$$

The flow of L in ' t_{i}-direction' is defined by

$$
\begin{equation*}
\partial_{t_{i}} L=\left[M_{i}, L\right] \tag{5}
\end{equation*}
$$

Note: each flow is a linear combination of elementary flows.
The crucial property of the hierarchy (5) is that is integrable:

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

$$
M_{i}:=\left(g \xi_{i} g^{-1}\right)_{-}, \quad \xi_{i}:=\frac{1}{\lambda^{n}} E_{\alpha \alpha} .
$$

The flow of L in ' t_{i}-direction' is defined by

$$
\begin{equation*}
\partial_{t_{i}} L=\left[M_{i}, L\right] \tag{5}
\end{equation*}
$$

Note: each flow is a linear combination of elementary flows.
The crucial property of the hierarchy (5) is that is integrable:
Commutativity of flows

$$
\begin{equation*}
\partial_{t_{i}} M_{j}-\partial_{t_{j}} M_{i}-\left[M_{i}, M_{j}\right]=0 \tag{6}
\end{equation*}
$$

Elementary flows

We next examine all possible flows by examining the building blocks of possible $M(\lambda)$ in a Lax pair (only one pole at $\lambda=0$, $P=\{p t\} ?!)$. They are determined by, $i:=(n, \alpha)$,

$$
M_{i}:=\left(g \xi_{i} g^{-1}\right)_{-}, \quad \xi_{i}:=\frac{1}{\lambda^{n}} E_{\alpha \alpha} .
$$

The flow of L in ' t_{i}-direction' is defined by

$$
\begin{equation*}
\partial_{t_{i}} L=\left[M_{i}, L\right] \tag{5}
\end{equation*}
$$

Note: each flow is a linear combination of elementary flows.
The crucial property of the hierarchy (5) is that is integrable:
Commutativity of flows

$$
\begin{equation*}
\partial_{t_{i}} M_{j}-\partial_{t_{j}} M_{i}-\left[M_{i}, M_{j}\right]=0 \tag{6}
\end{equation*}
$$

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i} .
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$:

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i}
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$: set $\xi(\lambda, \mathbf{t}):=\sum_{n, \alpha} \xi_{(n, \alpha)} t_{n, \alpha}$.

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i}
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$: set $\xi(\lambda, \mathbf{t}):=\sum_{n, \alpha} \xi_{(n, \alpha)} t_{n, \alpha}$. One solution is then given by the matrix-valued wave function (again $\mathbf{t}=\left(t_{i}\right)_{i \in I}$)

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i}
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$: set $\xi(\lambda, \mathbf{t}):=\sum_{n, \alpha} \xi_{(n, \alpha)} t_{n, \alpha}$. One solution is then given by the matrix-valued wave function (again $\mathbf{t}=\left(t_{i}\right)_{i \in I}$)

$$
\begin{equation*}
\Psi(\lambda, \mathbf{t}):=g(\lambda, \mathbf{t}) e^{\xi(\lambda, \mathbf{t})} g^{-1}(\lambda, \mathbf{0}) \tag{7}
\end{equation*}
$$

Here $g(\lambda, \mathbf{t})$ satisfies

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i}
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$: set $\xi(\lambda, \mathbf{t}):=\sum_{n, \alpha} \xi_{(n, \alpha)} t_{n, \alpha}$. One solution is then given by the matrix-valued wave function (again $\mathbf{t}=\left(t_{i}\right)_{i \in I}$)

$$
\begin{equation*}
\Psi(\lambda, \mathbf{t}):=g(\lambda, \mathbf{t}) e^{\xi(\lambda, \mathbf{t})} g^{-1}(\lambda, \mathbf{0}) \tag{7}
\end{equation*}
$$

Here $g(\lambda, \mathbf{t})$ satisfies

$$
\partial_{t_{i}} g=M_{i} g-g \partial_{t_{i}} \xi
$$

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i}
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$: set $\xi(\lambda, \mathbf{t}):=\sum_{n, \alpha} \xi_{(n, \alpha)} t_{n, \alpha}$. One solution is then given by the matrix-valued wave function (again $\mathbf{t}=\left(t_{i}\right)_{i \in I}$)

$$
\begin{equation*}
\Psi(\lambda, \mathbf{t}):=g(\lambda, \mathbf{t}) e^{\xi(\lambda, \mathbf{t})} g^{-1}(\lambda, \mathbf{0}) \tag{7}
\end{equation*}
$$

Here $g(\lambda, \mathbf{t})$ satisfies

$$
\partial_{t_{i}} g=M_{i} g-g \partial_{t_{i}} \xi
$$

Then $\nabla \Psi=0$ and $\Psi(\lambda, \mathbf{0})=1$.

Wave function

The commutativity of flows is equivalent to the flatness of the (formal) connection

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}-M_{i}
$$

As in the finite-dimensional case, we are able to construct solutions of $\nabla \Psi=0$: set $\xi(\lambda, \mathbf{t}):=\sum_{n, \alpha} \xi_{(n, \alpha)} t_{n, \alpha}$. One solution is then given by the matrix-valued wave function (again $\mathbf{t}=\left(t_{i}\right)_{i \in I}$)

$$
\begin{equation*}
\Psi(\lambda, \mathbf{t}):=g(\lambda, \mathbf{t}) e^{\xi(\lambda, \mathbf{t})} g^{-1}(\lambda, \mathbf{0}) \tag{7}
\end{equation*}
$$

Here $g(\lambda, \mathbf{t})$ satisfies

$$
\partial_{t_{i}} g=M_{i} g-g \partial_{t_{i}} \xi
$$

Then $\nabla \Psi=0$ and $\Psi(\lambda, \mathbf{0})=1$.
But: Can the t-dependence be made more explicit?

Riemann-Hilbert problem (I)

To answer the last question, define

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}
$$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}
$$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{\mathcal{L g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{\mathcal{L g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g} \mathfrak{g}_{-}:=L \mathfrak{L g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}:
$$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{\mathcal{L g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g} \mathfrak{g}_{-}:=L \mathfrak{L g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm} .
$$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm}
$$

This factorization is best understood analytically via

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm}
$$

This factorization is best understood analytically via

Riemann-Hilbert problem

Let $\Gamma \subset \mathbb{C}$ be the unit circle in the λ-plane and $\widehat{g}(\lambda)$ defined on Γ.

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm}
$$

This factorization is best understood analytically via

Riemann-Hilbert problem

Let $\Gamma \subset \mathbb{C}$ be the unit circle in the λ-plane and $\widehat{g}(\lambda)$ defined on
Γ. Then there exist G-valued functions $g_{+}(\lambda)$ and $g_{-}(\lambda)$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm}
$$

This factorization is best understood analytically via

Riemann-Hilbert problem

Let $\Gamma \subset \mathbb{C}$ be the unit circle in the λ-plane and $\widehat{g}(\lambda)$ defined on Γ. Then there exist G-valued functions $g_{+}(\lambda)$ and $g_{-}(\lambda)$ analytic inside and outside of Γ respectively such that

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm}
$$

This factorization is best understood analytically via

Riemann-Hilbert problem

Let $\Gamma \subset \mathbb{C}$ be the unit circle in the λ-plane and $\widehat{g}(\lambda)$ defined on Γ. Then there exist G-valued functions $g_{+}(\lambda)$ and $g_{-}(\lambda)$ analytic inside and outside of Γ respectively such that

$$
\begin{equation*}
\hat{g}=g_{-}^{-1} \Lambda(\lambda) g_{+} \quad \text { on } \Gamma . \tag{8}
\end{equation*}
$$

Riemann-Hilbert problem (I)

To answer the last question, define

$$
\widehat{L \mathfrak{g}}:=L \mathfrak{g}_{+} \oplus L \mathfrak{g}_{-}:=L \mathfrak{g} \oplus(L \mathfrak{g})^{*}=\mathfrak{g}\left[\lambda^{-1}\right][[\lambda]] .
$$

On the corresponding loop group $\widehat{L G}$ we have (formally)

$$
\forall \hat{g} \in \widehat{L G}: \quad \hat{g}=g_{-}^{-1} g_{+}, \quad g_{ \pm} \in L G_{ \pm}
$$

This factorization is best understood analytically via

Riemann-Hilbert problem

Let $\Gamma \subset \mathbb{C}$ be the unit circle in the λ-plane and $\widehat{g}(\lambda)$ defined on
Γ. Then there exist G-valued functions $g_{+}(\lambda)$ and $g_{-}(\lambda)$ analytic inside and outside of Γ respectively such that

$$
\begin{equation*}
\hat{g}=g_{-}^{-1} \Lambda(\lambda) g_{+} \quad \text { on } \Gamma . \tag{8}
\end{equation*}
$$

Here $\Lambda(\lambda)=\operatorname{diag}\left(\lambda^{k_{1}}, \ldots, \lambda^{k_{N}}\right)$.

Riemann-Hilbert (II)

Riemann-Hilbert (II)

Geometrically: each holomorphic vector bundle on $\mathbb{C P}^{1}$ is isomorphic to direct sums of $\mathcal{O}(k)$'s.

Riemann-Hilbert (II)

Geometrically: each holomorphic vector bundle on $\mathbb{C P}^{1}$ is isomorphic to direct sums of $\mathcal{O}(k)$'s.

To see the relation to our integrable hierarchy, we note that the equations of motion $\partial_{t_{i}} L=\left[M_{i}, L\right]$ are equivalent to $\left(g=g_{+}\right)$

Riemann-Hilbert (II)

Geometrically: each holomorphic vector bundle on $\mathbb{C P}^{1}$ is isomorphic to direct sums of $\mathcal{O}(k)$'s.

To see the relation to our integrable hierarchy, we note that the equations of motion $\partial_{t_{i}} L=\left[M_{i}, L\right]$ are equivalent to $\left(g=g_{+}\right)$

$$
\begin{equation*}
\partial_{t_{i}} g_{+}=M_{i} g-g \partial_{t_{i}} \xi=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+} \tag{9}
\end{equation*}
$$

Riemann-Hilbert (II)

Geometrically: each holomorphic vector bundle on $\mathbb{C P}^{1}$ is isomorphic to direct sums of $\mathcal{O}(k)$'s.

To see the relation to our integrable hierarchy, we note that the equations of motion $\partial_{t_{i}} L=\left[M_{i}, L\right]$ are equivalent to $\left(g=g_{+}\right)$

$$
\begin{equation*}
\partial_{t_{i}} g_{+}=M_{i} g-g \partial_{t_{i}} \xi=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+} \tag{9}
\end{equation*}
$$

Riemann-Hilbert (II)

Geometrically: each holomorphic vector bundle on $\mathbb{C P}^{1}$ is isomorphic to direct sums of $\mathcal{O}(k)$'s.

To see the relation to our integrable hierarchy, we note that the equations of motion $\partial_{t_{i}} L=\left[M_{i}, L\right]$ are equivalent to $\left(g=g_{+}\right)$

$$
\begin{equation*}
\partial_{t_{i}} g_{+}=M_{i} g-g \partial_{t_{i}} \xi=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+} \tag{9}
\end{equation*}
$$

Factorization problem and integrable hierarchy

Solving (9) for small enough time t_{i} is equivalent to solving the factorization problem

Riemann-Hilbert (II)

Geometrically: each holomorphic vector bundle on $\mathbb{C P}^{1}$ is isomorphic to direct sums of $\mathcal{O}(k)$'s.

To see the relation to our integrable hierarchy, we note that the equations of motion $\partial_{t_{i}} L=\left[M_{i}, L\right]$ are equivalent to $\left(g=g_{+}\right)$

$$
\begin{equation*}
\partial_{t_{i}} g_{+}=M_{i} g-g \partial_{t_{i}} \xi=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+} \tag{9}
\end{equation*}
$$

Factorization problem and integrable hierarchy

Solving (9) for small enough time t_{i} is equivalent to solving the factorization problem

$$
\begin{equation*}
e^{\xi(\lambda, \mathbf{t})} g_{+}(\lambda, \mathbf{0}) e^{-\xi(\lambda, \mathbf{t})}=g_{-}^{-1}(\lambda, \mathbf{t}) g_{+}(\lambda, \mathbf{t}) . \tag{10}
\end{equation*}
$$

Riemann-Hilbert (III)

On proof:

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$.

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$. This is essentially shown by applying $\partial_{t_{j}}$ to (10), using $\partial_{t_{j}} \xi(\lambda, \mathbf{t})=\xi_{j}$ and taking only the positive powers in λ.

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$. This is essentially shown by applying $\partial_{t_{j}}$ to (10), using $\partial_{t_{j}} \xi(\lambda, \mathbf{t})=\xi_{j}$ and taking only the positive powers in λ.

Concluding remarks:

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$. This is essentially shown by applying $\partial_{t_{j}}$ to (10), using $\partial_{t_{j}} \xi(\lambda, \mathbf{t})=\xi_{j}$ and taking only the positive powers in λ.

Concluding remarks:

- A slightly modified factorization problem yields a global expression of the wave function Ψ with an explicit time dependence.

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$. This is essentially shown by applying $\partial_{t_{j}}$ to (10), using $\partial_{t_{j}} \xi(\lambda, \mathbf{t})=\xi_{j}$ and taking only the positive powers in λ.

Concluding remarks:

- A slightly modified factorization problem yields a global expression of the wave function Ψ with an explicit time dependence.
- In fact, the wave function contains the time evolution of the Lax matrix $L(\lambda, \mathbf{t})$:

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$. This is essentially shown by applying $\partial_{t_{j}}$ to (10), using $\partial_{t_{j}} \xi(\lambda, \mathbf{t})=\xi_{j}$ and taking only the positive powers in λ.

Concluding remarks:

- A slightly modified factorization problem yields a global expression of the wave function Ψ with an explicit time dependence.
- In fact, the wave function contains the time evolution of the Lax matrix $L(\lambda, \mathbf{t})$:

$$
L(\lambda, \mathbf{t})=\Psi(\lambda, \mathbf{t}) L(\lambda, \mathbf{0}) \Psi(\lambda, \mathbf{t})^{-1} .
$$

Riemann-Hilbert (III)

On proof: We have to show that g_{+}in the factorization (10) satisfies $\partial_{t_{i}} g_{+}=-\left(g_{+} \xi_{i} g_{+}^{-1}\right)_{+} g_{+}$. This is essentially shown by applying $\partial_{t_{j}}$ to (10), using $\partial_{t_{j}} \xi(\lambda, \mathbf{t})=\xi_{j}$ and taking only the positive powers in λ.

Concluding remarks:

- A slightly modified factorization problem yields a global expression of the wave function Ψ with an explicit time dependence.
- In fact, the wave function contains the time evolution of the Lax matrix $L(\lambda, \mathbf{t})$:

$$
L(\lambda, \mathbf{t})=\Psi(\lambda, \mathbf{t}) L(\lambda, \mathbf{0}) \Psi(\lambda, \mathbf{t})^{-1} .
$$

Thank you!

