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Abstract

This thesis constructs a geometric object (called a renormalization bundle), on which

the β-function of a renormalizable scalar field theory over a general compact Riemannian

background space-time manifold is expressed interms of a connection. This construction

is extended to conformal changes of metric, when the field theory is not conformally in-

variant. This is a generalization of work by Connes and Marcolli, arXiv:hep-th/0411114,

who originally created a renormalization bundle for a scalar quantum field theory on a

flat background.
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1 Introduction

Renormalization theory, as developed by Feynman, Schwinger, and Tomonaga in the late

1940’s and 1950’s, predicts with great precision experimental results of many subtle and

difficult to understand phenomena across subatomic physics. However, it doesn’t make

much mathematical sense. A landmark series of papers, starting with A. Connes and D.

Kreimer’s work in 2000 [5] and 2001 [6], and culminating in 2006, in a paper by A. Connes

and M. Marcolli [8], outlines a program for rationalizing the renormalization methods of

perturbative Quantum Field Theory (QFT) in geometric terms.

Perturbative QFT needs to be renormalized because the Lagrangian of a particular QFT

predict probability amplitudes that are infinitely different from the quantities measured in

a lab. There are several algorithms which yield a finite correct solution from an infinite

incorrect solution. Dimensional regularization is a popular one because it preserves many of

the symmetries of the QFT in question. It involves rewriting physically interesting integrals

over space-time as formal, but conceptually meaningless, integrals, in which the dimension

of space-time becomes a complex number D. The integrals can then be written in terms

of Laurent series in a complex parameter, z = D − d, with a pole at z = 0. The point

z = 0 corresponds to the original dimension of the problem, d. Finite values for divergent

integrals are then extracted as residues taken around paths avoiding the singular points, by

an application of Cauchy’s theorem. This process of extraction, called minimal subtraction,

is the renormalization method studied in this paper. However, naive dimensional regular-

ization does not account for the fact that a complicated interaction may have additional

sub-interactions which are also divergent. In the 1950’s and 1960’s Bogoliubov, Parasiuk,

Hepp, and Zimmermann developed, corrected and proved the BPHZ algorithm for iter-

atively subtracting off divergent sub-interactions. This algorithm applies to dimensional
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regularization and other regularization schemes.

However, the question remained as to why such infinities can be “swept under the rug”

using Cauchy’s rule, or any other algorithm. A problem from the study of classical fields

motivates this type of subtraction [7]. Consider the classical situation of an object floating

in a fluid. One can apply a force F to the object, measure its acceleration, and naively

calculate its inertial mass, mi, using

F = mia .

The inertial mass, however, will be much greater than the bare mass, m, which is the mass

of the object measured outside any fluid. This is because the object interacts with the

surrounding field of fluid. Its inertial mass is

mi = m+ αM ,

where α is a constant determined by the viscosity of the fluid and M is the mass of the

displaced fluid (Archimedes’ principle). In this scenario, the inertial mass is the renormalized

mass, the bare mass, m, is the unrenormalized mass, and the M is the interaction mass, or

the counterterm. This terminology carries over from the classical to the quantum context.

In QFT, the particle is itself a field which can interact with itself. Therefore, one needs

to subtract off its infinite self-interaction mass, the counterterm, in order for theory to

match experiment. Connes and Kreimer reformulate earlier work by Kreimer and others on

combinatorially-defined Hopf algebras of Feynman graphs in the language of loop groups.

They then apply this new language to dimensional regularization to extract finite values

from divergent integrals. Finally, they express the BPHZ renormalization process as the
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process of Birkhoff decomposition of loops into a Lie group defined by the Hopf algebra [5].

Connes and Marcolli [7], [8] formulate dimensional regularization and BPHZ renormal-

ization in terms of a connection on a principal bundle over a complex two-manifold B of

complex renormalization parameters (corresponding to mass and space-time dimension).

This bundle along with the corresponding connection seems to be a new object in both

mathematics and physics. Similar bundles can be constructed for many QFTs that satisfy

certain regularization conditions and are renormalized by minimal subtraction. This the-

sis extends their construction to ζ-function regularization over a general curved space-time

background, M . This requires treating the mass parameter as a conformal density, and

interpreting B as the fiber of a bundle over M . Connes and Marcolli’s construction of the

β-function extends to this context. As a test case I consider the case of the conformally

invariant φ
2n

n−2 model in dimensions three, four and six.

All of the work in [5], [6], [7], [8] and this paper is done for a fictional scalar field living

in six dimensional space-time given by the Lagrangian

L =
1

2
(|dφ|2 −m2φ2) + gφ3 . (1)

I choose thi Lagrangian because working with this fictional scalar field keeps the calculations

simple. The six dimensional space-time is that it is the simplest renormalizable theory, as

shown in section 2.1.1. The work can be generalized to physical field theories, although

many of the calculations in doing so become more difficult. Some of this generalization has

been done in [22].

There are many classic textbooks from which I draw my physics background. I cite

Itzykson and Zuber [18], Peskin and Schroeder [32], Ryder [37], and Ticciati [40] at various
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points in the paper. The AMS has published a two volume series recording the lectures

from the 1996-1997 Special Year at the Institute for Advanced Studies. The first volume is

a thorough overview of QFT. Several chapters of this volume are cited throughout the paper.

Finally, techniques useful in understanding ζ-function regularization can be found in [13].

For understanding the algebraic aspects of the Hopf algebra of Feynman graphs, Kreimer,

Ebrahimi-Fard, Guo and Manchon have done extensive work exploring the structure of the

graphs and their algebra homomorphisms [9], [10], [11], [12], and [25]. Along with the work

of Connes and Kreimer [4], [5], [6] which established this field, the four above mentioned

persons and their co-authors have produced an extensive body of literature on this topic.

1.1 Organization of this paper

The key tool to renormalization, Feynman diagrams (also referred to as Feynman graphs), is

introduced in section two of this paper. These are graphical representations of the possible

particle interactions in a QFT. They can be represented by the Feynman rules as distri-

butions on the space of test functions describing the momenta of the particles involved in

an interaction. Let n be the number of particles involved in the interaction represented

by a Feynman diagram and d be the space-time dimension of the theory. Each particle is

represented as a test function in momentum space, Rd. Let E = C∞c (Rd) be the space of

test functions. The distribution associated to a diagram by the Feynman rules acts on an

n-fold symmetric product of these test functions, Sn(E). As such, the distributions can

be considered element in the restricted dual space Sn(E)∨. These distributions, written as

integrals, are called Feynman integrals. The Feynman rules translate between the diagrams
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and the distributions.

Feynman rules : Feynman diagrams ↔ Feynman Integrals ⊂ Sn(E)∨ .

Feynman integrals frequently yield divergent results. The Feynman diagrams capture much

of the information about the nature of these divergences, which can then be extracted by

knowing the details of the particular QFT and the Feynman rules translating between the

distributions and the diagrams.

Kreimer’s realization that the Feynman diagrams formed a Hopf algebra was an im-

portant step to rigorously codifying the renormalization process. Section three develops

the Hopf algebra generated by the Feynman diagrams of a specific Lagrangian, HL, as a

bigraded algebra, defines the associated Lie group, GL, and establishes the associated Lie

algebra, gL, through the Milnor-Moore theorem. The Hopf algebra and its associated Lie

algebra and Lie group are the algebraic geometric cornerstones of this method of renormal-

ization. The structures of and the relationships between these three objects and their dual

objects are key to the construction of Connes and Marcolli’s renormalization bundle.

The final step in codifying renormalization was Connes and Kreimer’s realization that

the BPHZ renormalization algorithm was exactly a problem of Birkhoff decomposition on

the abstract space of complex space-time dimension. The regularization process rewrites

the Feynman integrals that have divergent evaluations on E as Laurent polynomials with

distribution valued coefficients, which are convergent when the regularization parameter z

is away from 0:

Regularization : Feynman integrals → Homvect(S
n(E), C{{z}}) .
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Evaluating a regularized Feynman integral on a test function gives a Laurent series with

a non-zero radius of convergence, C{{z}}. Connes and Kreimer express this as the set of

algebra homomorphisms from HL to the ring C{{z}}, called GL(C{{z}}). These homo-

morphisms are in correspondence with maps from closed loops in the infinitesimal complex

space of the regularization parameter to the complex Lie group GL. This fact allows the

problem of renormalization to be cast in the language of loop groups.

Section four introduces the Birkhoff decomposition theorem, and discusses how it solves

the problem of BPHZ renormalization. Presley and Segal [33] discuss the Birkhoff decom-

position theorem in chapter 8 of their book “Loop Groups”. Work done by Ebrahimi-Fard,

Guo and Kreimer [10] shows that since C{{z}} can be given the structure of a Rota-Baxter

algebra, renormalization can be studied in the context of algebra homomorphisms from HL

to a Rota-Baxter algebra. Then the renormalized homomorphisms can be written as a sub-

Lie group of the Lie group, G. This substructure is necessary for later analysis. However,

as the Rota-Baxter algebra is only tangential to the construction of the bundle, the Rota

Baxter structure relating to the algebra of Feynman diagrams is dealt with in Appendix A.

Appendix B is a summary of some algebraic notation.

In the process of dimensional regularization, one introduces a mass parameter to balance

the fact that one is “changing the dimensions” of space-time. This gives rise to a family of

effective QFTs, parametrized by the renormalization mass. The family of effective theories

can be expressed as a one parameter family of automorphisms (or a C× action) on the group

of algebra homomorphisms on the space of Feynman integrals, called the renormalization

group. The renormalization group flow describes the effect of this automorphism on the

renormalized Feynman integrals. The renormalization group flow generator, β, called the

beta-function, is key to understanding this flow. Section five discusses the effects of these
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C× actions, and develops corresponding renormalization groups, flows and generators.

Section six constructs the renormalization bundle as sketched below. I construct a

trivial connection of the bundle associated to each section of the bundle. This defines

a global connection on the renormalization bundle. A class of these sections satisfy the

equisingularity condition outlined by Connes and Marcolli in [8], and the corresponding

connections are uniquely defined by β-functions. These sections may represent different

Lagrangians having the same Feynman graphs as the Lagrangian listed above, or to different

regularization schemes that have the same divergence structure as the Hopf algebra studied

in [8] and this paper. Furthermore, the global connection is defined on sections that do

not satisfy the equisingularity condition. However, this may provide a means of relating

physical and non-physical renormalization schemes.

Section seven constructs a similar bundle for a scalar field theory on a Riemannian

manifold, under ζ-function renormalization. Dimensional regularization and ζ-function reg-

ularization can be written as sections of the same bundle on a flat background. Instead of

changing the dimension of the QFT, ζ- function regularization replaces the “propagators”

or Green’s functions of the Laplacian on a manifold, written −∆−1 by operators raised to

complex powers (−∆)−1+r. On a general manifold, ζ-function regularization depends on

the metric, and thus the position over the manifold. Thus the bundle for ζ-function reg-

ularization is built over the manifold as a base. The β-function of this theory is uniquely

determined by the counterterms of this section, and is a function of the curvature of the

manifold.
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1.2 Overview of the renormalization bundle

Figure 1 sketches the Connes-Marcolli renormalization bundle. The regularized QFTs are

geometrized as sections of the K → ∆ bundle on the left. K can be written as a trivial

principal GL fiber bundle over ∆ where GL = Spec HL. GL is an affine pro-unipotent group

with an underlying Lie group structure.

The infinitesimal disk, ∆ ≃ Spec C{z}, is the space defined by the regularization param-

eter of a QFT. The regularized integrals may have a singularity at z = 0, which corresponds

to the unregularized theory.

B is a trivial C× principal fiber bundle over ∆. The C× comes from a mass term that

must be incorporated to perform dimensional regularization. While the physical mass scale

is real, the underlying symmetry extends to C as explained in section 5.2.

The P → B bundle incorporates the action of the renormalization group. It is a trivial

GL principal bundle over B and equivariant under a C× action. The P → ∆ bundle is the

pullback of the P → B bundle along a specific action of the renormalization group. Sections

of this bundle are geometric representations of the fixing of the energy scale for an effective

Lagrangian corresponding to a section of K → ∆. The details are described in section 5.2.

Let W ⊂ K be the fiber over 0. Then K \W → ∆ \ 0 is written K∗ → ∆∗. Consider

the group of sections of K∗ → ∆∗:

γ : ∆∗ → GL .

These γ are the relevant maps in the Birkhoff decomposition. Notice that ∆∗ ≃ Spec (A)

where A = C{{z}} = C{z}[z−1] is the localization of the ring of functions on ∆ away from
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Figure 1: Schematic representation of the renormalization bundle and before and after the
action of the renormalization group.

0. Therefore, the sections, γ, can be rewritten

γ : Spec A → Spec H .

The group Maps(∆∗, GL) is isomorphic to the group GL(A) = Homalg(HL,A). A regular-

ized QFT maps polynomials of the test functions on E to elements of GL(A). The singular

behavior of elements of GL(A) is captured in the fiber of K over 0 ∈ ∆.

Let V ⊂ B be the fiber of B over the origin in ∆, and B∗ = B \ V . In the principal GL

bundle over B∗, the singular behavior of sections is captured in V ×GL. The bundle over

the punctured disk defined by P ∗ = P \ (V ×GL) is the object of interest in this paper. The

Laurent series corresponding to sections of this bundle are well defined over the punctured

disk.

Let σm be the sections of the bundle B → ∆ defined by

σm(z) = (z,mz) .
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Then the pullbacks

γt ◦ σm : ∆∗ → P ∗

are interesting because they display to the effect of the renormalization group on the di-

mensionally regularized Lagrangian. This is the notation used in Section 5 to be consistent

with dimensional regularization. In Section 6, σ is allowed to be any section of B → ∆.

There is a subset of algebra homomorphisms GΦ
L(A) ⊂ GL(A) which satisfy certain physical

conditions, called locality, also satisfied by regularized Feynman integrals. This subset is

defined in [25]. It is this subset that defines the flat equisingular connections of Connes and

Marcolli which lets one find a β function for the QFT in question. These various parts of

the renormalization bundle are explained in greater detail as they appear throughout this

paper.
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2 Feynman graphs

A particular QFT is defined by a Lagrangian, which can be written as a sum of a free part,

LF , and an interaction part LV

L = LF + LV

where LF is a quadratic term involving derivatives of the fields, and LV is a polynomial

function of the fields (with minimal degree = 3). A Lagrangian prescribes the set of possible

interactions of a theory, which can be written either as integrals or diagrams; the Feynman

rules translate between the two. While everything in this paper can be generalized to

different dimensions and more fields, I use the following relatively simple Lagrangian with

space-time dimension six as the example Lagrangian:

L =
1

2
(|dφ|2 −m2φ2) + gφ3 . (2)

Here LF = 1
2(|dφ|2 − m2φ2) with d an exterior derivative, and LV = gφ3 where φ is a

real scalar field and g is called the coupling constant. For development of and calculations

involving fields of this type following well established traditions in the physics literature see

[40], chapter two, [41] and [19]. As there are several very good text books on QFT which

develop these Lagrangians as well as the forms that the fields must take, I will not go into

the details here. A classic text book is Peskin and Schroeder [41], while a less conventional

but more axiomatic book is by Ticciati [40].

Definition 1. A Feynman diagram is an abstract representation of an interaction of several

fields. It is drawn as a connected, not necessarily planar, graph with possibly differently
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labeled edges. The orientation of the graph in the plane does not matter. It is a representa-

tive element of the equivalence class of planar embeddings of connected non-planar graphs.

The types of edges, vertices, and the permitted valences are determined by the Lagrangian

of the theory in the following way:

1. The edges of a diagram are labeled by the different fields in the Lagrangian.

2. The degrees of the monomial summands in LV correspond to permissible valences of

the Feynman diagrams. The composition of these monomials determine the types of

edges that may meet at a vertex.

3. Vertices of valence one are replaced by half edges. That is, the vertex is “cut off”,

leaving a stub. These are different than vertices with valence one, which do not exist

in this formulation of the Feynman rules.

These rules apply to the Lagrangian in equation (2) as follows:

1. The Lagrangian in equation (2) only involves one field, and therefore only has one

type of edge. For more complicated Lagrangians, differently labeled edges are often

portrayed as different types of lines (dashed, wavy, etc.) in drawing the Feynman

diagram. For a detailed treatment of the Lagrangian involved in QED, for instance,

see [22].

2. Since LV = gφ3, only valence three vertices are allowed for this Lagrangian. If
∏

i |φi|ni

is a monomial in LV , then vertices of valence
∑

i ni are allowed, with ni legs of type

φi meeting at a vertex.

The definitions and terminology in this section follows [21]. The structure of the graph

is defined as follows:

12



Definition 2. 1. An external edge is an edge that is connected to only one vertex.

External edges are also called half edges as above.

2. Internal edges are edges connected to two vertices.

3. Let Γ[0] be the set of vertices of the graph Γ, and let Γ[1] be the set of edges. Let Γ
[1]
ext

be the external edges of the graph and Γ
[1]
int be the internal edges.

Remark 1. For purposes of drawing Feynman diagrams, external edges are drawn primarily

as a book keeping device for the valence and type of a vertex. This is more important

for more complicated Lagrangians. For purposes of evaluating the corresponding Feynman

integrals, the external legs indicate the number of particles involved in the interaction. In

the case of multiple field types, the external legs also keep track of the types of test functions

that the Feynman integral acts on.

Graphs that satisfy the above condition can be classified as follows:

Definition 3. 1. Vacuum to vacuum graphs have no external edges.

2. Particle to particle graphs have external edges.

3. A one particle irreducible graph is a connected Feynman graph such that the removal

of any internal edge still results in a connected graph.

I ignore vacuum to vacuum graphs and graphs with only one external leg in the sequel,

following [42]. For particle to particle diagrams, I am mainly concerned with one particle

irreducible (1PI) diagrams. These are the building blocks of the set of Feynman diagrams, as

any non 1PI Feynman diagram can be created by gluing together 1PI graphs along external

edges [42].
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2.1 Subgraphs

Given a Feynman graph Γ associated to a divergent Feynman integral, the BPHZ renormal-

ization process iteratively subtracts off divergent subgraphs, γ, and considers the remaining

contracted graph Γ//γ. For details, see [18], Section 8.2 and [42]. This section describes

what these divergent subgraphs look like, and how to construct the contracted graphs.

2.1.1 Divergent graphs

Because of the Feynman rules translating between possibly divergent distributions and

Feynman graphs, one can define a quantity ω(Γ) called the superficial degree of divergence

for the integral associated to the 1PI graph Γ. Given information about the fields involved,

the dimension and level of divergence of a particular QFT, ω(Γ) also gives information about

possible valences of vertices and number of external legs allowed for graphs in that theory.

A more complete and general exposition of this subject is given in [18] Section 8.1 for a

theory in four space-time dimensions, and in [42] for certain classes of theories in various

dimensions.

For the scalar field, the superficial degree of divergence is given by

ω(Γ) = dL(Γ) − 2I(Γ) (3)

where d is the space-time dimension of the theory, I(Γ) is the number of internal lines and

L is the loop number,

L(Γ) = I(Γ) − V (Γ) + 1 (4)

or Euler characteristic of the graph, with V (Γ) the number of vertices in the graph. If ω(Γ) ≥
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0, the graph is called superficially divergent. These graphs are generally associated to

divergent integrals. (Graphs with ω(Γ) < 0 are generally associated to convergent integrals.)

Plugging equation 4 into 3 gives

ω(Γ) = (d− 2)I(Γ) − dV (Γ) + d .

Let Ev be the number of external edges meeting a vertex v in Γ. Also, let Γ[0] be the set

of vertices in the graph Γ. Furthermore, an external leg is attached to one vertex, while an

internal edge is attached to two. Therefore,

2I =
∑

v∈Γ[0]

(nv − Ev)

where nv is the valence of the vertex v. This gives

ω(Γ) =
∑

v∈Γ[0]

(
d− 2

2
nv − d) −

∑

v∈Γ[0]

d− 2

2
Ev + d . (5)

The total number of external edges of Γ is

E(Γ) =
∑

v∈Γ[0]

Ev .

The contribution of each vertex to ω(Γ) is given by d−2
2 nv − d = ωv.

The dependence of the superficial degree of divergence on the number of vertices of a

graph classifies QFTs into 3 classes:
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1. Super-renormalizable theories have

ωv < 0 .

The degree of divergence decreases with the number of vertices of graphs in this theory.

2. Non-renormalizable theories are such that

ωv > 0 .

The degree of divergence increases with the number of vertices of graphs in this theory.

3. Renormalizable theories are those where

ωv(Γ) = 0 . (6)

The degree of divergence does not increase or decrease as graphs get more compli-

cated. All graphs contributing to divergences here have the same degree of divergence.

Therefore, renormalization can be done with a finite number of parameters.

Renormalizable theories are the topic of this paper. In this case equation (6) gives

0 = ωv =
(d− 2)nv

2
− d

for all v. For a theory with only one type of vertex,

nv =
2d

d− 2
(7)
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for all vertices. Notice that since nv is the valence of a vertex it must be an integer.

Remark 2. Write the polynomial

LV =
∑

n≥3

gnφ
n

for a scalar theory in dimension d. If the only non-zero term of this sum is for n = 2d
d−2 ,

then by equation (7) the theory is renormalizable. In a similar calculation to the one above,

if the only non-zero coefficients are for

n <
2d

d− 2

then the theory is super-renormalizable. Likewise if the only non-zero terms are for

n >
2d

d− 2

the theory is non-renormalizable. Notice that for renormalizable theories nv is an integer

only if d ∈ {3, 4, 6}. Specifically for d = 6, nv = 3.

Graphs with superficial degrees of divergence also have an extra condition on the number

of external legs they can have. Equation (5) gives

0 ≤ ω(Γ) =
∑

v∈Γ[0]

ωv −
E(Γ)(d− 2)

2
+ d .

That is,

E(Γ) ≤ 2(d+
∑

v∈Γ[0] ωv)

d− 2
.
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For super-renormalizable theories, the number of external legs in a superficially divergent

graph decreases with the complexity of the graph. For non-renormalizable theories, the

number of external legs increases with the complexity of the graph. Only for renormalizable

theories is there a fixed bound on the number of external legs a superficially divergent graphs

can have regardless of the number of vertices of Γ.

Remark 3. For a superficially divergent subgraph in a theory of dimension d, the external

leg structure of Γ satisfies

E(Γ) ≤ 2d

d− 2
.

Therefore, if d = 6 superficially divergent graphs can only have 2 or 3 external legs.

2.1.2 Admissible subgraphs

The previous section defined the Feynman graphs that have divergent integrals: call these

Γ. If Γ can be found as a proper subgraph of another Feynman graph Γ′ then one needs to

isolate the contribution of Γ to the divergence of Γ′. The contribution of Γ to the divergence

of Γ′ is called a subdivergence. In this case Γ is said to be a subgraph of Γ′, even though

Γ is a Feynman graph in its own right. For this reason, in this paper, the word subgraph

refers to both the subgraph (as a collection of edges and vertices) inside a larger Feynman

graph, and the Feynman diagram that collection of vertices and edges forms on its own.

Bogoliubov, Parasiuk, Hepp and Zimmerman in the 1950’s and 1960’s developed a method

for accurately subtracting off the subdvergent contribution of divergent subgraphs. This is

called the BPHZ renormalization process.

Definition 4. For a 1PI Feynman diagram Γ, γ is an admissible subgraph if and only if:
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1. γ is subgraph of Γ, as a collection of vertices and edges.

2. The collection of edges and vertices in γ form a superficially divergent 1PI Feynman

diagram, or a disjoint union of such diagrams.

If γ is connected, it is called a connected admissible subgraph of Γ. If it is disconnected

it is called a disconnected admissible subgraph of Γ. I first develop connected admissi-

ble subgraphs as these are the building blocks of all admissible subgraphs. The following

terminology can be found in [21]. Let Γ be a 1PI graph.

Definition 5. For a v ∈ Γ[0], the set of edges meeting v is denoted fv = {f ∈ Γ[1]|f∩v 6= ∅}.

Then |fv| is the valence of v, and the types of lines in fv determine the type of the vertex v.

Using this notation I am now ready to define connected admissible subgraphs.

Definition 6. A connected admissible subgraph γ of Γ consists of the following data:

1. A subset of vertices of Γ: γ[0] ⊂ Γ[0].

2. A collection of interior edges meeting these vertices: γ
[1]
int ⊂

⋃

v∈γ[0] fv.

3. The subgraph γ is connected and 1PI.

To calculate the divergences that these subgraphs contribute to the overall divergence

of Γ, one needs to express the subgraphs as Feynman graphs in their own right. One needs

to discuss their external leg structure. In the sequel, admissible subgraph will refer both

to the Feynman graph associated to an admissible subgraph and the admissible subgraph

itself. Defining the Feynman graph associated to the admissible subgraph requires two more

rules:

Definition 7. The internal legs of γ are those legs specified in the subset Γ
[1]
int. The external

legs are not in this subset and are given by the elements of Γ[1] that intersect with γ. The

19



Feynman diagram associated to an admissible subgraph γ of Γ is the subgraph with the

following external leg structure:

1. The exterior edges of the subgraph are given by the map

ρ :




⋃

v∈γ[0]

fv



 \ γ[1]
int → γ

[1]
ext

f 7→







f1, |f ∩ γ[0]| = 1

{f1, f2}, |f ∩ γ[0]| = 2 .

That is, if an edge of Γ meets a single vertex of γ, it is represented by an external

edge of γ. If it meets γ at two vertices, and is not an internal edge of γ, then it is

represented by two external legs of γ.

2. The external edges of γ must correspond to a prescribed configuration of edges for a

divergent subgraph.

This last condition ensures that only subgraphs contributing to subdivergences are con-

sidered, as shown in the example in the next section. If teh exterior leg structure does not

satisfy the configuration for a divergernt graph, γ is not a divergent subgraph and does not

need to be considered for BPHZ renormalization. In other words, it is not an admissible

subgraph.

To define the more general concept of disconnected admissible subgraphs, I first define

non-overlapping subgraphs.

Definition 8. 1. Let γ1 and γ2 be two graphs. They are non-overlapping subgraphs of
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Γ if, for j = 1, 2, there exists an insertion map ij such that

ij : γ
[0]
j → Γ[0] ;

⋂

j

ij(γj) = ∅ .

2. If γ = γ1
∐
γ2 for γ1, γ2 non-overlapping subgraphs of Γ, then γ is a disconnected

admissible subgraph of Γ.

This is the most general form of an admissible subgraph. In the sequel, the word

subgraph will refer only to admissible subgraphs, either connected or disconnected, unless

otherwise specified.

Notice that the entire graph is also an admissible subgraph. One can also define the

empty graph to be an admissible (trivial) subgraph. The set of proper subgraphs of Γ is the

set of all subgraphs of Γ connected or not, minus the entire graph and the empty subgraph.

2.1.3 Contracted graphs

Along with identifying the subgraphs and subdivergences, the BPHZ renormalization pro-

cess identifies the divergences remaining in the diagram after the subtraction of a subdi-

vergence. To do this, the connected admissible subgraph associated to the subdivergence is

contracted to a vertex, and the divergences of the resulting Feynman diagram is studied. In

the case of a disconnected admissible subgraph, each connected component is contracted.

The remaining Feynman diagram is called a contracted graph.

Definition 9. Let γ be a disconnected admissible subgraph of Γ consisting of the connected

components γ1 . . . γn. A contracted graph is the Feynman graph derived by replacing each
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Figure 2: Inadmissible and admissible subgraphs of L

connected subgraph, with a vertex vγi
. So for each 1 ≤ i ≤ n,

Γ → Γ//γ

f ∈ γ
[1]
i , v ∈ γ

[0]
i 7→ vγi

6∈ Γ[0]

f ′ 6∈ γ[1], v′ 6∈ γ[0] 7→ f ′, v′ .

The resulting contracted graph is written Γ//γ.

Notice that Γ//γ is always 1PI. Definition 7 part 2 ensures that the contracted graph

Γ//γ is a valid Feynman graph for the Lagrangian under consideration [18]. In the case of

the φ3 in dimension six theory, this means that each connected admissible subgraph must

have either two or three external edges.

Example 1. The decomposition of the top graph in Figure 2 is not allowed for the example

Lagrangian in equation (2). All vertices of Γ are included in γ, and the topmost internal leg

becomes two external legs of γ, for a total of 4 external legs. This means that γ does not

contribute to the superficial divergence of Γ. It leaves Γ//γ with a valence 4 vertex, which

is not allowed in the theory. The decomposition of the bottom graph is valid, however. The

vertex in Γ//γ that replaces γ is denoted by × in this figure for the reader’s convenience. For
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purposes of calculations on the graph Γ//γ, the vertex denoted × is usually indistinguishable

from any other vertex in the graph. The notable exceptions to this are vertices of valence

two. These types of vertices exist only for the purpose of calculating subdivergences and

counterterms. That is, this type of vertex is only found in contracted graphs (of the form

Γ//γ), and not in a Feynman diagram generated from the Lagrangian.

2.2 Feynman rules

Feynman rules translate between Feynman graphs and Feynman integrals. Because of the

structure of the diagrams, it is sufficient to study Feynman rules on 1PI diagrams:

Feynman Rules : 1PI Diagrams ↔ Feynman integrals .

Each Feynman diagram corresponds to a distribution, which can be written as an integral

on the space of test functions in momentum space I call the external leg data, E. Let

E = C∞c (R6) be the space of test functions in momentum space for each leg. The test

functions for general Feynman integrals are elements of the symmetric algebra on E, S(E).

Section 2.1.1 shows that for a six dimensional renormalizable scalar theory, the 1PI graphs

can only have two or three external legs. The Feynman integrals for the 1PI diagrams act on

test functions in Sn(E) for n ∈ {2, 3}. General Feynman graphs are associated to integrals

that are distributions on Sn(E) for n ∈ Z≥2. These distributions correspond to linear maps

Feynman Integrals ∈ Homvect(S
n(E),C) .

In practice, however, they are usually divergent. This is why QFTs need to be regularized.

Regularization introduces a parameter z which captures the divergence as z goes to a prede-
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termined limit. For the class of regularization schemes studied in this paper the divergence

is captured as z → 0 and regularized Feynman rules define maps:

Feynman diagrams ↔ Regularized Feynman integrals →֒ Homvect(S
n(E),C{{z}}) .

Section 4 discusses this in more detail.

To maintain consistency with the physics literature, I write down the unregularized

Feynman rules, even though the resulting integrals are not well defined. In the case of six

dimensional Lorentz space, for a fixed graph Γ the Feynman integrals are constructed as

follows:

• To each edge, internal and external, k ∈ Γ[1] assign a momentum pk ∈ R6 and a

propagator i
p2

k
−m2 .

• To each vertex v ∈ Γ[0] assign a factor of −igδ(∑j∈fv
pj), where δ is the Dirac delta

function. The sum is taken over the momenta assigned to the edges meeting at v.

• Take the product of all the factors assigned to the edges and vertices and integrate

over the internal momenta

∫

R
6|Γ

[1]
int

|

|Γ[1]|
∏

k

i

p2
k −m2

|Γ[0]|
∏

v

−igδ(
∑

j∈fv

pj)

|Γ
[1]
int|∏

i

d6pi .

• Divide by the symmetry factor of the graph.

Notice that the second step applies conservation of momentum at each vertex, and also

for the external legs of the graph. By counting the number of free variables, one sees that

this is a distribution on the momentum space in 6n variables where n is the number of

external legs. Specifically, if Γ is 1PI, n ∈ {2 , 3} for a renormalizable scalar theory in six
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dimensions. More details on Feynman rules and how they are derived can be found in [41]

and [40].

Remark 4. The definition of a Feynman graph identifies two graphs if they differ only by

their embedding in the plane. Dividing by the symmetry factor of the graph implements

this equivalence class. The symmetry factor is the number of ways a graph can be embedded

in a plane up to homeomorphism.

Example 2.

The Feynman integral for the 1PI graph

is given by

G(p,−p) =
g2

2

∫

R6

d6k

(k2 −m2)((k − p)2 −m2)
.

This is a distribution on S2(E) acting on test functions f, g ∈ E as

∫

R6

G(p,−p)f(p)g(−p)d6p =

∫

R6

g2

2

∫

R6

f(p)g(−p)d6k

(k2 −m2)((k − p)2 −m2)
.
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3 The Hopf algebra of Feynman graphs

The previous section describes what the physical Feynman graphs are, what they represent

and what they look like. This section moves away from the physical interpretation and

looks at them as algebraic objects. Assigning variables, xΓ, to each 1PI graph, Γ, gener-

ates a polynomial algebra which is also a commutative bigraded Hopf algebra. In general,

commutative Hopf algebras can be interpreted as a ring of functions on a group. Since the

spectrum of a commutative ring is an affine space, the group in question is affine group

scheme, Spec HL. This structure gives a geometric analog throughout the paper to the al-

gebraic calculations on this Hopf algebra. This section also examines the dual of this Hopf

algebra.

3.1 Constructing the Hopf algebra

Let k be a field of characteristic 0. Assign to each

Γ ∈ {1PI graphs of L =
1

2
(|dφ|2 −m2φ2) + gφ3}

the variable xΓ where the empty graph is associated to the unit

1 = x∅ .

The xΓ are called the indecomposable elements of H.

Definition 10. The vector space k〈xΓ|Γ ∈ {1PI graphs of L}〉 is generated by the indecom-

posable elements of H. The Hopf algebra associated to this Lagrangian is the polynomial
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algebra

HL = k [xΓ|Γ ∈ {1PI graphs of L}] .

For ease of notation, I drop the subscript L, as there is no confusion over the Lagrangian

generating the graphs. The polynomial algebra structure of H allows for the study of disjoint

unions of 1PI graphs (and thus disconnected admissible subgraphs for BPHZ renormaliza-

tion) as shown below. This section shows that H satisfies the axioms of a commutative

Hopf algebra. Section 3.3 defines the underlying Lie group.

The algebra structure on H is given by a multiplication m and a unit η. Let Γ and Γ′

be 1PI graphs. Multiplication of the variables

m : H⊗H → H

xΓ ⊗ xΓ′ 7→ xΓx
′
Γ

translates to a disjoint union of the 1PI graphs on the space of graphs:

xΓxΓ′ ↔ Γ
∐

Γ′ .

Therefore, this product is commutative. This extends to multiplication on all of H by

linearity.

The unit is defined as η : k → H such that η(1k) = 1H where 1H is the empty graph,

1H = x∅. It is easy to check that these operations satisfy the rules of an algebra. When the

context is clear, I drop the subscript H and write x∅ = 1.

Lemma 3.1. (H,m, η) is a commutative, associative, unital algebra.
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One can also impose a coalgebra structure on this by defining a comultiplication ∆ and

a counit ε. I use a variation on Sweedler’s notation, where
∑

(Γ) indicates the sum over all

proper admissible subgraphs (connected or disconnected) of Γ.

∆ : H → H⊗H

xΓ → 1 ⊗ xΓ + xΓ ⊗ 1 +
∑

(Γ)

xγ ⊗ xΓ//γ .

Sometimes, I use the shorthand

∑

(Γ)

xΓ′ ⊗ xΓ′′

instead of

∑

(Γ)

xγ ⊗ xΓ//γ

where xΓ′′ := xΓ//Γ′ . The coproduct can be extended to a ring homomorphism on all of H

by requiring

∆(xγ1xγ2) = ∆(xγ1)∆(xγ2)

for all xγ1 , xγ2 ∈ H. For a general element, y of H, I write

∆(y) = y ⊗ 1 + 1 ⊗ y + ∆̃(y) .
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For an indecomposable xΓ ∈ H, the definition of ∆̃ simplifies to

∆̃(y) =
∑

(Γ)

xΓ′ ⊗ xΓ′′ .

Definition 11. xΓ ∈ H is primitive if ∆̃(xΓ) = 0, that is ∆(xΓ) = xΓ ⊗ 1 + 1 ⊗ xΓ.

The counit is defined on indecomposable graphs as

ε : H → k

xΓ →







xΓ Γ = ∅

0, else .

The counit can be extended to all of H by multiplication. Again, it is easy to check that

these operations satisfy the rules of a coalgebra.

Definition 12. Co-associativity means that

(∆ ⊗ id) ◦ ∆ = (id⊗∆) ◦ ∆ .

Lemma 3.2. (H,∆, ε) forms a non-cocommutative, co-associative, unital co-algebra.

Proof. Proof that (H,∆, ε) forms a co-associative coalgebra can be found in [5].

Since ∆ and ε are algebra homomorphisms,

Lemma 3.3. (H,m, η,∆, ε) forms an associative, commutative, non-cocommutative unital

k bialgebra.

Recall the following definition.
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Definition 13. A Hopf algebra is a bialgebra with an antipode map S satisfying

m(S ⊗ id)∆ = εη = m(id⊗S)∆ . (8)

Given this definition, by recursively defining an antipode on H as follows,

S : H → H

xΓ → −xΓ −
∑

(Γ)

m(S(xγ) ⊗ xΓ//γ) ,

one has the desired result.

Theorem 3.4. (H,m, η,∆, ǫ, S) is a Hopf algebra.

Proof. See [5]

Given the one-to-one correspondence between the variables xΓ and the space of 1PI

graphs of L, one can omit the x notation and view H as a Hopf algebra on the graphs

themselves. Write

H = k[Γ|Γ ∈ {1PI graphs of L}]

The indecomposable elements are the 1PI graphs. Multiplication on the algebra is given by

m(Γ ⊗ Γ′) = Γ
∐

Γ′
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on 1PI graphs. This product is written ΓΓ′. Comultiplication is given by

∆(Γ) = 1 ⊗ Γ + Γ ⊗ 1 +
∑

(Γ)

γ ⊗ Γ//γ

on 1PI graphs, and the antipode is given by

S(Γ) = −Γ −
∑

(Γ)

m(S(γ) ⊗ Γ//γ) .

These operations are extended to the entire Hopf algebra as before. A primitive graph is

one where

∆(Γ) = Γ ⊗ 1 + 1 ⊗ Γ

i.e. ∆̃(Γ) = 0. This is the notation for the rest of this paper.

3.2 The grading and filtration on H

Certain properties of the Feynman graphs induce a grading and a filtration on H.

Definition 14. A connected Hopf algebra is a graded Hopf algebra, H, with grading

bounded above or below, and H0 ≃ k.

Definition 15. The grading on H is given by the loop number L(Γ), or rk H1(Γ) the rank

of the first homology group of Γ. For Γ a monomial in H, one says Γ ∈ Hl if and only if rk

H1(Γ) = l. H0 = k.

Lemma 3.5. Hl is a finite dimensional vector space for all l.

Proof. This amounts to showing that there are only finitely many connected 1PI graphs of
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a given loop number. Since each graph has either 2 or 3 external edges, and each vertex

has valence 3, the number of possible internal legs for a 1PI graph is

I =
3V − 3

2
or I =

3V − 2

2
.

For a fixed loop number l = I − V + 1,

l =







3V−3
2 − V + 1, or

3V−2
2 − V + 1,

(Since I must be an integer, this means that a graph with 3 external legs has an odd

number of vertices and a graph is 2 external legs has an even number.) That is, the number

of possible vertices a 1PI graph in Hl can have is

V = 2l + 1 or 2l .

The number of ways to connect 2l+ 1 labeled vertices with 3V−3
2 edges is







(
2l+1

2

)

3V−3
2






<∞

[35]. For 2l labeled vertices and 3V−2
2 internal edges is







(
2l
2

)

3V−2
2






< ∞. The Feynman

diagrams in Hl have more restrictions on valence, have unlabeled vertices (the embedding

in the plane does not matter), and must be 1PI. Therefore, there are fewer possible 1PI

generators in Hl, i.e. the number is finite for each l. Thus, the number of monomial

generators of Hl is finite.

Theorem 3.6. The Hopf algebra of Feynman diagrams H is a connected, graded Hopf
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algebra. That is, for Γ1 ∈ Hl and Γ2 ∈ Hm,

m(Γ1 ⊗ Γ2) ∈ Hl+m .

For any monomial Γ ∈ Hl,

∆Γ ∈
l∑

i=0

Hi ⊗Hl−i

and

S(Γ) ∈ Hl .

Proof. This Hopf algebra is connected under this grading by definition. Since (rk H1) is

additive under disjoint union, multiplication is preserved by this grading.

For comultiplication, one only needs to check that

∆(Γ) ∈
l∑

i=0

Hi ⊗Hl−i

because 1 ∈ H0. For Γ ∈ Hl 1PI,

∆̃ =
∑

(Γ)

Γ′ ⊗ Γ′′

where Γ′ ∈ Hi with 0 < i < l. Let Γ′ have n connected components labeled Γ′j with

1 ≤ j ≤ n. Then

L(Γ′′) = (I(Γ) −
∑

j

I(Γ′j)) − (V (Γ) −
∑

j

V (Γ′j)) + n+ 1 = L(Γ) −
∑

j

L(Γ′j) = l − i .
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Therefore, comultiplication is preserved by the grading for all 1PI graphs. Since ∆(ΓΓ′) =

∆(Γ)∆(Γ′), the property holds for the entire Hopf algebra because it is an algebra homo-

morphism. The antipode is preserved by this grading by the same argument.

The Hopf algebra of Feynman diagrams is also a filtered Hopf algebra, where the filtra-

tion is given by the maximum number of embedded admissible subgraphs. This filtration is

also discussed in [2]. Consider the operator

∆̃n : H → H⊗n+1

defined recursively as

∆̃1 = ∆̃

∆̃n =

(
n∑

i=1

⊗i−1
1 id⊗∆̃ ⊗n

i+1 id

)

◦ ∆̃n−1 .

I also define

∆̃(0) = id−ε

for notational convenience. For an indecomposable element of H, ∆̃(Γ) is a sum of all tensor

products of proper subgraphs and their residues. Therefore, ∆̃n(Γ) is the sum of all n-tensor

products of n proper subgraphs and residues. This gives a filtration on H.

Definition 16. For Γ ∈ ker ε, Γ ∈ H(n) if ∆̃n(Γ) = 0. This is an increasing filtration on

H. Define k = H(0), and the space H(1) contains the space of primitive elements of H by
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Definition 11.

Lemma 3.7. ∆̃(n+1) =
∑n

0

(
n
i

)
(∆̃(i) ⊗ ∆̃(n−i))∆̃ .

Proof. By definition, this holds for n = 1. For n = 2,

∆̃(2) = (id⊗∆̃ + ∆̃ ⊗ id)∆̃ .

If this holds for n, then for n+ 1,

∆̃(n+1) = (
n∑

i=0

id⊗i⊗∆̃ ⊗ id⊗n−i−1)(
n−1∑

j=0

(
n− 1

j

)

(∆̃(j) ⊗ ∆̃(n−j−1))∆̃) .

I can rewrite this as

n−1∑

i=0

n∑

j>i

id⊗j ⊗∆̃ ⊗ id⊗n−j
(
n− 1

i

)

(∆̃(i) ⊗ ∆̃(n−i−1))∆̃ +

id⊗n−j ⊗∆̃ ⊗ id⊗j
(
n− 1

i

)

(∆̃(n−i−1) ⊗ ∆̃(i))∆̃ .

For the first (resp. last) term of this sum the first (last) i+ 1 identity maps are applied to

∆̃(i) while the sum of the last (first) n− i terms applied to ∆̃(n−i−1) gives ∆̃(n−i). Thus

∆̃(n+1) =
n−1∑

i=0

(
n− 1

i

)

(∆̃(i) ⊗ ∆̃(n−i))∆̃ +

(
n− 1

i

)

(∆̃(n−i) ⊗ ∆̃(i))∆̃

=
n∑

0

(
n

i

)

(∆̃(i) ⊗ ∆̃(n−i))∆̃ .
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A second grading on H is the associated grading to this filtration.

GriH = H(i)/H(i−1) .

Remark 5. I show next that H is a graded filtered Hopf algebra. The module given by the ith

loop grading and the jth filtration level is written Hi,(j). I write Hi,j to mean Hi,(j)/Hi,(j−1),

the ith loop grading and the jth filtration grading in Gr(H) is written .

Lemma 3.8. The filtration H(n) is preserved under multiplication and comultiplication and

the antipode. That is,

m : H(p) ⊗H(q) →֒ H(p+q)

∆ : H(n) →֒
⊕

p+q=n

H(p) ⊗H(q)

S : H(n) →֒ H(n) .

Proof. First check comultiplication on Γ ∈ H(n).

∆(Γ) = 1 ⊗ Γ + Γ ⊗ 1 + ∆̃(Γ) .

The first two terms of this sum are of the correct form. Lemma 3.7 shows that all summands

in ∆̃ are also of the correct form.

Suppose a summand of ∆(Γ) ∈ GrpH ⊗ GrqH, with p + q > n. Call this term γ1 ⊗ γ2.

Then

∑

l+k=n, k,l≥1

∆̃k(γ1) ⊗ γ2 + γ1 ⊗ ∆̃l(γ2) 6= 0 .
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That is, ∆̃n(Γ) 6= 0.

Consider two 1PI graphs such that Γ1 ∈ H(i) and Γ2 ∈ H(j). We show preservation

under multiplication inductively on the sum n = i+ j. If i = 0 then Γ1 ∈ k, and the result

is trivial. Consider Γ1, Γ2 ∈ H(1). Then

∆(Γ1Γ2) = 1 ⊗ Γ1Γ2 + Γ1Γ2 ⊗ 1 + Γ1 ⊗ Γ2 + Γ2 ⊗ Γ1 .

Then

∆̃(Γ1Γ2) = Γ1 ⊗ Γ2 + Γ2 ⊗ Γ1 .

So

∆̃(2)(Γ1Γ2) = 0 .

Thus Γ1Γ2 ∈ H(2).

If i+ j = n, then

∆̃(Γ1Γ2) =
∑

(Γ1)

∑

(Γ2)

Γ′1Γ
′
2 ⊗ Γ

′′

1Γ
′′

2+

∑

(Γ1)

Γ′1Γ2 ⊗ Γ
′′

1 +
∑

(Γ1)

Γ′1 ⊗ Γ
′′

1Γ2 +
∑

(Γ2)

Γ1Γ
′
2 ⊗ Γ

′′

2 +
∑

(Γ2)

Γ′2 ⊗ Γ1Γ
′′

2

Since this filtration is preserved under comultiplication, if Γ′1 ∈ H(l), with 0 < l < i,

Γ
′′

1 ∈ H(i−l). The same is true for Γ2. By induction, since multiplication preserves the first

n− 1 filtered levels, Γ1Γ2 ∈ H(n).
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We check the antipode by induction. Recall that for Γ ∈ H(1)

∆̃S(Γ) = −∆̃(Γ) = 0

so S(Γ) = 0. For Γ ∈ H(n),

S(Γ) = −Γ −
∑

(Γ)

S(Γ′)Γ′′ .

Since the filtration is preserved under co-multiplication, Γ′ ∈ H(p) and Γ′′ ∈ H(n−p)for some

p < n. Therefore, S(Γ′) ∈ H(p) as is S(Γ′)Γ′′.

Example 3. While both terms in the polynomial

are in Gr2H, the polynomial itself is primitive. Before verifying this statement, for typo-

graphical ease, rewrite the above expression as

Γ = 2γ1 − γ2
2

Since γ2 is the only proper subgraph of γ1,

∆(Γ) = 2(γ1 ⊗ 1 + 1 ⊗ γ1 + γ2 ⊗ γ2) − (γ2 ⊗ 1 + 1 ⊗ γ2)
2

= 2(γ1 ⊗ 1 + 1 ⊗ γ1 + γ2 ⊗ γ2) − (γ2γ2 ⊗ 1 + 2γ2 ⊗ γ2 + 1 ⊗ γ2γ2) = Γ ⊗ 1 + 1 ⊗ Γ .
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3.3 The affine group scheme

Since H is a commutative Hopf algebra, one can define G = Spec H. Recall that Spec is

a contravariant functor that assigns to a commutative algebra its underlying variety. Fur-

thermore, recall that a Hopf algebra obeys the following three relations

(id⊗∆)∆ = (∆ ⊗ id)∆

(id⊗ε)∆ = id

m(S ⊗ id)∆ = εη

which covariantly define a multiplication, identity and an inverse on G. Thus G is an affine

scheme that satisfies the axioms of a group, and is thus called an affine group scheme.

One can also look at G as a covariant functor associating the group of A-valued points

G(A) = Homalg(H, A) to a unital k algebra A. The product structure on G(A) is induced

by the insertion product, and is the same as that on H∨ (introduced below):

f ⋆ g = m(f ⊗ g)∆

with f, g ∈ G(A). Since f ∈ G(A) is an algebra homomorphism,

f(γ1γ2) = f(γ1)f(γ2) ,

where this product is the product on A, and not the ⋆ product.

Finally, since the grading on H is locally finite dimensional, one can create a series of
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finitely generated k algebras

Hi = k[Γ1, . . .Γni
]

where the set

{Γ1, . . .Γni
}

is the set of all 1PI graphs with loop number at most i. Then we create a set of affine

schemes Gi = Spec Hi. Next we can write

G = lim
←−
i

Gi .

Definition 17. G is a pro-unipotent affine group scheme.

For an explicit treatment of what these Gis look like as matrices, see [11]. For more

details, see [7].

3.4 The Lie algebra structure on H and H∨

There is a well established relationship between Hopf algebras and Lie algebras over fields

of characteristic 0.

Theorem 3.9. Milnor-Moore [28] Given a connected, graded, cocommutative, locally

finite Hopf algebra, H, over Q, there is a Hopf algebra isomorphism, H ≃ U(g), where g is

the graded Lie algebra generated by the indecomposable elements of H and U is the universal

enveloping algebra.

The full dual algebra of H is not a Hopf algebra. However, the restricted dual of a
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commutative, connected, graded, locally finite Hopf algebra is a cocommutative, connected,

graded, locally finite Hopf algebra written

H∨ =
⊕

l

(Hl)∨ =
⊕

l

Hl . (9)

Since H is a graded filtered Hopf algebra one expects H∨ to also be a graded filtered Hopf

algebra.

Remark 6. The grading on H∨ is given by the loop number as above. Notice that H∨ is still

finite dimensional at each level. An increasing filtration on H∨ is given by H∨(l) = (
⊕

i≤lHl)∨

The Milnor-Moore theorem reduces to the following statement in this case.

Corrollary 3.10. [26] There is an isomorphism of bigraded Hopf algebras, H∨ ≃ U(g),

where g is the bigraded Lie algebra of the affine group scheme G.

The structure of g is defined below. There is a second (decreasing) filtration on this

space corresponding to an (increasing) filter on H formed by ∆̃ which I will use to define

the topology of H∨. Before introducing that structure, I will discuss the Hopf algebra

properties of H∨.

Definition 18. Define L(H, A) to be the vector space of module homomorphisms from H

to some k algebra A. Then L(H, k) ⊃ H∨.

Remark 7. The group G(A) ⊂ L(H, A) is the group of ungraded algebra homomorphisms

from H to A. That is, if f ∈ G(A), then for x y ∈ H

f(xy) = f(x)f(y) .
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Another way of stating this is that if f is an algebra homomorphism from H → A then

∆(f) = f ⊗ f

or that algebra homomorphisms from H → A are group-like elements of L(H, A).

The indecomposable elements of H∨ are in one-to-one correspondence with the inde-

composable elements of H in the usual way:

Γ ↔ δΓ(x)

where Γ is an 1PI graph, x a polynomial in H, and δΓ(x) is the Kronecker delta function.

δΓ(x) =







1, x = Γ, a 1PI graph;

0, otherwise.

That is, there is an isomorphism of vector spaces

k〈δΓ|Γ ∈ {1PI graphs of L}〉 ≃ k〈Γ|Γ ∈ {1PI graphs of L}〉 . (10)

Corrollary 3.11. The indecomposable elements of H correspond to the primitive elements

of H∨.

Proof. Follows from the Milnor Moore Theorem.

Let δΓ and δΓ′ be indecomposable elements of H∨. That is, Γ and Γ′ are 1PI graphs.

We can define the Hopf algebra operations on the indecomposable elements of H∨ in a

similar manner to that of H. Multiplication on H∨ is a convolution product induced by the
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insertion product.

⋆ : H∨ ⊗H∨ → H∨

δΓ ⋆ δΓ′ → m(δΓ ⊗ δΓ′)∆ .

This can be extended to all of H∨ by coassociativity of ∆ and linearity. H∨ is a non-

commutative Hopf algebra. In the dual, the co-unit maps 1 to ε. For Γ 1PI, i.e. in ker ε,

δΓ(1) = ε(Γ) = 0 . (11)

As stated in corollary (3.11), the indecomposable elements of H∨ are primitive. Notice that

for Γ a 1PI graph,

∆(δΓ)(x⊗ y) = δΓ(m(x⊗ y)) x, y ∈ H

since a product becomes a coproduct in the dual space. But m(x ⊗ y) is not an indecom-

posable element of H, unless x ∈ k and y is 1PI. Therefore,

∆ : H∨ → H∨ ⊗H∨

δΓ 7→ ε⊗ δΓ + δΓ ⊗ ε .

(12)

The primitive elements of H∨, in this case, also the indecomposable elements of H∨, are

the generators of the Lie algebra g. They are called infinitesimal algebra homomorphisms.

One can write

g = k〈δΓ|Γ ∈ {1PI graphs of L}〉 .
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Lemma 3.12. The grading from equation 9 is preserved under the convolution product and

the coproduct. That is, for monomials f ∈ H∨l and g ∈ H∨m,

f ⋆ g(Γ) 6= 0 ⇒ Γ ∈ Hl+m

and

∆(f)(γ′ ⊗ γ′′) 6= 0 ⇒ γ′ ∈ Hi and γ′′ ∈ Hl−i .

Proof. To show that the grading is preserved under multiplication, it is sufficient to show

it is preserved in the product of two primitive elements of H∨. For the indecomposable

elements γ1 ∈ Hl and γ2 ∈ Hm, there are δγ1 ∈ H∨l and δγ2 ∈ H∨m such that

δγ1 ⋆ δγ2(Γ) =







n, nγ1 ⊗ γ2 is a summand of ∆(Γ);

0, otherwise .

Since the loop grading Hl is preserved under ∆ on H, Γ ∈ Hl+m.

To see preservation under the co-product, it is sufficient to consider monomials that are

the product of two primitive elements, f = δγ1 ⋆ δγ2 ∈ H∨l ,

∆(f)(γ′ ⊗ γ′′) = δγ1 ⋆ δγ2(γ
′γ′′) .

By the above argument, if this is non-zero then γ′γ′′ ∈ Hl. Since the loop grading Hl is

preserved under multiplication on H, γ′ ∈ Hi and γ ∈ Hl−i.

Results for more complicated monomials in H∨ follow by induction.
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The increasing filtration on H defines a decreasing filtration on H∨ as follows:

H∨(n) = {f |f(γ) = 0, ∀γ ∈ H(n−1)} .

I use this filtration to define the topology on H∨. This filtration is preserved under ⋆. The

grading associated to this decreasing filtration on H∨ is defined in the standard way:

GrnH∨ = H∨(n−1)/H∨(n) .

Since the indecomposables of H∨ lie in H∨(1), we can write

g ⊂ H∨(1) .

Remark 8. Equation (10) shows that the generators of g are in one-to-one correspondence

with the indecomposable elements of H, g is a graded Lie algebra, by the grading in equation

(9). Specifically, g(A) ⊂ L(H, A) is a filtered Lie algebra.

Theorem 3.13. The Lie algebra of G(A) is defined as

g(A) = g ⊗k A

where A is a k algebra.

For f a generator of g(A),

∆(f) = f ⊗ ε+ ε⊗ f .
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Proposition 3.14. Let

f =
∑

i

αifi

be a formal power series in H∨ such that fi ∈ Grni
H∨ and ni is an increasing sequence.

Any such formal series is convergent.

Proof. Let F =
∑∞

0 αifi be a formal series in H∨, where αi ∈ k and fi is a monomial in

GrnH = H∨(n−1)/H∨(n). Consider F (Γ) for a monomial Γ ∈ H. Then Γ ∈ H(n) for some n.

Therefore, f(x) = 0 for all f ∈ H(n+1). Therefore,

∞∑

n+1

αifi(Γ) = 0 .

Therefore F (Γ) is a finite sum for any Γ ∈ H and the series is convergent.

Because of the isomorphism in equation (10), one can also write g as a Lie algebra on

the 1PI graphs in H. The convolution product in H∨ becomes an insertion product in H

written

⋆ : H×H → H

defined on indecomposable elements γ1, γ2 of H [21].

Definition 19. Let g ∈ γ
[1]
1,int ∪ γ

[0]
1 be an insertion point of γ1.

1. If |γ[1]
2,ext| = 2 and g ∈ γ

[1]
2,ext are of the same type of an element of γ

[1]
1,int, then g is a

valid insertion point. Insert γ2 into γ1 at g. Then sum over all valid insertion points.

2. If γ
[1]
2,ext = fg for some g ∈ γ

[0]
1 , insert γ2 into γ1 at the vertex g in all valid orientations.
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Figure 3: Permissible and impermissible insertions

Sum over all valid insertion points after modding out the equivalence class of planar

embeddings.

3. If no valid insertion point g can be found then ⋆ is not defined.

This is a much more general definition of this insertion product than is required for the

Lagrangian in this paper, where the condition in 1 simplifies to “if g is a vertex and γ2 has

three external edges” and the condition in 2 simplifies to “if γ2 has two external edges and

g is an internal line. ”

Example 4. In the first panel in Figure 3, γ2 has three external legs. Therefore it can be

inserted into the vertex v1 of γ1, but not into the edge e1. In the second panel, because γ1

has two external legs, it can only be inserted into an edge e2 of γ2 and cannot be inserted

into the vertex v2.

This definition can be extended to products as follows. If γ1 = γ′
∐
γ′′, then γ′

∐
γ′′ ⋆γ2

is defined for g ∈ γ′[i] ∪ γ′′[i], with i ∈ {0, 1} according to γ
[1]
2,ext as defined above. If

γ2 = γ′
∐
γ′′, then γ1 ⋆ (γ′

∐
γ′′) is defined

(γ1 ⋆ γ
′) ⋆ γ′′ .
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It can be extended to the entire Hopf algebra as an enveloping algebra by linearity.

Remark 9. Loosely speaking, this operation reverses the action of ∆. The coproduct con-

tracts away a subgraph, but looses track of where the graph was contracted from. The

insertion product start with information about where to insert a graph and “uncontracts”,

or inserts a subgraph to form a larger graph. Therefore, a graph can only be inserted at a

point where its external structure matches the structure of edges meeting that point.

Definition 20. The insertion product gives a bigraded Lie structure on the indecomposable

elements of H.

[γ1, γ2] = γ1 ⋆ γ2 − γ2 ⋆ γ1 .

On can check that this bracket satisfies the Jacobi identity by direct calculation. This

Lie algebra is generated by the indecomposable elements of H. Call it g
∨.

Lemma 3.15. The Lie algebra g
∨ on the indecomposable elements of H under the ⋆ oper-

ation is isomorphic as a Lie algebra to g defined on the primitive elements of H∨ under the

convolution product ⋆.

Proof. Let γ1, γ2 ∈ H be generators. There is a Lie bracket on the corresponding primitive

elements of H∨ defined

[δγ1 , δγ2 ] = (δγ1 ⋆ δγ2) − (δγ2 ⋆ δγ1) = (δγ1 ⊗ δγ2)∆ − (δγ2 ⊗ δγ1)∆ .

This is an element in H∨. It is only non-zero on the Lie bracket

[γ1, γ2]

in H. The two terms on the right hand side are non zero only on the 1PI graphs found in
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the products γ2 ⋆ γ1 and γ1 ⋆ γ2 respectively.
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4 Birkhoff decomposition and renormalization

As discussed in section 2.2, the Feynman rules injectively map the Feynman diagrams into

Sn(E), where E = C∞c (R6). On the 1PI graphs, for φ3 theory in six dimensions, there can

only be two or three external legs. The external leg data for a 1PI graph is given by Sn(E)

where n ∈ {2, 3}.

Since elements of the Hopf algebra H are polynomials in 1PI graphs of arbitrarily large

degree, the Feynman rules map H to the space of distributions on an arbitrary number of

external legs. If x ∈ H is a generator, a 1PI graph with 2 or 3 external legs, then it tries to

be a distribution on E such that

Feynman rules(x) ∈ Homvect(S
n(E),C) .

The result of these distributions on test functions is supposed to give physically significant

values pertaining to the physical interaction of fields that the diagram represents. However,

these distributions are often divergent, leading to the need for regularization and renormal-

ization.

The first step to extracting finite values to these divergent integrals is regularization.

One rewrites the integral in terms of a set of parameters that may yield a sensible value upon

reaching a predetermined limit. The second is renormalization, where all divergences, now

neatly captured by the parameter z, are removed. For the regularization schemes studied

in this paper, since elements of the Hopf algebra H can be written as polynomials of its

generators,

regularized Feynman rules : H →֒ Homvect(S(E), C{{z}}) . (13)
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Unlike the unregularized Feynman rules, this map is well defined.

Remark 10. Notice that equation (13) is an algebra homomorphism by the definition of the

Hopf algebra H.

There are many methods of regularization and of renormalization. In this paper I will

consider regularization schemes with one parameter that can be written as a Rota-Baxter

algebra. Dimensional regularization is an example of such a scheme, and is worked out in

[5], [6] and [8]. In section 7, I work out the example of ζ-function regularization.

Example 5. In dimensional regularization, the Feynman integrals are regularized by per-

forming a change of variables into spherical coordinates capturing the divergent parameter

in the dimension, d, of the space over which one integrates. For details, see [40], chapter 9.

After regularization, Feynman integrals are renormalized by minimal subtraction, which

uses Cauchy’s theorem to calculate the residue at z = 0. At the level of the Lagrangian,

this process introduces counterterms in the Lagrangian which cancel the divergences. In

the case of non-primitive graphs, the subtracted divergences may contain further subdiver-

gences. Therefore, in the general case, one iteratively removes divergences. This prescription

was first discovered by Bogoliubov and Parasiuk in 1957, and corrected by Hepp in 1966.

In 1969 Zimmermann proved that this prescription gets rid of all subdivergences. This has

since become known as the BPHZ renormalization prescription, and is a standard tech-

nique. Connes and Kreimer [5] showed that this method of extracting renormalized values

from Feynman graphs corresponds exactly to the extraction of finite values by Birkhoff

decomposition, as explained below.

Fix the base field for the Hopf algebra of Feynman graphs, H, as k = C for the remainder

of this paper. The regularized Feynman integral can then be expressed as a function of z,
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whose actions on the test functions result in a Laurent series in z that converges on a

suitably small punctured disk ∆ around the origin.

Bundle Note 1. The infinitesimal disk ∆ at the base of Figure 1 comes from this variation

of the regularization parameter.

Example 6. Notice that the example Lagrangian at the beginning of this paper has d = 6.

The regularization parameter is in the coordinates z = D−6. For ζ-function regularization,

the regulation occurs by raising the propagators to the complex power s. The regulator is

r = s− 1. See section 7.

One can rewrite the infinitesimal disk ∆ ≃ Spec C{z}. The punctured disk ∆∗ can be

rewritten ∆∗ ≃ Spec C{{z}}, the localization of the field of convergent Laurent series in z

at 0. Writing A = C{{z}} for short, one can decompose A into two subalgebras A− ⊕A+,

where A+ = C{z}, and A− = z−1C[z−1] is a non-unital subalgebra that contains the strictly

negative powers of z. Finally, define G = Spec H, a complex Lie group. Then sections of

the trivializable G fiber bundle, K∗ over the punctured infinitesimal disk, ∆∗, are maps

γ : ∆∗ → G .

Therefore, these sections can be written

γ : Spec A → Spec H .

There is a natural isomorphism between the group of maps between these two affine spaces

and the group of algebra homomorphisms between the corresponding algebras via the con-
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travariant functor F ,

F : Maps(Spec A, Spec H) → Homalg(H,A)

γ 7→ γ† .

Thus the space of these sections is isomorphic to the group G(A), the group of algebra

homomorphisms H → A.

Bundle Note 2. If W ⊂ K is the fiber over 0 in the K → ∆ bundle, and if K∗ = K \W ,

then G(A) is the group corresponding to the sections of K∗ → ∆∗.

Theorem 4.1. The regularized Feynman rules of a QFT defined by L are a linear map

from S(E) to G(A).

Proof. The map in (13) shows that

regularized Feynman rules : H →֒ Homvect(S(E), A) .

To see that this is an algebra homomorphism, notice that for x, y ∈ H, regularized Feynman

rules for a disjoint union of 1PI graphs x and y is just the product of the regularized Feynman

integrals associated to the graph x and to the graph y. Therefore

regularized Feynman rules ∈ Homalg(H, Homvect(S(E), A)) . (14)

The symmetric algebra on E can be written S(E) = ⊕nS
n(E). The restricted dual of

S∨(E) = ⊕nS
n∨(E), where there is an isomorphism from Sn∨(E) ≃ Sn(E). Furthermore,

53



the isomorphism Sn(E∨) ≃ Sn∨(E) gives

S(E∨) ≃ S∨(E) ≃ Homvect(S(E),C) .

Therefore,

Homvect(S(E), A) ≃ S(E∨) ⊗A .

Since an algebra homomorphism is a linear map, I can write equation (14) as

regularized Feynman rules ∈ Homlin(H, Homlin(S(E), A)) ≃

Homlin(H, S(E∨) ⊗A) ≃ Homlin(S(E), Homlin(H,A)) .

Since the regularized Feynman rules are also an algebra homomorphism, we have

regularized Feynman rules ∈ Homlin(S(E), Homalg(H,A)) ,

or

regularized Feynman rules ∈ Homlin(S(E), G(A)) .

Bundle Note 3. Certain sections of the K∗ → ∆∗ bundle correspond to the regularized

Feynman diagrams of a QFT defined by L acting on the test function f ∈ S(E). While

these sections depend on the test functions f , I write γL to mean any one of this class of

sections associated to the Lagrangian L.
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The Birkhoff decomposition theorem allows one to uniquely factor the algebra homo-

morphisms, separating out the divergent parts, (functions not defined at z = 0).

Theorem 4.2. Birkhoff Decomposition Theorem [38] Let C be a smooth simple curve

in CP1 \ ∞ which separates CP into two connected components. We call the component

containing ∞ C− and the other component C+. Let G be a simply connected complex Lie

group. For any γ : C → G, there are holomorphic maps γ± : C± → G such that γ(z)

decomposes on C as the product γ(z) = γ−(z)−1γ+(z). This decomposition is unique up to

the normalization γ−(∞) = 1.

Remark 11. The ∆ in the bundle is an infinitesimal analogue of CP1 \∞.

The Lie group G is simply connected. Since I am interested in the algebra homomor-

phisms not well defined at z = 0, I only consider loops C that do not pass through the point

z = 0. Then 0 ∈ C+, which is homeomorphic to a disk, while C− is homeomorphic to an

annulus. In the Birkhoff decomposition,

γ+ : C+ = Spec A+ → G = Spec H

is a holomorphic function which is finite at 0. That is,

γ+ : Spec A+ → Spec H .

Similarly, the map

γ− : C− → G

55



is holomorphic on near ∞. That is, γ− can be extended to define a map

γ− : Spec (C[Z]) → Spec H

where Z = z−1. The unique Birkhoff decomposition of a section

γ = γ−1
− γ+

can be written as the unique factorization of the algebra homomorphism

γ† = γ†⋆−1
− ⋆ γ+

where

γ† : H → A ; γ† ∈ G(A)

γ†+ : H → A+ ; γ† ∈ G(A+)

γ†− : H → C[Z] ; γ† ∈ G(C[Z]) .

For x ∈ H, γ†(z)(x) is a Laurent series convergent somewhere away from z = 0. The

normalization condition at the end of the Birkhoff Decomposition Theorem translates to

γ†−(Z)(ε) = 1 on the algebra homomorphisms. Furthermore, if x ∈ ker ε then γ†−(x) ∈ A−.

If x 6∈ ker ε, that is, if x ∈ C, then γ†−(Z)(x) ∈ C.

Remark 12. For ease of notation, I will write the homomorphisms γ†+(z) and γ†−(z) both as
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function of z, with the understanding that ∀x ∈ H,

γ†−(z)(x) =
0∑

−n

ai(x)z
i

for some constants ai that depend on x. Furthermore, if the z dependence is not important

to the context I will omit it.

This gives the following theorem.

Theorem 4.3. The homomorphisms γ†−(z) and γ†+(z) are both in G(A).

Connes and Kreimer in [5] find a recursive expression for γ†−(z) and γ†+(z) that cor-

responds to the BPHZ renormalization recursion, displayed below in Theorem 4.4. The

explicit forms of γ†(z) and γ†±(z) are calculated in section 5.4.1. The recursive formulas for

dimensional regularization can be generalized to using Rota-Baxter algebras. To do this,

first define a linear idempotent Rota-Baxter map P : A → A. Notice that this is not an

algebra homomorphism. Appendix A develops the theory of Rota-Baxter algebras.

Theorem 4.4. For an indecomposable x ∈ H, one can recursively define

γ†−(z)(x) = −P (γ†(z)(x) +
∑

(x)

γ†−(z)(x′)γ†(z)(x′′))

and

γ†+(z)(x) = γ†(z)(x) + γ†−(z)(x) +
∑

(x)

γ†−(z)(x′)γ†(z)(x′′) .

Proof. This is a generalization of a formula which first appeared in [5]. It is proved in detail

in Appendix A following the arguments in [10].
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Example 7. In the case of dimensional regularization and ζ-function regularization, the

Rota-Baxter map is π : A → A−, a projection onto the negative powers of Laurent series.

π : A+ ⊕A− → A−

(x, y) 7→ y .

Setting P = π, exactly recovers the Birkhoff decomposition formula of Connes and

Kreimer in [5]. In this case, γ†+(z)(x) is well defined at z = 0, but not at z = ∞. Similarly,

γ†−(z)(x) is not well defined at z = 0. It is called the pole part because it is a Laurent series

with only negative powers of z for x ∈ ker(ε).

Remark 13. For γL, a section associated to the Lagrangian L, notice that for any x ∈ ker ε,

γ†L(z)(x) ∈ A is a Laurent polynomial in the regulator, γ†L+(z)(x) ∈ A+ is a somewhere

convergent formal power series in z, and thus well defined for z = 0, and γ†L−(z)(x) ∈ A− is a

Laurent expansion with only negative powers of z, and thus undefined at z = 0. Therefore

γ†L(z), γ
†
L+(z) and γ†L−(z) are called the unrenormalized, renormalized and counterterm

parts of x respectively.

Definition 21. We can define the subgroup of renormalized algebra homomorphisms as

G+(A) = G(A+) = {γ† ∈ G(A)|γ†(z) = ε ⋆ γ†+}

and the subgroup of counterterms as

G−(A) = G(C[Z]) = {γ† ∈ G(A)|γ†(z) = γ†⋆−1
− ⋆ ε} .
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Proposition 4.5. The composition (γ†◦S)(z) defines the inverse map under ⋆. Specifically,

(γ† ◦ S)(z) = γ†⋆−1(z) .

Proof. The equation

(γ† ◦ S)(z) ⋆ γ†(z) = γ†(z) ⋆ (γ†− ◦ S)(z) = ε

comes directly from equation (8).

Bundle Note 4. The group G(A) corresponds to the group of sections of the trivializable

bundle K∗ → ∆∗, with

γ : ∆∗ → ∆∗ ×G .

Remark 14. For ease of notation, henceforth, elements of G(A) will be noted by γ†. The

symbol γ will be reserved for the sections or loops discussed in this section. The letters x

and y will represent the elements of the Hopf algebra H.
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5 Renormalization mass

The regularization process results in a Lagrangian that is a function of the regularization

parameter. Prior to regularization, the Lagrangian of any theory is scale invariant. That is

∫

Rn

L(x) dnx =

∫

Rn

L(tx) dn(tx) .

When the Lagrangian is regularized, and written in terms of a regularization parameter, z,

it is no longer scale invariant. This implies that the counterterms of the associated theory

depend on the scale of the Lagrangian, which violates the physical principle of locality. In

order to preserve scale invariance, introduce a regularization mass, which is a function of

the regularization parameter and scale factor, to the regularized Lagrangian. The role of

the regularization mass is to cancel out any scaling effects introduced by regularization.

In dimensional regularization, the renormalization mass parameter, as a function of the

regularization parameter is of the form µz. The Lagrangian becomes

∫
1

2

[
(|dφ|2 − µzm2φ2) + µzgφ3

]
d6+zx ,

where m and φ are also functions of the regularization parameter z. The coupling constant

transforms as

g 7→ gµz ,

where µ is called the renormalization mass. For a thorough treatment of how this is carried

out, see [37] Ch. 9.

In the language of renormalization, the original Lagrangian is called the bare Lagrangian,
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written

LB =
1

2
(|dφB|2 −m2

Bφ
2
B) + gBφ

3
B

where the subscript B indicates the bare, or unrenormalized, quantities. One can write the

Lagrangian after the renormalization process as the sum

LB = Lct + Lfp

where Lct corresponds to the part containing the counterterms and Lfp the finite parts.

These two parts of the renormalized Lagrangian lead to counterterm and finite parts of the

Feynman integrals. Following physics conventions, I write the bare quantities in terms of

renormalized quantities:

φB =
√

1 +A(gB, z)φr ; mB = mr(1 +B(gB, z)) ; gB = grµ
−z (1 + C(gr, µ, z))

where limz→0A, B, C = ∞. For more details on this process see [37], Section 9.4 and [40],

chapters 21 and 10. For ease of notation, write Zφ = 1+A, Zm = (1+B(gB , z))
2Zφ(gB, z),

and Zg = (1 + C(gr, µ, z))Z
3/2
φ (gB, z). Then the bare Lagrangian can be written

LB =
1

2
(Zφ(gB, z)|dφ|2 −m2

rZm(gB, z)φ
2) + grZ

3/2
g (gB, z)φ

3

=
1

2
(|dφ|2 −m2

rφ
2) + grφ

3

+
1

2
((Zφ − 1)|dφ|2 − (Zm − 1)m2

rφ
2) + (Z3/2

g − 1)grφ
3 .

The second line is called the renormalized Lagrangian, consisting of finite quantities Lfp,
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and last line is the counterterm LCT . The terms Zφ, Zg and Zm appear in a Feynman

integral with different weights. For a 1PI graph, x, the weights they get under rescaling are

determined by the weight of the corresponding x ∈ H. Under scaling, this is written µY (x).

Notice that every term in the bare Lagrangian depends on gB, and thus on µ. All the

renormalization constants are determined by knowing µ. The rest of this section analyzes the

renormalization mass µ, and the dependence of g on it, given by the β-function, introduced

below. This fact is used to define the renormalization group. For a more detailed overview

of the renormalization group see [14].

5.1 An overview of the physical renormalization group

The renormalization group describes how the dynamics of a system depends on the scale at

which it is probed. Working in units where ~ = c = 1, the quantities of mass, momentum,

energy and frequency (or inverse length) have the same units. Therefore, the introduction

of the renormalization mass into the Lagrangian has the same effect as changing the energy

scale on the Lagrangian. One would expect that probing at higher energy levels, and thus

smaller length scales, reveals more details about a system than at lower energies. For a

theory to be renormalizable, one must be able to average over the extra parameters at the

higher energy, λ, and rewrite the extra information in terms of a finite number of parameters

at a lower energy, µ. The Lagrangian at the energy scale µ obtained by this averaging is

called the effective Lagrangian at µ, (L, µ). For a specified set of fields and interactions the

effective Lagrangian at a µ is a Lagrangian with coefficients which depend on the scale, µ.

Formally, let M ≃ R+ be a non-canonical energy space with no preferred element. Fix

a set of fields and interactions. Call S the set of effective Lagrangians (for this set of fields

and interactions) in the energy space, M . One can always find the effective Lagrangian at
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a lower energy scale, (L, µ) if the effective Lagrangian at a higher energy scale, (L, λ) is

known, by averaging over the extra parameters. That is, for λ, µ ∈ M such that λ > µ,

there is a map

Rλ,µ : S → S (15)

so that the effective Lagrangian at µ is written Rλ,µL for L ∈ S. The map in (15) can be

written as an action of (0, 1] on S ×M :

(0, 1] × (S ×M) → S ×M

t ◦ (L, λ) 7→ (Rλ,tλL, tλ) .

(16)

The map Rλ,µ satisfies the properties

1. Rλ,µRµ,ρ = Rλ,ρ .

2. Rλ,λ = 1 .

Definition 22. The set {Rλ,µ} forms a semi-group called the renormalization group in the

physics literature.

The renormalization group equations can be derived from differentiating the action in

(16) as

∂

∂t
(Rλ,tλLB) = 0 .

This differential equation gives rise to a system of differential equation which describe the

t dependence of the bare parameters, mB, gB and φB, in Rλ,tλLB.

Recall that all the parameters in LB depend on the bare couping constant gB. Therefore,
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by solving for gB, one can solve all the renormalization group equations. The β-function

describes the t dependence of gB. After identifying this dependence the t dependence of all

the other parameters in the renormalization group equations can be written as function of

β. To find the β-function, define a flow on the renormalization group as in (16)

µ→ tµ .

Then gB becomes a function of t and the β-function can be written as

β(gB) = t
∂gB
∂t

with the initial condition gB(1) = gB. The β-function is a generator of the renormalization

group flow.

Remark 15. The counterterm of the Lagrangian of φ3 theory under dimensional regulariza-

tion does not depend on the energy scale:

∂

∂t
(Rλ,tλLct) = 0 . (17)

This turns out to be a key criterion for defining the β-function in the Connes-Marcolli

renormalization bundle.

This development of the renormalization group and renormalization group equations

follows [14]. For details on the renormalization group equations for a φ4 theory, QED and

Yang-Mills theory, see [40] chapter 21 or [37] Chapter 9.

Example 8. The β-functions are calculated in terms of a power series in the coupling

constant. The following are the one loop approximations of the β-functions for various
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theories. [40] [42]

1. For the scalar φ4 theory in 4 space-time dimensions,

β(g) =
3g2

16π2
.

2. For QED, the β-function has the form

β(e) =
e3

12π2
+O(e5)

where e is the dimensionless electric charge.

3. For QCD, the β-function has the form

β(g) = − 1

48π2
(33 − 2Nf )g

3

where Nf is the number of fermions.

4. For a general Yang-Mills theory with symmetry group G, the β-function has the form

β(g) = − 11g3

48π2
C2(G)

where C2 is the quadratic Casimir operator.

Connes and Marcolli show that for a scalar theory under dimensional regularization, the

β-function can be written as an element of the Lie algebra associated to the Hopf algebra

associated to the theory. The β-functions above result from evaluating the corresponding

Connes-Marcolli β-function on the sum of the one loop diagrams of the theory. This is

discussed in section 5.5
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The Connes-Marcolli β-function requires a more general construction of the renormal-

ization group and effective Lagrangians. In the renormalization bundle, M ≃ C× and allows

a C× action on S ×M . This generalized renormalization group is actually a group. For a

general regularization scheme, the renormalization group flow is given by

t ◦ (LB, λ) = (Rλ,λ(t)LB, λ(t))

with t ∈ C×. For dimensional regularization, this flow is given by λ(t) = tλ as above. This

is defined in more detail in the next section.

Remark 16. The renormalization group is represented by an action of C× on B, the C×

principal bundle over ∆. The renormalization flow is represented by the C× action on the

sections of the K∗ → ∆∗ bundle. For more information see sections 5.2 and 5.5.

• The action in (16) is defined by the ratio of the Lagrangian at the smaller energy

scale, µ, to the original energy scale, λ, where t = µ
λ . Geometrically, I represent the

regularized Lagrangian at the energy scale λ by the section γ(z) and the regularized

Lagrangian at energy scale µ by γtz(z). Then the quantity

(Rλ,tλLB, tλ) = htz = γ†⋆−1(z) ⋆ γ†tz .

• In order to calculate the β-function, I am interested in the original Lagrangian, i.e.

at z = 0. Therefore, I take the limit of the quantity above

Ft(γ
†) = lim

z→0
htz(γ

†(z)) .

Note that the right-hand side still depends nontrivially on t.
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• The β-function is defined on sections of the form γtz as

β(γ†) :=
dFt(γ

†)

dt
|t=1 .

• The physical section γL has the additional property that

d

dt
γ†tz−(z) = 0 .

The evaluation of the counterterm on a 1PI graph x does not depend on the mass

scale. The set of sections that share this property are called local sections.

The following sections detail the implementation of the renormalization mass term, intro-

duce the set of the physically significant algebra homomorphisms, and the renormalization

group in the context of the Hopf algebra. I also define and describe properties of the physical

sections.

5.2 Renormalization mass parameter

The sections of the bundle K → ∆ can be adjusted to incorporate the action of the renor-

malization mass parameter in the Lagrangian. The renormalization group C×, which is

parametrized by the renormalization mass, acts on the bundle K → ∆. This forms a new

bundle P ≃ K × C× → B ≃ ∆ × C×. The group of sections of this bundle is given by the

semidirect product of G(A) with C× over the C× action, G(A)⋊θC×. This section develops

this new group.

Remark 17. I use the notation t(s) := es, with s ∈ C. In fact, for many purposes it is useful
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to parameterize C× by the exponential map

exp : C → C×

s 7→ t(s) = es .

This is the notation in much of the literature. When the parameter s is not important, I

shorten the notation to t.

Before studying the action of C× on G(A), one first needs to study the filtration on H∨.

This will allow the introduction of the semi-direct product structure.

5.2.1 The grading operator

The filtration on the Hopf algebra induces a derivation and a one-parameter group of auto-

morphisms on both H and H∨.

Proposition 5.1. 1. The operator,

Y : GrnH → GrnH

x 7→ nx = |x|x

is a grading preserving derivation.

2. Exponentiating Y yields a one parameter group of grading preserving multiplicative

automorphisms

θs(x) = eY sx = ens(x) (18)

for x ∈ GrnH with s ∈ C .
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Proof. [25] Obviously, the operation Y is grading preserving. If x ∈ Grn, then so is nx. To

see that Y is a derivation, for x ∈ Grn and y ∈ Grm,

Y (xy) = (m+ n)xy = Y (x)y + xY (y) .

Similarly, if x ∈ Grn, then so is θs(x) = ensx for s ∈ C. Thus θs is grading preserving.

To see that it is a multiplicative automorphism, for x ∈ Grn and y ∈ Grm,

θs(xy) = es(m+n)xy = θs(x)θs(y) .

Definition 23. Both of these operators can be defined on g(A) as a derivation and one

parameter group of automorphisms by Y (f)(x) = f ◦ Y (x) and θs(f)(x) = f ◦ θs(x) with

f ∈ L(H,A), and x ∈ H.

Lemma 5.2. For x ∈ ker ε,

Y −1(x) =

∫ ∞

0
θ−s(x)ds

where the integral is taken along the real axis.

Proof. [7] Since H is positively graded,

∫ ∞

0
θ−s(x)ds =

∫ ∞

0
e−Y s(x)ds = −Y −1e−Y s(x)|∞0 = Y −1(x) .

Since θ−s(x) is a holomorphic function in s, by the Cauchy Integral Theorem, the integral

can be taken along any other path in C with the same endpoints. Let ρ : R≥0 → C be a
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path in C such that ρ(0) = 0 and lims→∞ ρ(s) = ∞. Then I can write

Y −1(x) =

∫ ∞

0
θ−s(x)ds =

∫

ρ
θ−s(x)ds

where the integral on the left is taken over the real line while the integral on the right is

taken over the path ρ. This extends to a definition of Y −1 for γ† ∈ g(A), by remark 8:

Y −1(γ†(z)) =

∫

ρ
θ−s(γ

†(z))ds . (19)

This is well defined because g(A) ⊂ H∨(1)(A).

5.2.2 Geometric implementation of the renormalization group

Now I have developed the tools to build the bundle that geometrically captures the action

of the renormalization group.

Definition 24. 1. ∆ is a disk centered at the origin. As previously introduced, this

is the infinitesimal disk of a single complex regularization parameter centered at the

origin. The parameter z ∈ ∆.

2. K is a trivializable G bundle over ∆.

3. B is a C× principal bundle over ∆. The space B consists of the dimensional parameter,

z, and the mass parameter, t, representing a single renormalization mass parameter.

Let σt(z) = (z, tz) be a section of this bundle.

4. The bundle P → B comes from a product of C× with the bundle K. Its sections

are of the form (γ, t), where γ is a section of K → ∆. The result of a C× action on

γ, written γt = tY γ is a section of P , written (tY γ, 1). Recall that Y is the grading
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operator on H.

5. Let V ⊂ B be the fiber over 0 ∈ ∆ in B and W ⊂ K be the fiber over 0 ∈ ∆ in K.

Then B∗ = B \ V , P ∗ = P \ (V ×G), K∗ = K \W and ∆∗ = ∆ \ 0.

Notice P ∗ is a trivializable bundle over B∗ (and likewise ∆∗). B∗ is a trivializable bundle

over ∆∗.

The C× component in B plays the role of the renormalization group introduced in section

5.1. Notice that C× is the affine group scheme associated to the Hopf algebra C[t, t−1] with

the co-product ∆(t) = t⊗ t. Thus the C× action on H given by θ

C× ×H → H

(t, x) 7→ tY x

has the associated affine group scheme G̃ = G ⋊θ C×. On the level of group schemes, this

corresponds to the group homomorphism

ρ : G̃ → C×

with kernel G.

The θs operator on H can be extended to G(A) by

θsγ
†(x) = tY γ†(x) = γ†(t(s)Y x)

with x ∈ H. This action defines an affine group scheme G̃(A) = G(A) ⋊θ C×. The natural
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homomorphism G̃(A) → C× with kernel G(A) corresponds to an automorphism

C× → Aut(G(A))

t 7→ tY γ†(z) .

Bundle Note 5. The group G̃(A) corresponds to the group of sections of the P ∗ → B∗

bundle.

The structure of the group G̃(A) is as follows:

Definition 25. Let

G̃(A) := G(A) ⋊θ C× .

The C× action on G(A) is given by

(γ†(z), t) = γ†(z)tZ0 (20)

where Z0 is a generator of the Lie algebra of C×.

Remark 18. Notice the similarity between the action in (20) and the action in (16). For γL,

a section of K∗ → ∆∗, corresponds to the regularized Feynman rules for a Lagrangian L.

The sections of P ∗ → B∗ , (γL, t) ∈ G̃(A) correspond to the regularized Feynman rules of

an effective Lagrangian written as a function of the scaling parameter.

This defines a new Lie algebra on G̃(A) .

Definition 26. Define

g̃(A) := Lie(G̃(A)) = g(A) ⊕ CZ0 .
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with a Z0 satisfying

[Z0, x] = Y (x)

for x ∈ H and

tZ0 = t

for t ∈ C×.

Lemma 5.3. For s ∈ C, the operator Z0 is related to θs by the formula

esZ0γ†(z)e−sZ0 =
∞∑

0

(sY )n(γ†(z))

n!
= θs(γ

†(z)) .

Proof. The first equality comes directly from the Baker-Hausdorff formula

eABe−A =
∞∑

0

Bn
n!

for A,B elements of a non-commutative algebra where B0 = B, Bn = [A,Bn−1].

The middle term is simply the operator esY γ†, so the second equality is definitional.

The action of C× in G̃(A) is really an action of C that factors through C×. The lifted

action is given below.
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Lemma 5.3 gives

θs : C× → Aut (G(A))

t(s) 7→ t(s)Z0γ†(z)t(s)−Z0 .

The product on this group is defined by

(γ†, t(s)) ⋆ (γ†
′
, t(s′)) = (γ† ⋆ θsγ

†′ , t(s)t(s′)) .

The inverse is given by

(γ†, t(s))⋆−1 = (θ−sγ
†⋆−1, t(−s)) (21)

since

(γ†, t(s)) ⋆ (θ−sγ
†⋆−1, t(−s)) = (γ†θs(θ−s)γ

†⋆−1, 1) = (ε, 1)

and

(θ−sγ
†⋆−1, t(−s)) ⋆ (γ†, t(s)) = (θ−sγ

†⋆−1θ−sγ
†, 1) = (θ−s(γ

†⋆−1 ⋆ γ†), 1) = (ε, 1) .

Elements of the form tY γ ∈ G(A) are written as (tY γ, 1) ∈ G̃(A).

Remark 19. The sections of the bundle P → B are equivariant under the action of C×.

Recall from Section 5.1 that the renormalization mass term varies with the complex

regularization parameter as µz. Generally speaking, a regularization process defines how a

mass parameter depends on the regularization parameters. Geometrically, this is written
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as a pullback of over the section of the B → ∆ bundle. Specifically, for the Lagrangian in

this paper, the action of the renormalization group on sections γL,f are pulled back over

sections of the form

σp : ∆ → B

z 7→ (z, pz)

with p(s) = es for s ∈ C.

Bundle Note 6. Pulling back over σp is the same as fixing the scale of the effective

Lagrangian given in section 5.1 to p.

Remark 20. The regularization schemes in this paper are dimensional regularization and

ζ-function regularization. The regularized Lagrangian for both of these schemes is the one

presented in Section 5.1. For different regularization schemes, one can generalize to any

section σ of B → ∆. This is done in Section 6.

At this scale, the section, γLpz on the P ∗ → ∆∗ bundle defined

σ∗p(t
Y γL,f ) = pzY γL,f . (22)

By abuse of notation, I pullback by sections σt, and write the corresponding sections of

the P ∗ → ∆∗ bundle γtz .

Fixing the renormalization scale by pulling back over σt gives a bijection from G(A) to

G(A).
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Lemma 5.4. For each γ†, there is a bijection

htz : G(A) → G(A)

γ†(z) 7→ γ†−1(z) ⋆ γ†tz(z) .

Proof. [11] To see that htz is a bijection, notice that htz(γ
†) ∈ G(A) can be defined re-

cursively for x ∈ GrmH in the mth graded component of H using the definition of the ⋆

product

tmzγ†(z)(x) =

γ†(z)(x)htz(γ
†(z))(1) + γ†(z)(1)htz(γ

†(z))(x) +
∑

(x)

γ†(z)(x′)htz(γ
†(z))(x′′) .

Recalling that γ†(z)(1) = htz(z)(1) = 1, this simplifies to the recursive expression

htz(γ
†(z))(x) = γ†(z)(x) − tmzγ†(z)(x) +

∑

(x)

γ†(z)(x′)htz(γ
†(z))(x′′)

and htz(γ
†(z)) can be defined recursively over m given γ†(z) and vice-versa.

Corrollary 5.5. The map htz corresponds to an injection from sections of K∗ → ∆∗ to

sections on P ∗ → ∆∗. This is a one family parameter in the bundle P ∗ → ∆∗.

Bundle Note 7. The quantity htz(γ
†(z)) is a one parameter family in G(A) that describes

how a section of K∗ → ∆∗ changes under an action of the renormalization group. It is

the ratio of the section under the renormalization group to the section prior to the action.

Viewed as a section of P ∗ → ∆∗ it describes the effect of the renormalization group on the

regularized theory at a fixed scale.
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5.3 Local counterterms

Regularized QFTs that have counterterms invariant under scaling,

d

dt
(γL tz)− = 0 ,

are said to have local counterterms. These play an important role in the physics literature.

Similarly, they have a pivotal role in the renormalization bundle. Connes and Marcolli [8]

and Manchon [25] show that these are the only sections for which the β-function is defined,

see section 5.5. This section examines the subset of G(A) whose counterterms do not depend

on the mass scale.

Definition 27. Let GΦ(A) ⊂ G(A) be the subset of G(A) respecting the physical condition

(17) that the counterterms of γ†tz , (γ†tz)−(z), do not depend on the the mass scale. More

precisely,

GΦ(A) = {γ† ∈ G(A)| d
dt

(γ†tz)− = 0} .

That is, for γ ∈ GΦ(A), (γ†tz)− = γ†−.

For this to be truly physical, the mass parameter would be t ∈ R+, and the counterterm

of the graph x ∈ H given by (γ†t )−(z)(x) would be independent of the real renormalization

mass term t.

Remark 21. The sections corresponding to the unrenormalized, renormalized and countert-

erm part of a regularized Lagrangian, γ†L, γ
†
L+ and γ†L− from Remark 13 are elements of

GΦ(A).

I can now define the collection of algebra homomorphisms corresponding to the physi-
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cally meaningful evaluations on the counterterms and finite parts of a section.

Definition 28. 1. Define GΦ
−(A) ⊂ GΦ(A) as the subset consisting solely of the pole

parts of the Birkhoff decomposition of a γ† ∈ G(A). That is,

GΦ
−(A) = {γ̃†(z) ∈ GΦ(A)| ∃ γ†(z) ∈ GΦ(A) s.t. γ̃†(z) = γ†⋆−1

− } .

2. Define GΦ
+(A) = G+(A) ⊂ GΦ(A) as the set consisting solely of the holomorphic parts

of the Birkhoff decomposition of a γ† ∈ G(A). That is,

GΦ
+(A) = {γ†(z) ∈ GΦ(A)| s.t. γ†− = ε} .

Remark 22. A point of clarification on Birkhoff Decomposition and counterterms: Birkhoff

decomposition is preserved by the action of the renormalization group C×. For any γ† ∈

G(A), with γ† = γ†⋆−1
− ⋆ γ†+,

γ†t = (γ†⋆−1
− (z))t ⋆ (γ†+(z))t = (γ†t )

⋆−1
− (z) ⋆ (γ†t )

⋆−1
+ (z) .

The first equality is given by automorphism, and not by Birkhoff decomposition. The

second equality is the Birkhoff decomposition. Because the action of tY does not have a

z dependence, it cannot effect the pole structure of γ†−. By uniqueness of the Birkhoff

decomposition,

(γ†−(z))t = γ†t−(z) ; (γ†+(z))t = γ†t+(z)
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G Spec H.
G(A) The A valued points of G, corresponding to loops from ∆∗ to G .

G̃(A) G(A) ⋊θ C×. The affine group scheme corresponding to the actions of the
renormalization mass on G(A).

GΦ(A) {γ† ∈ G(A)| ddt(γ
†
tz)− = 0}, corresponding to sections with invariant coun-

terterms.
GΦ
−(A) Counterterms of elements of GΦ(A).

GΦ
+(A) Renormalized parts of elements of GΦ(A).

Table 1: Important groups involving G

However, Birkhoff decomposition is not preserved under pullbacks over σt. For γ†tz ∈ G(A),

(γ†⋆−1
− (z))tz 6= (γ†tz)

⋆−1
− (z) and (γ†+(z))tz 6= (γ†tz)

⋆−1
+ (z) .

Explicit calculation shows that (γ†⋆−1
− (z))tz is not in G(A−). See section 5.6 for details.

For clarity, Table 1 lists the various subsets of and groups related to G(A).

5.4 Maps between G(A) and g(A)

This section first establishes the bijection between the Lie algebra g(A) and the Lie Group

G(A). Then it develops some related tools that will help in understanding the renormaliza-

tion group, its flow, and generator. Finally it defines and examines β, the beta function.

5.4.1 The R̃ bijection

Manchon [25] defines a bijection from the Lie group G(A) to the Lie algebra g(A) using the

grading operator Y .

Theorem 5.6. For γ† ∈ G(A), one can rewrite

γ† ◦ Y = γ† ⋆ ψ (23)
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with ψ ∈ g(A). This defines a bijective correspondence

R̃ : G(A) → g(A)

γ† 7→ ψ = γ†⋆−1 ⋆ Y (γ†) .

Proof. This is a different proof from the one given in [25].

Let φ(z) and ψ(z) be two elements in L(H,A, ⋆). The map R̃(φ) = ψ is defined as

φ(Y (x)) = φ ⋆ R̃(φ)(x) (24)

for any x ∈ H.

To show that

R̃ : G(A) → g(A)

consider φ(z) ∈ G(A). Then φ(xy) = φ(x)φ(y) for x, y ∈ H, and

R̃(φ(z))(x) = ψ(z) = φ⋆−1 ⋆ Y (φ(z)) . (25)

Notice that R̃(φ)(1) = 0. For an indecomposable element x ∈ Hi,·, equation (25) gives

ψ(x) = nφ(x) +
∑

(x)

φ⋆−1(x′)Y (φ)(x′′)

and equation (24) gives

nφ(z)(x) = ψ(x) +
∑

(x)

φ(x′)ψ(x′′) . (26)
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For two indecomposable elements x ∈ GrlH and y ∈ GrmH, and φ(z) ∈ G(A), equation

(25) can be rewritten

ψ(z)(xy) = (φ⋆−1 ⊗ Y (φ))(∆(x)∆(y)) = (l +m)φ(x)φ(y) +mφ⋆−1(x)φ(y)+

lφ⋆−1(y)φ(x) +
∑

(x)(φ
⋆−1(y)φ⋆−1(x′)Y (φ)(x′′)+

φ⋆−1(x′)Y (φ)(x′′)φ(y) + φ⋆−1(x′)φ(x′′)mφ(y)) +
∑

(y)(φ
⋆−1(x)φ⋆−1(y′)Y (φ)(y′′)+

φ⋆−1(y′)Y (φ)(y′′)φ(x) + φ⋆−1(y′)φ(y′′)lφ(x))+

∑

(x)(y) φ
⋆−1(x′)φ⋆−1(y′)(Y (φ)(x′′)φ(y′′) + φ(x′′)Y (φ(y′′))) .

(27)

The first line of (27) simplifies to

Y (φ(x))φ(y) + φ(x)Y (φ(y)) + φ⋆−1(x)Y (φ(y)) + φ⋆−1(y)Y (φ(x)) .

Using equation (26) and rewriting ε as

φ⋆−1 ⋆ φ(x) = ε(x) = φ⋆−1(x) + φ(x) +
∑

(x)

φ⋆−1(x′)φ(x′′)

the second line of (27) simplifies to

(φ⋆−1(y) + φ(y))(ψ(x) − Y (φ(x))) + (ε(x) − φ⋆−1(x) − φ(x))Y (φ(y)) .

Likewise, the third line becomes

(φ⋆−1(x) + φ(x))(ψ(y) − Y (φ(y))) + (ε(y) − φ⋆−1(y) − φ(y))Y (φ(x)) ,

81



and the fourth becomes

(ψ(x) − Y (φ(x)))(ε(y) − φ⋆−1(y) − φ(y)) + (ψ(y) − Y (φ(y)))(ε− φ⋆−1(x) − φ(x)) .

Putting these four together and simplifying gives

ψ(xy) = ψ(x)ε(y) + ψ(y)ε(x) .

That is, ψ is an infinitesimal generator of L(H,A), and therefore in g(A), and

R̃ : G(A) → g(A) .

To check that this map is surjective, for any ψ(z) ∈ g(A), once can iteratively define

R̃−1(ψ) by equation (23) with x ∈ GrnH. Let R̃−1(1) = b, and ψ(1) = 0,

nR̃−1(ψ)(x) = bψ(x) +
∑

(x)

R̃−1(ψ)(x′)ψ(x′′) .

Therefore, given b, one can uniquely calculate R̃−1ψ(x) given ψ(x) by recursion on n. To

check that R̃−1(ψ) ∈ G(A), apply equation 25 to the product xy where x ∈ GrlH and

y ∈ GrmH are two indecomposable elements. Let φ ∈ {R̃−1(ψ)}.

Y (φ(xy)) = (φ ⋆ ψ)(∆x)(∆y)

= φ(x)ψ(y) + φ(y)ψ(x) + φ(x)
∑

(y)

φ(y′)ψ(y′′) + φ(y)
∑

(x)

φ(x′)ψ(x′′)
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since ψ(xy) = 0 if l, m > 0. This simplifies to

Y (φ(xy)) = φ(x)(ψ(y) +
∑

(y)

φ(y′)ψ(y′′)) + φ(y)(ψ(x) +
∑

(x)

φ(x′)ψ(x′′))

= φ(x)Y (φ(y)) + φ(y)Y (φ(x)) = Y (φ(x)φ(y)) .

That is, R̃−1(ψ)(xy) = φ(xy) = φ(x)φ(y). Furthermore, if y = 1, equation (25) becomes

Y (φ(xy)) = Y (φ(x)) = φ(y)ψ(x) + φ(y)
∑

(x)

φ(x′)ψ(x′′) = φ(1)Y (φ(x)) .

Therefore, there is a unique b = R̃−1(1) and the map R̃ is a bijection. Since R̃−1(1) = 1

and R̃−1(ψ)(xy) = R̃−1(ψ)(x)R̃−1(ψ)(y), R̃−1(ψ) ∈ G(A).

Since R̃ is a bijective correspondence, define an inverse map

R̃−1 : g(A) → G(A)

as follows. Notice that for γ† ∈ G(A) such that γ† = R̃−1(ψ), (23) can be rewritten

R̃−1(ψ) = γ†(x) =







(Y −1(γ† ⋆ ψ))(x), x ∈ ker ε;

x, x ∈ C.

where Y −1 is as defined in Remark (19).

The rest of this section is an exposition on Araki’s expansional notation, as given by

[25] [7].

Proposition 5.7. [25] Let ψ ∈ g(A) and γ† ∈ G(A). Then one can write

γ† = R̃−1(ψ) = ε+ Y −1(R̃−1(ψ) ⋆ ψ) (28)
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where ε is accounts for the fact that γ†(1) = 1 for γ† = R̃−1(ψ).

This expression can be rewritten using the following definition.

Definition 29. [7] Recursively define a set of functions

{di} : g(A) → H∨(1)

as follows:

Y (d1(α)) = α (29)

Y (dn(α)) = dn−1 ⋆ α (30)

for α ∈ g(A).

Since Y −1 is defined on g(A), these functions can be rewritten according to equation

(19) as

d1(α) = Y −1(α) =

∫

ρ
θ−s(α)ds (31)

dn+1(α) = Y −1(dn ⋆ α) =

∫

ρn

θ−sn(. . .

∫

ρ1

(θ−s1(α)ds1) ⋆ . . . α)dsn (32)

where ρi(0) = 0 and lims→∞ ρi(s) = ∞, and α ∈ g(A).

Remark 23. Since the function θsi
(α) is holomorphic in si ∈ C, by Cauchy’s integral formula,

the functions dj(α) do not depend on the paths {ρ1, . . . , ρj}. For ease of calculation, and to

maintain consistency with Araki who works over the real numbers, the following calculations

will be done over the positive real axis, R≥0 ⊂ C.

The proposition above becomes:
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Proposition 5.8. [25] Given a γ† ∈ G(A), there exists a unique ψ ∈ g(A) such that

R̃−1(ψ(z)) = γ†(z) = ε+
∞∑

1

dn(ψ) .

To prove this proposition, one only needs to check that the sum is well defined.

Lemma 5.9. The sum
∑∞

1 dn(α) is well defined.

Proof. Since α ∈ g(A), it is in H∨(1) Therefore, dn(α) ∈ H∨(1). The assertion follows from

local finiteness of H∨.

Proof. Expanding (28) gives, for ψ(z) ∈ g(A) and γ†(z) ∈ G(A),

γ†(z) = R̃−1(ψ(z)) = ε+
∞∑

n=1

Y −1(. . . Y −1(
︸ ︷︷ ︸

n times

ψ(z)) . . .) .

But

Y −1(. . . Y −1(
︸ ︷︷ ︸

n times

ψ(z)) . . .) = dn(ψ(z)))

from equation (32), so this is can be rewritten

γ†(z) = ε+
∞∑

n=1

dn(ψ(z))

proving Proposition 5.8.
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Proposition 5.10. [25] One can write

R̃−1(ψ(z)) = γ† = lim
r→∞

e−rZ0er(Z0+ψ(z))

with r ∈ R≥0.

Proof. For α ∈ g(A), rewrite equation (32) using Lemma 5.3 and Araki summation notation

[1] by integrating along the non-negative real axis, as specified in remark (23),

dn(α) =

∫ ∞

0
⋆
n
j=1e

−(
Pn

j ri)Z0αe(
Pn

j ri)Z0dr1 . . . drn

=

∫ ∞

0
e−(

Pn
1 ri)Z0α ⋆ er1Z0α ⋆ . . . ⋆ ern−1αerndr1 . . . drn .

Since 0 ≤ ri ≤ ∞, rewrite this as

= lim
r→∞

∫

Pn
i=1 ri≤r

e−(
Pn

1 ri)Z0α ⋆ er1Z0α ⋆ . . . ⋆ ern−1αerndr1 . . . drn .

Let r0 = r −∑n
1 ri. Then rewrite

dn(α) = lim
r→∞

e−rZ0

∫

Pn
i=1 ri≤r

er0Z0α ⋆ . . . ern−1αerndr1 . . . drn .

Then, using the formula from [1], that given A, B in a unital Banach algebra,

er(A+B) = 1 +
∞∑

n=1

∫

Pn
i=0 ri=r, ri>0

er0BA ⋆ . . . ern−1BAernBdr1 . . . dsn

and Proposition 5.8 gives the desired identity.

Connes and Marcolli [7] define an object called the time ordered expansional based on
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these calculations.

Definition 30. Let α(r) be a smooth g(A) valued function, for r ∈ R≥0 and some C algebra

A. Define

Te
R b

a
αdr = ε+

∞∑

1

∫

0≤r1≤...≤rn≤b
α(r1) · · ·α(rn)dr1 . . . drn .

This definition can be generalized to integrals over general paths ρ ∈ C by writing the

above integrals as path integrals.

Definition 31. Let α(s) be a smooth g(A) valued function, for s ∈ C and some C algebra

A. Let ρ be a curve in C parameterized by r ∈ R≥0. Define

Te
R

ρ
αds = ε+

∞∑

1

∫

0≤r1≤...≤rn≤r
[α(ρ(r1))ρ

′(r1)] · · · [α(ρ(rn))ρ
′(rn)]dr1 . . . drn

with ρ(0) = a and ρ(r) = b.

In defining R̃−1, recall that θs(ψ) is holomorphic in s. Therefore R̃−1 can be defined

over any curve in C.

Theorem 5.11. Let ρ be a curve in C, parameterized by r ∈ R≥0 such that ρ(0) = 0 and

limr→∞ ρ(r) = ∞. Then

R̃−1(ψ(z)) = γ†(z) = Te
R

ρ
θ−s(ψ(z))ds .

Proof. Let α(s) = θ−s(ψ). The result follows from Equation (32) and Proposition 5.8.
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Remark 24. The map Te
R

ρ
θ−s(α)ds, where ρ(0) = 0 and limr→∞ ρ(r) = ∞, is the exponential

map from the Lie algebra g(A) to the Lie group G(A). R̃ is just the inverse of this map.

Specifically, for γ† ∈ G(A),

γ† = Te
R

ρ
θs(R̃(γ†))ds .

The following properties of Te
R b

a
αdt can be found in [7] and [1].

Theorem 5.12. 1. For any curve ρ in C such ρ(0) = a and ρ(1) = b, Te
R

ρ
αds ∈ G(A).

2. One has

Te
R a

a
αdt = 1 .

If η is another curve in C such that η(0) = b and η(1) = c

Te
R

ρ
αds ⋆ Te

R

η
αds = Te

R

ρ·η αds

where ρ · η indicates the curve formed by first following ρ and then η.

3. Define g(b) = Te
R

ρ
αds. Then g(b) ∈ G(C) is the unique solution at t = b to the

differential equation

dg(t) = g(t)α(t)dt; g(a) = 1 .

4. Let Ω ⊂ C2 and for s, t ∈ C2, let

ω(s, t) = α(s, t)ds+ β(s, t)dt
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be a g(C) valued flat connection. That is

∂tα− ∂sβ = [α, β] .

Let ρ be a path in Ω with ρ(0) = a and ρ(1) = b. Then Te
R 1
0 ρ

∗ωdt depends only on the

homotopy type of the path ρ.

Proof. [7] proves these facts for ρ(t) = t. The rest follows from remark (23).

By its connection to the time ordered expansional, the map R̃ has important properties

when restricted to the physically significant sections GΦ(A). This is the subject of the next

section.

5.4.2 The geometry of GΦ(A)

Since the sections in GΦ(A) satisfy the condition

d

dt
γ†tz = 0 ,

they are the also the sections that define a β-function of the form found in physical theories.

Since the β-function of a theory lies in the Lie algebra g(C), I first examine the image of

GΦ(A) in g(A). This section follows the arguments in [11].

Theorem 5.13. The following restrictions of the map R̃ hold:

1. zR̃ restricts to a bijective correspondence

zR̃ : GΦ(A) → g(A) ∩ L(H,A+) .
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2. zR̃ further restricts to a bijective correspondence

zR̃ : GΦ
−(A) → g := g(C) .

Proof. See [11].

That is, the map zR̃ identifies the physically interesting evaluations, GΦ(A), with the the

sub-Lie algebra that maps to holomorphic functions. The evaluations of the counterterms

are identified with the sub-Lie algebra that maps to constants.

To understand this structure, notice the following relations about htz and R̃ from [11]:

Theorem 5.14. 1. For any γ†(z) ∈ G(A),

d

dt
htz(γ

†)(z) |t=1= zR̃(γ†(z)) . (33)

2. The restriction of htz to GΦ(A) maps to G(A+).

htz : GΦ(A) → G(A+)

γ†(z) 7→ γ†⋆−1
+ (z) ⋆ (γ†tz)+(z) .

Proof. These calculations are also shown in [11]:

1. Since γ†tz = tzY γ†t , differentiating gives

d

dt
γ†tz(z)|t=1 = z(γ† ◦ Y )(z) = zγ†(z) ⋆ R̃(γ†(z)) .
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The definition of htz comes from (23)

γ†tz(z) = γ†(z) ⋆ htz(γ
†)(z) .

Differentiating both sides,

d

dt
γ†tz(z)|t=1 = γ†(z) ⋆

d

dt
htz(γ

†)(z)|t=1 ,

so

d

dt
htz(γ

†)(z) |t=1= zR̃(γ†(z)) .

2. Birkhoff decomposition gives

γ†tz(z) = (γ†tz)
⋆−1
− (z) ⋆ (γ†tz)+(z) .

Since γ†(z) ∈ GΦ, (γ†tz)− = γ†−. Therefore

γ†tz(z) = (γ†)⋆−1
− (z) ⋆ (γ†tz)+(z)

= γ†(z) ⋆ (γ†)⋆−1
+ (z) ⋆ (γ†tz)+(z) .

Since

γ†tz(z) = γ†(z) ⋆ htz(γ
†(z)) = γ†(z) ⋆ (γ†)⋆−1

+ (z) ⋆ (γ†tz)+(z)
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one has

htz(γ
†)(z) = (γ†)⋆−1

+ (z) ⋆ (γ†tz)+(z) .

Both terms on the right hand side are in G(A)+, so (htzγ
†)(z) ∈ G(A)+.

The second statement of this theorem is not surprising, given the definition of GΦ(A).

It states that if a the counterterm of a section does not depend on the renormalization mass

parameter (i.e. d
dt(γtz)− = 0), then the action of the renormalization group is defined at

z = 0.

Remark 25. The first statement of this theorem says that for a regularized theory γL, zR̃

measures the dependence of the unscaled renormalized theory on scaling.

5.5 Renormalization group flow and the β-function

Physically, the β-function is defined as the derivative of the renormalization group flow at

the original Lagrangian (when z = 0). Geometrically, the flow is related to htz(γ) at a

specified scale, t. Following Connes and Kreimer in [6], define Ft as the limit of htz at

z = 0.

Definition 32. Define an operator Ft as the limit of the operator htz on sections of the

P ∗ → ∆∗ bundle

Ft(γ
†) = lim

z→0
htz(γ

†) = lim
z→0

γ†⋆−1(z) ⋆ γ†t (z) .

The operator htz defined the ratio of the section γ acted upon by tzY with itself for a
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general z. That ratio, for the unregularized theory z = 0, is given by Ft. These limits are

not well defined on all of G(A).

Remark 26. Restricted to GΦ(A), Theorem (5.14) says that

htz : GΦ(A) → G(A+) ⊂ GΦ(A) .

Therefore,

Ft : GΦ(A) → G(C) .

Theorem 5.15. For a fixed γ† ∈ GΦ(A), the operator Ft defines a one parameter subgroup

on G(C)

Fu(γ
†) ⋆ Ft(γ

†) = Fut(γ
†) .

Proof. This proof expands the argument in [11]. Since the limits are defined on GΦ(A), I

rewrite the statement of the theorem as

lim
z→0

huz(γ†) ⋆ htz(γ
†)) = lim

z→0
h(ut)z(γ†).

Notice that

uzY (γ†tz) = γ†(ut)z . (34)
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Since

γ†(ut)z = γ† ⋆ h(ut)z(γ†) ; uz(γ†tz) = uzY (γ† ⋆ htz(γ
†))

applying equation (23) to equation (34) gives

h(ut)z(γ†) = huz(γ†) ⋆ (htz(γ
†))uz .

By Theorem 5.14, this can be rewritten

h(ut)z(γ†) = γ†⋆−1
+ ⋆ (γ†uz)+ ⋆ (γ†⋆−1

+ )uz ⋆ ((γ†tz)+)uz .

When taking the limit on both sides as z → 0, notice that limz→0 t
zY γ†+(z) = γ†+(0) is not

a function of t, but that limz→0(γ
†
tz)+(z) is a polynomial in t. See section 5.6 for an explicit

form of (γ†tz)+(z). Therefore, taking the limit of equation (35) gives

Ftu(γ
†) = Fu(γ

†) ⋆ Ft(γ
†) ,

defining a one parameter subgroup of G(C).

Definition 33. The renormalization group flow generator, or the β-function, is defined on

the group G(A) as β = d
dtFt|t=1.

Lemma 5.16. [11] For γ†(z) ∈ GΦ(A), β(γ†) ∈ g.

Proof. By local finiteness, htz(γ
†)(x) is a convergent series for any x ∈ H. Therefore, one
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can switch limits and write

β(γ†) = lim
z→0

d

dt
|t=1htz(γ

†) . (35)

By equation (33), d
dt |t=1htz(γ

†) ∈ g(A+). Therefore β(γ†tz) ∈ g.

Corrollary 5.17. Let V ⊂ B be the fiber over 0 ∈ ∆. Then the β is a vector field on the

subset V ×GΦ of the fiber V ×G over 0 in the P → ∆ bundle.

Proof. For a fixed γ†, htz(γ
†(z)) is a one parameter family in GΦ(A). Holding z constant

shows that htz(γ
†(z)) is a one parameter family in the fibers of P ∗ → B∗ over a fixed z.

Equation (35) shows that for γ† ∈ GΦ(A), β(γ†) is the derivative of a one parameter family

in G(A) and thus defines a vector field on V ×G.

Remark 27. In [7], [8], or [11], β is defined as an element in g for a given element γ† ∈ GΦ(A),

instead of as a vector field. This is just the pullback of the vector field over a fixed section

γtz .

Bundle Note 8. Physically, the β-function defines the adjustments of the terms of the

regularized Lagrangian so that it remains scale invariant. The form of the β-function de-

pends on how the regularization scheme affects scaling of the Lagrangian. Geometrically, it

is a quantity that is defined on the sections of P → ∆.

Remark 28. From equation (12) an element α ∈ g has the property that for two elements,

x, y ∈ H,

α(xy) = ε(x)α(y) + α(x)ε(y)

and α(x) ∈ C. This means that β(γ†)(x) ∈ C. The contribution of x, a generator of
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H, to the β-function for a theory L, whose renormalization mass scale depends on the

regularization mass parameter as tz is given by β(γ†(x)). The one loop expansions of the

β-function for various theories given in section 5.1 can be written as
∑

x∈H1 β(γ†)(x) where

the sum is taken over the generators of H1.

The β-function has an useful form on GΦ(A).

Theorem 5.18. For γ† ∈ GΦ(A)

β(γ†) = Res(γ†⋆−1
− ◦ Y ) = lim

z→0
zR̃(γ†⋆−1

− ) .

Here, Res(γ†(z)) is the residue of the Laurent series γ†(z)(x), for x ∈ H. That is,

γ†(z)(x) =
∞∑

−n

ai(x)z
i

with ai ∈ H∨. Therefore Res(γ†(z)(x) = a−1(x).

Proof. Before studying the behavior on the entire set GΦ(A), consider it’s behavior on the

counterterms contained in this set, GΦ
−(A). Thus I need the following lemma.

Lemma 5.19. Let γ̃† ∈ GΦ
−(A). Then

htz(γ̃
†(z)) = (γ̃†tz)+(z) .

Proof. [11] By definition, one can rewrite

γ̃†(z) = γ†⋆−1
− (z) ⋆ ε .
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The uniqueness of the Birkhoff decomposition gives

γ̃†+ = ε .

Theorem 5.14, statement 2 gives

htz(γ̃
†(z)) = γ̃†⋆−1

+ (z) ⋆ (γ̃†tz)+(z) ,

proving the result.

This fact is used to explicitly write an expression for β(γ̃†).

Lemma 5.20. For γ̃† ∈ GΦ
−(A),

β(γ̃†) = Res (γ̃†tz ◦ Y ) = zR̃(γ̃†) .

Furthermore, β(γ̃†) ∈ g.

Proof. The proof of this lemma follows the proof given in [11]. By definition, β(γ̃†) =

limz→0
d
dthtz(γ̃

†)|t=1. By the previous lemma, β(γ̃†) = limz→0
d
dt(γ̃

†
tz)+(z)|t=1. For x ∈ H

and I the identity operator, the Birkhoff decomposition of (γ̃†tz)+(z) given in Theorem 4.4

is

(γ̃†tz)+(z)(x) = (I − π)



γ̃†tz(z)(x) +
∑

(x)

(γ̃†⋆−1)(z)(x′)(γ̃†tz)(z)(x
′′)



 .
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The t derivative is given by

d

dt
(γ̃†tz)+(z)(x)|t=1 =

(I − π)



zγ̃†(z)Y (x) +
∑

(x)

(γ̃†⋆−1)(z)(x′)z(γ̃†)(z)Y (x′′)



 = nRes (γ̃† ◦ Y ) .

Notice that this can be rewritten

d

dt
(γ̃†tz)+(z)(x)|t=1 =

(I − π)
(
zγ†(z) ⋆ (γ† ◦ Y )(z)(x)

)
= (I − π)

(

zR̃(γ†)(z)(x)
)

= zR̃(γ†)(z)(x) ,

where the last equality comes from Theorem 5.13.

Now I can return to the proof of the theorem and examine the function β on the entire

set GΦ(A). Still following [11], write

γ†tz(z) = (γ†⋆−1
− (z))tz ⋆ (γ†+(z))tz

Writing (γ†⋆−1
− (z))tz = γ†⋆−1

− (z) ⋆ htz(γ
†⋆−1
− (z)), one has

γ†tz(z) = γ†(z) ⋆ htz(γ
†(z)) = γ†⋆−1

− (z) ⋆ htz(γ
†⋆−1
− (z)) ⋆ (γ†+(z))tz

or

htz(γ
†(z)) = γ†⋆−1

+ (z) ⋆ htz(γ
†⋆−1
− (z)) ⋆ (γ†+(z))tz .

Since γ†+(0) = 1, F (γ†tz) = limz→0 htz(γ
†(z)) = limz→0 htz(γ

†⋆−1
− (z)). Notice that γ†⋆−1

− ∈
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GΦ
−(A), so

β(γ†) :=
d

dt
lim
z→0

htz(γ
†)|t=1 =

d

dt
lim
z→0

htz(γ
†⋆−1
− )|t=1 = β(γ†⋆−1

− ) .

The rest of the theorem follows from the previous lemma.

β(γ†) = β(γ†⋆−1
− ) = zR̃(γ†⋆−1

− ) = Res (γ†⋆−1
− ◦ Y ) .

Theorem 5.21. For γ† 6∈ GΦ(A), β(γ†) is not well defined.

Proof. By definition

β(γ†) =
d

dt
lim
z→0

htz(γ
†)|t=1 =

d

dt
lim
z→0

γ†⋆−1 ⋆ γ†tz ,

which Birkhoff decomposes into

β(γ†) =
d

dt
lim
z→0

γ†⋆−1
+ γ†− ⋆ (γ†⋆−1

tz )− ⋆ (γ†tz)+|t=1 .

Since γ†− 6= (γ†⋆tz )−, the middle two terms don’t cancel, and β(γ†)(x) is a Laurent polynomial

in z with poles at z = 0. The limit, and thus β(γ†), is not defined.

One can learn something about the structure of the β-function, however, by looking at

the effect of the renormalization group on a regularized section, γtz . Consider d
dt |t=1htz =

zR̃(γtz) ∈ g(A). This is a Laurent expansion of the β-function. While the limit at z = 0

is not well defined, this Laurent series gives information about the structure and type of

singularity at the origin.
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5.6 Explicit calculations

This section computes explicitly some of the statements proven in theorems from previous

sections.

Connes and Marcolli show

Theorem 5.22. [7] For γ† ∈ GΦ(A),

γ†⋆−1
− = ε+

∞∑

1

dn(β(γ†))

zn
= Tez

−1
R

ρ
θ−s(β(γ†))ds . (36)

Proof. Recall that γ†⋆−1
− ∈ GΦ

−(A).

Lemma 5.20, gives

R̃(γ†⋆−1
− ) =

β((γ†⋆−1
− )tz)

z
=
β(γ†)

z
.

Theorem 5.11 yields the desired result.

Connes and Kreimer have an explicit proof of this theorem in CK[01].

A general term γ† ∈ GΦ(A) has the form

γ† = Tez
−1

R

ρ
θ−s(β(γ†))ds ⋆ γ†reg

where γ†reg = γ†+ ∈ GΦ
+(A) is a regular expression in z.

Corrollary 5.23. Setting −ρ to be the curve ρ with opposite orientation,

γ†− = Tez
−1

R

−ρ
θ−s(β(γ†))ds = Te−z

−1
R

ρ
θ−s(β(γ†))ds . (37)
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Proof. Theorem 5.12 gives

Tez
−1

R

−ρ
θ−s(β(γ†))dsTez

−1
R

ρ
θ−s(β(γ†))ds = 1 = Tez

−1
R

−ρ
θ−s(β(γ†))ds)Tez

−1
R

ρ
θ−s(β(γ†))ds ,

so

Tez
−1

R

−ρ
θ−s(β(γ†))ds = (Tez

−1
R

ρ
θ−s(β(γ†))ds)−1 .

Having explicitly written expressions for the elements of GΦ(A), γ†−, one can study

the effect of introducing the renormalization scale and write down explicit expressions for

elements in GΦ(A).

Consider an element γ̃†tz(z) ∈ GΦ(A−).

Proposition 5.24. [7] Birkhoff decomposition gives

γ̃†tz = Tez
−1

R

ρ
θ−s(β(γ̃†

tz
))ds ⋆ Tez

−1
R

ηuz
θ−s(β(γ̃†))ds

where ρ(0) = 0 and ρ(∞) = ∞ as before and ηuz(r) is a path in C such that ηuz(0) = −uz

and ηuz(1) = 0 for r ∈ [0, 1]. Then each part can be rewritten

(γ̃†tz)
⋆−1
− = Tez

−1
R

ρ
θ−s(β(γ̃†))ds

and

(γ̃†tz)+ = Tez
−1

R

ηuz
θ−s(β(γ̃†))ds .
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Proof. Let γ̃† = γ†⋆−1
− . Rewrite γ†tz(z) = θuz(γ

†(z)) with u ∈ C. Then

γ̃†tz = θuz(γ
†⋆−1
− ) = θuz(Te

z−1
R

ρ
θ−s(β(γ̃†

tz
)ds) .

Since θt is an automorphism on G(A) and θt(1) = 1 one has

γ̃†tz = Tez
−1

R

ρ
θuz−s(β(γ̃†))ds =

Tez
−1

R

ηuz ·ρ θ−s(β(γ̃†
tz

))ds = Tez
−1

R

−ρ
θ−s(β(γ̃†))ds ⋆ Tez

−1
R

ηus
θ−s(β(γ̃†

tz
))ds

where ηuz · ρ indicates that the path ηuz is followed by the path ρ. The path ηuz is parame-

terized by r ∈ [0, 1] and ηuz(0) = −uz and ηuz(1) = 0. The second equality is from a change

of variables, while the third equality comes from reversing the orientation of the path and

statement two of Theorem 5.12.

It only remains to show that Tez
−1

R

ηuz
θ−s(β(γ̃†

tz
))ds ∈ G(A+). It is enough to show that

z−1
∫ 0
−uz θ−s(β(γ̃†))ds is holomorphic in z. Calculating,

z−1

∫ 0

−uz
θ−s(β(γ̃†tz))ds = − 1

zY

(
1 − euzY

)
β(γ̃†tz) ,

which is holomorphic in z. Thus the pole part, γtz , remains invariant under a tzY action.

Remark 29. I have explicitly calculated some properties that previous sections discuss.

1. γ̃†tz(z) 6∈ GΦ
−(A).

2. For γ† ∈ GΦ(A), (γ†tz)− is independent of t.

3. (γ̃†tz)+ is holomorphic in z and depends on t.
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4. The β-function satisfies the equation of the renormalization group flow generator

t
d

dt
(γ̃†tz)+(0) = β(γ̃†tz(0)) .

Next, examine the γ†tz for a γ† ∈ GΦ(A). Connes and Marcolli show:

Corrollary 5.25. Any γ†tz(z) = (γ†tz)
⋆−1
− (z) ⋆ (γ†tz)+(z) can be uniquely written

γ†tz(z) = Tez
−1

R

ηsz ·ρ θ−s(β(γ̃†))ds ⋆ θsz(γ
†
+(z))

where

(γ†tz)+(z) = Tez
−1

R

ηsz
θ−s(β(γ̃†))ds ⋆ θsz(γ

†
+(z))

and

(γ†tz)− = Tez
−1

R

ρ
θ−s(β(γ̃†))ds .

Proof. This result is shown in [7]. It is derived in the same manner as the previous propo-

sition.
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6 Equisingular connections

This section follows Connes and Marcolli’s construction of equisingular connections on the

renormalization bundle. I show that there is a trivial C× equivariant connection on the

P ∗ → B∗ bundle that is defined on the pullbacks over the sections by the map R̃ defined in

Section 5.4.1. When restricted to sections γ ∈ GΦ(A), R̃ defines the equsingular connection

of Connes and Marcolli. For other sections, it defines a connection on P ∗ → B∗ which is

not well defined in the limit limz→0. These correspond to connections defined by non-scale

invariant regularization schemes.

Example 9. The dimensionally regularized Feynman rules associated to the scalar φ3 the-

ory in 6 dimensions correspond to certain sections ofK. Let γL be one such. The orbit of this

section under the renormalization group (i.e. the Feynman rules of the effective Lagrangians

under dimensional regularization) is given by tzY γL, where t is the complex renormalization

mass parameter. For a fixed t0, the section tzY0 γ corresponds to the regularized Feynman

rules for the effective Lagrangian at the energy scale t0.

The connection on P ∗ identified by Connes and Marcolli in [7] corresponds to the pull-

back of a single global connection on P ∗ over a section γt corresponding to the Lagrangian

in equation (2) under dimesional regularization.

A connection, ω, on a G principal fiber bundle, P ∗ → B∗, can be expressed as a g

valued one form, Ω1(g) on P ∗. Equivalently, ω assigns to each section, (γ, t), of the bundle

a g valued one form on B∗. These latter one forms are defined by the pullbacks of ω over

sections of the bundle. The group of gauge transformations map between pullbacks.

Definition 34. Let P → B be a G principal bundle with local sections su : U → P and

sv : V → P , with U , V ⊂ B open sets, such that su(b) = g with b ∈ B and g ∈ G. Then
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there is a transformation map guv such that guv(b)sv(b) = su(b) for b ∈ V ∩U . These maps

form the group of gauge transformations.

Since the restricted renormalization bundle P ∗ → B∗ is trivializable, all sections are

global.

Remark 30. Since the sections of P ∗ → B∗ form a group G̃(A), the transformation group is

the same as the group of sections G̃(A). The group of gauge transformations of the bundle

P → B, is the group of sections of that bundle, G̃(A+). This a subgroup of the gauge

transformations on P ∗ → B∗. The gauge group G̃(A+) has the additional property that it

does not affect the type of singularity of the sections at z = 0

Let (γ(z), t) be a section of P ∗ → B∗, and let ω be a connection on P . Then the

pullbacks of ω by the sections (γ, t) are written (γ, t)∗ω ∈ Ω1(g). The gauge transformation

group acts on these pullbacks by conjugation

(f⋆−1 ⋆ g)∗ω = g−1dg + g⋆−1(f∗ω)g (38)

with g, f ∈ G̃(A).

In order to define a connection with such behavior on the pullbacks, first introduce a

logarithmic differential operator on P ∗.

Definition 35. Let D be a differential operator.

D : G̃(A) → Ω1(g̃)

(γ†(z), t) = (γ†(z), t) 7→ (γ†(z), t)⋆−1 ⋆ d(γ†(z), t) .

Recall that γ⋆−1(z, t) = tY γ†(z) ◦ S and that (γ†, t)−1 = (t−Y γ†, t−1).
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Recalling that γ†(xy) = γ†(x)γ†(y) with the product the same as that of A, I can check

D(γ†(z)(xy), t) = D(γ†(z))(x)(ε, t)(y) + (ε, t)(x)D(γ†(z), t)(y) .

Therefore D(γ†, t)(x) ∈ Ω1(g), is a g valued one form on B∗.

Lemma 6.1. For f, g ∈ G̃(A), the differential D(γ(z), t) = (γ(z), t)⋆ω defines a connection

on sections of P ∗ → B∗.

Proof. If D defines a connection, the it must satisfy equation (38). For f, g ∈ G̃(A),

D(fg) = Dg + g−1(Df)g .

Then

D(f−1g) = Dg + g−1D(f−1)g .

Since df−1 = −f−1dff−1,

D(f−1g) = Dg − g−1ff−1dff−1g ,

or

Dg = D(f−1g) + (f−1g)−1Df(f−1g) ,

which satisfies equation (38). Therefore, the differential D(f) can be written in terms of

connections, as f∗ω.
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Proposition 6.2. [7] The connection ω is C× equivariant,

uY ω(z, t, x) = ω(z, ut, uY x) .

Proof. It is sufficient to check that (γ(z), t)∗ω is C× equivariant for all sections of the form

(γ(z), t). This is true since the bundle P ∗ → B∗ is C× equivariant:

uZ0(γ†(z), t) = (uY γ†(z), ut) .

Since (γ†(z), t) = tZ0(t−Y γ†(z), 1), and (tY γ†(z), 1) is identified with γ†t , it is sufficient

to define the connection of sections of the form

(tY γ(z), 1)∗ω = γ∗t ω .

Proposition 6.3. Given any section γt, one can directly calculate the corresponding pull-

back of the connection ω on it.

D(tY γ†(z)) = tY (γ†⋆−1(z) ⋆ ∂zγ
†(z))dz + tY (R̃(γ†)(z))

dt

t
.

Proof. One has

d(tY γ†t (z)) = tY ∂zγ
†(z)dz + tY Y γ†(z)

dt

t
.

Rewrite this as

d(tY γ†(z)) = tY (∂zγ
†(z))dz + tY γ†(z) ⋆ R̃(γ†(z))

dt

t
.
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The logarithmic derivative is given by

DtY γ†(z) = tY γ†⋆−1(z) ⋆ tY ∂zγ
†(z))dz + tY R̃(γ†)(z)

dt

t
.

which I rewrite

DtY γ†(z) = tY (γ†⋆−1(z) ⋆ ∂zγ
†(z))dz + tY (R̃(γ†)(z))

dt

t
.

Since ω ∈ Ω1(g̃), ω has the form

(γ, t)∗ω = aγ(z, t)dx+ bγ(z, t)
dt

t

(γ∗t )ω = aγt(z, 1)dx+ bγt(z, 1)
dt

t
.

The terms aγ and bγ are defined as

aγt(z, 1) = tY (γ†⋆−1(z) ⋆ ∂zγ
†(z))

and that

bγt(z, 1) = tY (R̃(γ†)(z)) . (39)

Remark 31. If γ† ∈ GΦ(A), Theorem 5.18 gives that this means that

Res (bγt) = tY (β(γ†t )) = tY (β(γ†⋆−1
− )) . (40)
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Notice that if γ ∈ GΦ(A), Theorem 5.18 shows that bγ has a simple pole.

Theorem 6.4. Let ω be a connection on the bundle P ∗ → B∗ defined on sections of the

bundle by the differential equation γ∗t ω = Dγ†t (z). The connection is defined by R̃(γ†) ∈

g(A).

Proof. Defining the bundle by the pullback of its sections, we see that γ∗ω is uniquely

defined by γ. The section γ is uniquely defined by the map R̃(γ†) ∈ g(A).

Remark 32. Theorem 6.4 is different from the result of Connes and Marcolli in [7] and

[8]. They use the fact that for a flat of the connection, Te
R

ρ
ω(z,t)ds is determined only by

the homotopy class of the path, ρ, over which the integral is taken, to uniquely define the

pullbacks γ∗ω.

Remark 33. Defining the connection on P ∗ → B∗ by the map R̃ as in Theorem 6.4 loses the

geometric intuition for the connection found in Connes and Marcolli’s definition. However,

unlike the Connes-Marcolli definition, this construction lets me define a connection globally

on P ∗ → B∗. The Connes-Marcolli equisingular connection corresponds to a particular

pullback of this global connection. Theorem 6.4 defines a connection for all regularization

schemes represented by the bundle P ∗ → B∗.

I now follow Connes and Marcolli’s development of the equisingular connection. The

first requirement of their unique definition of the connection to establish the flatness of ω.

Proposition 6.5. The connection ω is flat.

Proof. It is sufficient to check that all the pullbacks satisfy

[aγt(z, 1), bγt(z, 1)] = ∂t(aγt(z, 1)) − ∂z(bγt(z, 1)) . (41)
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For any section γt, the left hand side of equation (41) can be written

[aγt(z, 1), bγt(z, 1)] =
tY

t

(

γ†⋆−1
t ⋆ ∂zγ

†
t ⋆ γ

†⋆−1
t ⋆ nY (γ†t ) − γ†⋆−1

t ⋆ nY (γ†t ) ⋆ γ
†⋆−1
t ⋆ ∂zγ

†
t

)

.

The right hand side Equation (41) can be written

tY

t
Y (γ†⋆−1

t ) ⋆ ∂zγ
†
t + γ†⋆−1

t ⋆ Y (∂zγ
†
t )−

(

− t
Y

t
γ†⋆−1
t ⋆ ∂zγ

†
t ⋆ γ

†⋆−1
t ⋆ Y (γ†t ) + γ†⋆−1

t ⋆ Y (∂zγ
†
t )

)

which simplifies to

tY

t

(

Y (γ†⋆−1
t ) ⋆ ∂zγ

†
t + γ†⋆−1

t ⋆ ∂zγ
†
t ⋆ γ

†⋆−1
t ⋆ Y (γ†t )

)

.

But this can be rewritten

Y (γ†⋆−1
t ) = Y (γ†⋆−1

t ⋆ γ†t ⋆ γ
†⋆−1
t ) =

Y (γ†⋆−1
t ) + γ†⋆−1

t ⋆ Y (γ†t ) ⋆ γ
†⋆−1
t + Y (γ†⋆−1

t ) = −γ†⋆−1
t ⋆ Y (γ†t ) ⋆ γ

†⋆−1
t .

Plugging this into the previous equation gives

∂t(aγt(z, 1)) − ∂z(bγt(z, 1)) =

tY

t
(−γ†⋆−1

t ⋆ Y (γ†t ) ⋆ γ
†⋆−1
t ) ⋆ ∂zγ

†
t + γ†⋆−1

t ⋆ ∂zγ
†
t ⋆ γ

†⋆−1
t ⋆ Y (γ†t ) .

Since ω is flat on all sections, it is flat.

With this definition of this connection on P ∗ → B∗, I can now define an equivalence
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class on these pullbacks defined by the group of gauge transformations G(A+). The sections

of the form γ⋆−1
− ⋆ ǫ corresponding to counterterms are left invariant when passing to the

quotient defined by this equivalence relation.

Definition 36. Two pullbacks of the connection γ∗t ω and γ′∗t ω are equivalent if and only if

one pullback can be written in terms of the action of G(A+) on the other as in definition

34.

γ′∗t ω = Dψt + ψ⋆−1
t ⋆ γ∗t ω ⋆ ψt

for ψt ∈ G(A+)t, the group of sections that are regular in z and t. I write this equivalence

as γ′∗t ω ∼ γ∗t ω.

Remark 34. Proposition 6.1 shows that two connections γ∗t ω and γ′∗t ω are equivalent if and

only if they can be written as

γ∗t ω = Dγ†t and γ′∗t ω = D(γ†t ⋆ ψt)

for some ψt ∈ G(A+).

Proposition 6.6. Two sections are equivalent, γ∗t ω ∼ γ′∗t ω, if and only if

γ†⋆−1
− = γ†′⋆−1

− .

Proof. Birkhoff Decomposition gives

tY (γ†⋆−1
− (z) ⋆ γ†+(z)) = tY (γ†′⋆−1

− (z) ⋆ γ†′+(z)) .
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Then

γ†⋆−1
− (z) =

(

γ†′⋆−1
− (z) ⋆ γ†′+(z)

)

⋆ γ†⋆−1
+ (z) .

The term γ†′+(z) ⋆ γ†⋆−1
+ (z) is regular over B, so γ∗t ω ∼ γ′∗t ω if and only if

γ†⋆−1
− (z) = γ†′⋆−1

− (z) .

Remark 35. The quotient of the pullbacks of ω on the bundle P ∗ → B∗ by the gauge

equivalence is isomorphic to G̃(A−). The gauge equivalence on the connection classifies

pullbacks by the counterterms of the corresponding sections.

The connection ω on the P ∗ → B∗ bundle can be pulled back to a connection ω∗ on the

P ∗ → ∆∗ bundle. The connection ω∗ can be expressed on its pullbacks as

σ∗tzω
∗ = σ∗tz(γ

∗
t ω) = γ∗tzω .

I write γ∗tzω to indicate these pullbacks of the connection on P ∗ → ∆∗.

Corrollary 6.7. Consider the pullbacks of γ∗t ω over the sections σt, γ
∗
tzω. The gauge

equivalence γ†∗tz ω ∼ γ†′∗tz ω in definition 36 is equivalent to

(γ†tz(z))− = (γ†′tz(z))− .

Proof. This is shown by the same calculations as above.

This condition defines a property on the pullbacks of the connection called equisingu-

larity.
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To see this formally, define:

Definition 37. The pullback γ∗t ω along on P ∗ → B∗ is equisingular when pulled back to

the bundle P ∗ → ∆∗ if and only if

• ω is equivariant under the C× action on the section of P ∗ → B∗.

• For every pair of sections σ, σ′ of the B → ∆ bundle, σ(0) = σ′(0), the corresponding

pull backs of the connection ω, σ∗(γ∗t ω) and σ′∗(γ∗t ω) are equivalent under the action

of G(A+).

Remark 36. Let γ†(z) ∈ GΦ(A). The set GΦ
−(A) is the fixed points of G(A) under the C×

action. The quotient of the set of pullbacks of ω on the bundle P ∗ → ∆∗ by the gauge

equivalence is isomorphic to GΦ
−(A).

Proposition 6.8. The connection ω is equisingular along γt if and only if γ† ∈ GΦ(A).

Proof. Equisingularity means that for any two sections σ and σ′(z), such that σ(0) = σ′(0),

(σ∗γt)
∗ω ∼ (σ′∗γt)

∗ω .

This means that

(σ∗γt)− = (σ′∗γt)− .

In other words, the counterterms do not depend on the renormalization mass. This is

exactly the definition of sections in GΦ(A).

Corrollary 6.9. If γ∗t ω ∼ γ′tω, and γ† ∈ GΦ(A) then so is γ′†.

For sections corresponding to GΦ(A), Connes and Marcolli prove:
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Theorem 6.10. Let γ†tz ∈ GΦ(A), and (γ̃)† = γ†⋆−1
− . Let ω be a flat connection on P ∗ → B∗

defined on the pullbacks as γ∗tzω = Dγtz . These pullbacks are uniquely defined by β(γ̃) up

to the equivalence class defined by G(A+). That is

γ∗tzω ∼
(

Tez
−1

R

ρ
θ−s(β(γ̃†))ds

)∗
ω = γ̃∗ω .

Proof. This is an outline of the proof given by Connes and Marcolli. For details, see [7] and

[8].

Notice that

(γ(z), t(s))∗ω(z, t(s)) = t(s)Z0γ∗t(−s)(ω(z, 1)) .

For γ̃ ∈ GΦ
−(A), since ω is flat, the expression

Te
R

ρ
(θ−sγ̃)∗(ω(z,1))ds = Te

R

ρ
θ−s(γ̃†⋆−1⋆∂z γ̃†)dz+θ−s

β(γ†)
z

)ds

depends only on the homotopy class of ρ.

Connes and Marcolli then show that B∗ has trivial monodromy, and choose a path so

that

Te
R

ρ
θ−s(γ̃†⋆−1⋆∂z γ̃†)dz = 0 .
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Therefore,

Te
R

ρ
(θ−sγ̃)∗(ω(z,1))ds = Tez

−1
R

ρ
θ−sβ(γ̃†)ds = γ†− .

Because

DTe
R

ρ
(θ−sγ)∗(ω(z,1))ds = (γt)

∗ω ,

this uniquely defines the connection. This shows that for γ ∈ Gφ(A), γ∗tzω is uniquely

defined by β(γ†) up to the equivalence class defined by G(A).

Remark 37. This proof works for pullbacks along any two sections σ∗(γ∗t ω), and σ′∗(γ∗t ω)

such that σ(0) = σ′(0). It is convenient to work with sections of the form σt because the

notation has been developed for these pullbacks and because of their physical significance.

The pullbacks γ∗tzω, for γ† ∈ GΦ(A), are equisingular pullbacks. For a general section

of P ∗ → B∗, where the counterterm may depend on the renormalization mass, one can still

define, by Theorem 6.4 an element of g(A) that defines the counterterm of the connection.

Theorem 6.11. Let ω be a flat connection on P ∗ → B∗ defined on the pullbacks as γ∗tzω =

Dγtz . For γ† ∈ G(A), the pullbacks are uniqely defined by R̃(γ†tz) up to the equivalence class

defined by G(A+).
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7 Renormalization bundle for a curved background QFT

Connes and Marcolli construct the renormalization bundle for a Hopf algebra of Feynman

graphs in a QFT over a flat Minkowski space. Their construction can be extended to create a

renormalization bundle for a QFT on a general manifold M with Riemannian metric tensor

gij and conformal changes of metric. To do this, certain conventions used for calculating

QFTs in flat space need altering for a general background.

Since the general background space will have a Riemannian metric, I need to change

from a Lorentzian metric to a Riemannian one. The process of switching between metrics

for the purpose of regularization is well understood on a flat background. A good reference

on the process of translating between the two metrics is Simon’s book [39]. It shows that a

quantum field theory in Rn can be written in terms of an Euclidean metric by imbedding

Minkowski space into a complex space with an Euclidean metric,

Rn →֒ Cn ,

such that time is a purely imaginary dimension, t = ix0, and the spatial dimension are

purely real. In this embedding the Lorentz metric and Euclidean metric give the same

results,

ds2L = dt2 − dx2
1 − . . .− dx2

n−1 = −dx2
0 − dx2

1 − . . .− dx2
n−1 = ds2M .

Notice that this is a negative definite metric. This embedding is called Wick rotation, and

provides a way to solve problems in a Lorentzian metric by rewriting them in an Euclidean
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metric. Wick rotation changes the Lagrangian density:

L = |dφ|2Lor −m2 + λφ3 → L = −|dφ|2Euc −m2 + λφ3 ,

where the first norm is the in the Lorentzian metric with signature (+ − − − −−) and the

second norm is the Euclidean norm. The Lagrangian in a Euclidean metric is

L =

∫

M
φ(∆ −m2)φ+ λφ3 d6x .

There is also a body of work, most notably by Nelson [29], that shows that Markov fields,

which are useful in performing field theory calculations in Euclidean space, under certain

boundary conditions locally give rise to the Wightman axioms for field theory in Minkowski

space. Thus results in Euclidean space are consistent with results in Minkowski space. When

considering field theories over curved space-time, both these methods of translating between

Lorentzian and Riemannian metrics only work on local coordinate patches. A global means

of translating between the two metrics has yet to be developed.

In flat space, a QFT is defined by the Lagrangian

L =

∫

Rn

L dnx

which defines a probability amplitude for the field φ by

eiL
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which in turn defines a measure on the space of fields

dµ = eiLDφ(x) ,

where D(φ(x)) is interpreted as the infinite dimensional measure
∏

x dφ(x) [41]. This nota-

tion changes when working on a curved background. Let |g| = det gij . On an n-dimensional

Riemannian manifold, (M, g), with metric g, the Lagrangian becomes

LM =

∫

M
L
√

|g(x)|dnx ,

and the measure becomes [13]

dµ = eiLM

∏

x

dφ(x) .

The regularization scheme on a manifold is also different. Recall that in flat space-

time, dimensional regularization is performed by analytically continuing the dimensions

of the space-time theory over, and then introducing terms to the Lagrangian to keep it

dimensionless. For instance, for a scalar φ3 theory,

L =

∫

R6

[
1

2
φ(∆ −m2)φ+ gφ3

]

d6x→ L(z) =

∫

R6+z

[
1

2
φ(∆ −m2)φ+ gµzφ3

]

d6+zx .

While dimensional regularization can be used to locally regularize QFTs on a curved

background space, it does not work globally as a regularization scheme because of an am-

biguity of how to distribute the imaginary dimensions over the manifold. In 1977, Hawking

[16] proposed ζ-function regularization as a global regularization scheme for QFTs over a
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Riemannian manifold to resolve this ambiguity. Instead of changing the dimension of the

manifold, the number of derivatives taken in the Lagrangian density is allowed to vary, the

Laplacian on the manifold is raised to a complex power, and then terms are introduced to

the Lagrangian to keep it dimensionless as before. Again, for φ3 theory,

LM =

∫

M

[
1

2
φ(∆ −m2)φ+ λφ3

]√
gd6x→ LM (r) =

∫

M

[
1

2
φ(∆ −m2)1+rφ+ λΛ−2rφ3

]√

(Λ
2r
3 g) d6x .

This section develops QFT on a curved manifold in a parallel manner to QFT in

Minkowski space. The Connes-Marcolli renormalization bundle for a particular QFT in

Minkowski space has a section that is a geometric representation the regularized theory.

The β-function for this theory can be uniquely calculated from a connection on this bundle,

pulled back over this section. In the following, I develop the mechanics of ζ-function reg-

ularization and construct the corresponding renormalization bundle of φ3 theory in curved

space-time under this regularization scheme. The new regularization bundle also has a

section that represents the ζ-function regularization of φ3. There is a connection on this

bundle, which, when pulled back over this section, provides an expression for the β-function

of the theory over a compact manifold. The expressions for the β-function will depend on

the geometry of the manifold.

7.1 Feynman rules in configuration space

One can develop QFT on a manifold locally using coordinate patches and partitions of

unity. However, QFT in flat space is global phenomenon. Therefore, I wish to express QFT

in curved space-time globally. Primarily, this means that I cannot perform the Fourier
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transforms necessary to write the Feynman rules in terms of momenta. Instead, I work in

with Feynman rules in configuration space. Feynman integrals for any theory are written in

terms of a convolution product of Green’s functions of a Laplacian. As a result, the Feynman

integrals themselves are called Green’s functions in the literature. In the following sections,

I am interested in kernel formed by the convolution product, and the operator it defines.

Since there is a one to one correspondence between these kernels and operators, I switch

between the two points of view freely.

The Feynman integrals associated to Feynman graphs are generalized convolution prod-

ucts of Green’s functions written in terms of the positions on the manifold. I first review the

details of the Feynman rules in configuration space for a flat background with a Lorentzian

metric for φ3 theory in six dimensions. While this information is presented in many stan-

dard textbooks, such as [41] and [40], I summarize the results in this section. Feynman

integrals in phase space are Fourier transforms of the Feynman integrals in configuration

space. In phase space, the integrals are distributions on the space of test functions on the

incoming and outgoing momenta of the interaction, subject to conservation of momentum.

In configuration space, the test functions are the smooth functions on Rn. Evaluated on

these spaces of test functions the Feynman integrals evaluate to the same physical quantity.

The Fourier transform translates between two points of view: in phase space the integrals

are concerned with the momenta of the particles involved in the interaction, in configuration

space the integrals are interested in the positions of the interacting particles. The Feynman

graphs and rules corresponding to the two types of integrals reflect this change of perspec-

tive. In both pictures, the legs of the diagrams are labeled with momenta, and the vertices

with positions. In phase space, Feynman graphs have internal legs with two end points,

and external legs with one endpoint. All vertices were treated equally. The Feynman rules
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require imposing conservation of momentum, and integrals are taken over the momenta

associated to each loop of the graph. In configuration space, all edges are treated equally,

and there are internal and external vertices. External vertices have valence 1. They can be

viewed as vertices attached to the ends truncated external legs from the phase space picture.

Internal vertices are simply the vertices with valence > 1. Conservation of momentum is

expressed in the way the convolution product is written. Each type of edge in a field theory

is associated to a type of Green’s function, or propagator, Gi(x, y) where x and y are the

endpoints of the edge. Each type of vertex, determined by the valence, nv and the types of

edges meeting at it is associated to a coupling constant gv.

In 6 dimensional φ3 theory, with a Lorentzian metric, the Feynman rules over position

space are relatively simple. There is only one type of edge in the theory, associated to the

Green’s kernel

G(x, y) =

∫

R6

d6p

(2π6)

ie−ip·(x−y)

p2 −m2
(42)

of the Laplacian ∆−m2. There is only one coupling constant and the only possible valence

at a vertex is 3.

As is the case for the Feynman rules in momentum space, these rules do not yeild well

defined integrals. The resulting integrals need to be regularized in order to get well defined

expressions. In Rn, the Feynman rules for a theory with with multiple types edges and

vertices with different valences nv and coupling constants gv, map between graphs and

distributions, or Feynman integrals, in the following manner:

• If a graph Γ has I edges, write down the I fold product of propagators, of various
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types according to the type of edges,

I∏

1

Gi(xi, yi)

where xi and yi ∈M are the endpoints for the ith edge.

• For each internal vertex, vi of valence nvi
, define a measure

µi = −igvδ(x1, x2) . . . δ(xnvi
−1, xnvi

)

where the xi are the endpoints of the edges that are incident on the vertex in question

in the graph.

• Integrate the product of propagators from above against this measure for each of the

V internal vertices of the graph

∫

(Rn)
P

nvi

I∏

1

Gi(xi, yi)
V∏

1

dµj .

• Divide by the symmetry factor of the graph.

If V is the number of internal vertices of a graph Γ, the Feynman rules gives an expression

that can be written as an integral over (Rn)
P

nvi with measures dµ1⊗. . .⊗dµV . The variables

that are not integrated over are the external vertices. The Feynman rules are defining a

convolution product of Greens functions, convolved over the internal vertices. The types of

Green’s kernels involved gives the types of edges of the graph. This analysis can equivalently

be done in the language of symbols, as in [30].

Remark 38. Given such a convolution product of the correct type of kernels, one can deter-
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mine the corresponding graph. Notice that this convolution product does not correspond

to a composition of operators. In fact, this convolution product is not commutative. The

order in which the convolution product is taken determines the shape of the graph.

Example 10. For example, in a scalar QFT defined by the Lagrangian

L =
1

2
(|dφ|2 −m2)φ+ g3φ

3 + g4φ
4 ,

in R4, the tree level graph

has the Feynman integral

IΓ(a, b, c, d, e) = −g3g4
∫

(R4)2

∫

R4

d4p1

(2π4)

ie−ip1·(a−x)

p2
1 −m2

∫

R4

d4p2

(2π4)

ie−ip2·(b−x)

p2
2 −m2

·
∫

R4

d4p3

(2π4)

ie−ip3·(x−y)

p2
3 −m2

∫

R4

d4p4

(2π4)

ie−ip4·(c−y)

p2
4 −m2

∫

R4

d4p5

(2π4)

ie−ip5·(d−y)

p2
5 −m2

∫

R4

d4p6

(2π4)

ie−ip4·(e−y)

p2
6 −m2

d4xd4y .

In six dimensional φ3 theory, the Feynman rules simplify considerably, as there is only

one type of edge, and the only possible valence is nv = 3. For a graph, Γ, with V internal

vertices and I edges in this theory, the Feynman integral in configuration space is

IΓ = (−ig)V
∫

(R6)V

I∏

1

Gi(zk, zl) dz1 . . .dzV ,

where zk, zl ∈ {z1, . . . , zk}. Substituting the Green’s function from equation (42) gives

the exact form of Feynman rules for this theory. Working out the details, one see that
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these rules are exactly the inverse Fourier transform of the rules stated in section 2.2. The

integral IΓ has (2I − 3V ) free variables, corresponding to the 2I − 3V external vertices of

Γ. As a distribution IΓ acts space of test functions S2I−3V (Ê), where Ê = C∞c ((R6) is

the space of test functions in configuration space. These test functions are the external

data for the graph. Notice that the test functions in configuration space are the inverse

Fourier transforms of the test functions in phase space defined in section 4. Working in

configuration space, there is no conservation of momentum condition to keep track of. In

flat space, conservation of momentum is imposed once the appropriate Fourier transforms

are taken. On a curved background, imposing conservation of momentum in trickier.

Recall from section 2.1.1 that the building blocks for the Feynman diagrams of a field

theory are the 1PI diagrams, and that a renormalizable φ3 theory in six space-time dimen-

sions has only two or three external legs, and the distributions associated to the Feynman

diagrams act on S2(Ê)⊕S3(Ê). The results about Feynman rules from section 4 all continue

to hold. Most importantly, Theorem (4.1) holds. For any x ∈ H, let Ix be the unrenor-

malized Feynman integral associated to x. If Ix(σ) < ∞ for all appropriate σ ∈ S(Ê), the

diagram x is said to be convergent. If Ix(σ) is not well defined for some σ ∈ S(Ê), then

the integral needs to be regularized, similar to its phase space counterparts. When the

regularized Feynman integral Ireg
x acts on σ,

Ireg
x (σ) : x→ C{{z}} .

As in phase space, regularization is a linear map from S(Ê) to G(A) = Homalg(H,A). The

regularization process defines certain sections of of the bundle K∗ → ∆∗ by assigning them

a test function. On flat space, the Feynman rules in configuration space and phase space
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differ only by a Fourier transform, so it stands to reason that they correspond to the same

sections of the same renormalization bundle. The goal of the rest of this paper is to develop

they Feynman rules and ζ-function regularization on a general manifold, and show that the

structures of the corresponding renormalization bundle are the same.

7.2 Feynman rules on a compact manifold

In curved space-time, working with a Riemannian metric, The Feynman rules assign distri-

butions to Feynman graphs in a similar manner to the Feynman rules in flat configuration

space. To do this, first define the Laplacian, ∆M on a closed compact manifold (M, g).

Then find the Green’s kernel of the Laplacian on (M, g), ∆−1
M .

What follows is a sketch of a derivation for the Laplacian on a manifold. For more

details see [36]. Let (M, g) be a compact Riemannian manifold of dimension n = 6 with

metric tensor g. While this argument is generalizable, I continue to work with the φ3 theory

in six, now curved, space-time dimensions.

Definition 38. Let |g| = det g, gij be the ijth entry of the metric tensor and ∂i = ∂
∂xi

.

In order to define integrals on a manifold, one needs to define the volume element:

Definition 39. The volume of n dimensional manifold is given by

∫

M
dvol(x) :=

∫

M

√

|g|dx1 ∧ . . . ∧ dxn .

While the goal of this analysis is to study QFT globally on the manifold, calculations

are done in coordinate patches. In local coordinates, ∇i is the ith term of the gradient on
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M

∇i = gij∂j

and the divergence of a vector field X on (M, g) is defined by

div(X) =
1
√

|g|
∂i(
√

|g|Xi) .

Definition 40. Let ∆ = div ◦ ∇, be the Laplace operator on M .

Notice that ∆ is dependent on the metric g.

Lemma 7.1. The Laplacian ∆ on (M, g) can be explicitly written in local coordinates as

div ◦ ∇ =
1
√

|g|
∂i(
√

|g|gij∂j) .

Proof. This expression comes from the statement of Stoke’s Theorem

∫

M
|dφ2| dvol(x) = −

∫

M
φ∆φ dvol(x) .

Proof of this construction can be found in any standard differential geometry text. For

example, see [36].

The role of the Laplacian is the same for QFT over a manifold M as over flat space. To

simplify notation, I write ∆M = ∆ −m2. Notice that this is a negative definite operator.

Using this relation, the Lagrangian density of a scalar field theory on M can be written:

L =
1

2
φ(x)(∆M )φ(x) + λφ(x)3 .
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The Lagrangian is then just

∫

M
L dvol(x) .

By the spectral theorem, any self-adjoint elliptic operator acting on EM = C∞(M),

such as the Laplacian, on a compact manifold, has a discrete a spectrum of eigenvalues

{λi}∞i=0. Since −∆M is a positive semi-definite operator, the spectrum is non-negative,

λ ≥ 0. Counted with multiplicity, I arrange the eigenvalues so that λi+1 ≥ λi. Furthermore,

there is an orthonormal eigenbasis {φi} such that

∫

M
φi(x)φj(x)dx = δi,j ,

with δi,j the Kronecker delta function. Thus I can write

C∞(M) = E0 ⊕ E+ (43)

where E0 = ker(−∆M ) and E+ = ⊕iEi is the direct sum of the eigenspaces with positive

eigenvalues. Notice the E0 is a finite dimensional vector space.

The Green’s kernel is a distribution on (M ×M), GM ∈ (C∞(M ×M))∨, such that

∆MGM (x, y) = δ(x, y) . (44)

Here δ(x, y) is the Dirac delta function. If E0 has dimension greater than 0, then ∆−1 is

not well defined. However, ∆ has a left inverse given by he function GM (x, y), according to

equation 44.
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On the other hand, ∆M |E+ is invertible. By defining GM (x, y) on E+, I can write

GM (x, y) =
∞∑

i=0

φi(x)φi(y)

λi

where λi > 0. This definition satisfies condition in equation (44) and is a two sided inverse

of ∆M |E+ . In the sequel, I call ∆M = ∆M |E+ and GM (x, y) = (∆M |E+)−1.

The Green’s function GM (x, y) corresponds to a propagator for Feynman integrals on

a compact manifold. Feynman integrals for diagrams in general correspond to convolution

products of these kernels. The Schwartz kernel theorem gives a correspondence between

operators and kernels.

Theorem 7.2. Schwartz Kernel Theorem.[17] Let M and N be Riemannian manifolds.

Let f ∈ C∞c (M) and g ∈ C∞c (N). Let A be a continuous linear map from C∞c (N) to

distributions on M , D(M). For every such A, there is a K ∈ D(M ×N) such that

〈Af, g〉 = K(g ⊗ f) . (45)

Conversely, for every K ∈ D(M ×N), there is such an A. The K is called the kernel of the

linear operator A.

Example 11. The Green’s function GM (x, y) is a distribution on M ×M . It is not well

defined as a function along the diagonal of M ×M ,

G(x, x) dvol(x) = ∞ ; G(x, y)|x 6=y smooth
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The operator associated to this Green’s function is

∆−1
M f(x) =

∫

M
GM (x, y)f(y) dvol(y) ∈ C∞(M) . (46)

which is well defined as an operator from C∞(M) to C∞(M).

One can write the Feynman rules over a curved manifold by replacing the rules on a flat

manifold by replacing the Green’s functions, Gi with GM, i and Rn by M . The Feynman

rules on a general background manifold are:

• If a graph Γ has I edges, write down the I fold product of propagators, of various

types according to the type of edges,

m∏

1

GM, i(xi, yi)

where xi and yi ∈M are the endpoints of each edge.

• For each internal vertex, vi of valence nvi
, define a measure on M×nvi locally

µi = −iλvδ(x1, x2) . . . δ(xnvi
−1, xnvi

)

where the xi are the endpoints of the edges incident on the vertex in question in the

graph, and δ(xi, xj) is the Dirac delta function. .

• Integrate the product of propagators from above against this measure

∫

(M)
P

nvi

I∏

1

Gi(xi, yi)
V∏

i

dµi .

129



• Divide by the symmetry factors of the graph.

This construction runs parallel to the construction of a Feynman integral in flat con-

figuration space. As in the previous Feynman integrals, the distribution associated to a

Feynman diagram is a convolution of the kernels associated to the propagators over the

internal vertices. The measures µi mean that the operators associated to Feynman integrals

can be written in terms functions involving Tr ∆−1
M . The Feynman integral defined in this

way are not well defined. They need to be regularized first before they can be made sense

of. The appropriate regularization scheme for field theories over compact manifolds is the

topic of the next section.

7.3 Regularization on a compact manifold

In flat space, the Feynman rules need to be regularized because the integration occurrs over

an unbounded domain. On a compact manifold, unlike the integrals in flat space-time, the

Feynman integrals are defined over compact spaces. However the operator ∆−1
M is not trace

class, because

Tr∆−1
M =

∫

M
GM (x, x) dvol(x) =

∑

1

1

λi
= diverges .

This leads to divergences in operators associated to the Feynman integrals, since the Feyn-

man integrals are convolution product of the kernels GM . Therefore Feynman integrals need

to be regularized.

Lemma 7.3. The operator ∆−1 is not trace class on a six dimensional manifold.
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Proof. Let

N(λ) = |{λk|
√

λk ≤ λ}|

counting multiplicity. By Weyl’s law for an n-dimensional closed manifold M ,

lim
λ→∞

N(λ) =
vol(M)

(4π)
n
2 Γ(n2 + 1)

λn +O(λn) . (47)

Specifically, the series {λk} grows as k
2
n . However, by equation (47), if

dimM > 1 ⇒
∫

M
G(x, x) dvol(x) =

∑

i

1

λi

is unbounded because 2
n ≤ 1.

The regularization process should take non convergent, non-distribution valued kernels,

such as the Feynman integrals to meromorphic functions over an infinitesimal punctured

disk ∆∗ with coefficients in D(M ×M). Thus, the Feynman integral should be regularized

to as globally defined, distribution valued, somewhere convergent Laurent polynomials. By

the Schwartz Kernel theorem, these regularized Feynman integrals, Kreg
Γ define regularized

Feynman operators AregΓ such that, for f, g ∈ S(EM ), the inner product

〈ARegΓ f, g〉 ∈ C{{z}}

gives a somewhere convergent complex valued Laurent polynomial. The form of AregΓ is

worked out in example 12 below.

The Feynman operators AΓ are regularized by raising the propagators, ∆−1
M to complex
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powers. An operator raised to a power is defined on its eigenspaces as

Af = λf

Asf = λsf .

Thus I can define a one parameter family of operators for s ∈ C as

∆−sM : EM → EM .

The Green’s kernel associated to ∆−sM is

GsM (x, y) =
∑

i

φi(x)φi(y)

λsi

If s 6∈ Z, then ∆−sM is trace class.

Theorem 7.4. [Seeley] [38] Let M be an n-dimensional compact smooth manifold, EM =

C∞(M), and

∆−s : EM → EM

with s ∈ C be a one parameter family of operators and kernel GsM (x, y). Then GsM (x, x),

the is meromorphic in s with simple poles at s = k − n
2 , where k ∈ Z≥0.

One can calculate the poles for Tr ∆−sM . Let M be a general n dimensional Riemannian

manifold. First consider the heat operator, et∆M , with t ∈ R>0. It is related to the complex
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powers of Laplacian, ∆M by a Mellin transform:

Γ(z + 1)(−∆M )−z−1f(x) =

∫ ∞

0
exp(t∆M )f(x)tz dt , (48)

where f(x) ∈ C∞(M), and z ∈ C. By the Schwartz kernel theorem, the heat operator has

a unique kernel G(t, x, y). This kernel is continuous on M ×M , and smooth away from the

diagonal. Along the diagonal, the kernel of the heat operator has the asymptotic expansion

G(t, x, x) ∼ (4π)−n/2
∑

k≥0

uk(x)t
k−n

2 ,

for small t [36]. For large t, this expansion goes to 0 as

lim
t→∞

G(t, x, x) ∼ e−ct .

The coefficients uk(x) of the asymptotic expansion can be written as polynomials in terms

of the metric dependent curvatures of (M, g). For odd k, uk=2n+1 = 0.

Plugging in the asymptotic expansion, equation (48) can be rewritten as

(−Tr∆M)−z−1 ∼ 1

Γ(z + 1)

∫

M

∫ ∞

0
(4π)−n/2

∑

k≥0

uk(x)tz+(k−n)/2 dt dvol(x) .

Work by Wodzicki [43], Guilleman [15], Konstevich and Vichi [20] finds explicit expressions

for the poles of Tr(−∆M)−z−1.

Theorem 7.5. The poles of Tr (−∆M )−z−1 occur at z + 1 ∈ {n−k2 6∈ Z+}, with k ∈ Z≥0
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and are simple. The residues at s = z + 1 = n−k
2 is given by

Res (Tr(−∆M)−z−1)|z+1=n−k
2

=
2uk(x)

Γ(k−n
2 )

|t=1 .

Specifically, for z = 0 and n = 6,

Res (Tr(−∆M)−1)|k=4 =
2u4(x)

Γ(1)
|t=1 .

By expressing the other poles of Tr(−∆M)−z−1 as Taylor series around z = 0, one can write

Tr(−∆M)−z−1 as a Laurent polynomial in z with a simple pole at z = 0.

Given this regularization scheme, one can begin to make sense of the regularized Feyn-

man integrals globally on a manifold M .

Proposition 7.6. The regularized Feynman rules for a graph Γ is a Schwartz kernel Kreg
Γ ∈

D(MEΓ){{z}} that can be written as a somewhere convergent Laurent polynomial with finite

poles at 0 and distribution valued coefficients.

Proof. The regularized Feynman integral for a graph Γ, is a covolution product of Gz+1(x, y)

taken over the internal vertices of Γ for a small complex parameter z. Along the diagonal,

G1+z(x, x) is meromorphic in z

G1+z(x, x) =
∞∑

−1

gi(x)z
i ,

where gi(x) is a smooth function over M . Away from the diagonal, G1+z(x, y) is entire in
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z,

G1+z(x, y) =
∞∑

0

hi(x, y)z
i ,

where hi(x, y) is a smooth function over M . Therefore, I can write

G1+z(x, y) =
∞∑

−1

fi(x, y)z
i ,

where fi(x, y) are distibution valued coefficients.

The Schwartz kernel associated to a Feynman integral Kreg
Γ is a convolution product of

some number of these Greens functions. For a fixed z 6= 0, the kernel ofKreg
Γ (z) ∈ D(M×EΓ),

where EΓ is the number of external legs of Γ, is a smooth well defined quantity. It can be

written as a Laurent polynomial with a finite number of poles, since each Green’s function

contributes at most one pole.

For 1PI graphs, the external data comes in the form of test functions on two or three

copies of the manifold. Since M is compact, the space of test functions are EM = C∞(M),

and the Feynman integrals are distributions acting on the symmetric algebra of these test

functions, S(EM ). Specifically, Kreg
Γ ∈ SEΓ∨(EM ) ⊗ C{{z}}.

Corrollary 7.7. The operator, AΓ(z) associated to Kreg
Γ can be written as a somewhere

convergent Laurent polynomial with finite poles at 0 with operator coefficients.

This gives a globally well defined statement of the Feynman rules on a curved back-

ground. Paycha and Scott have a local expression for the symbols associated to the operators

associated to Feynman graphs in [31].

There is a Hopf algebra associated to the Feynman rules on a general manifold.
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Definition 41. Let

H = C[1PI graphs on M ]

be the Hopf algebra generated by 1PI graphs on the manifold M with external vertices and

the same product and co-product structure as in Section 3.

Since there are local diffeomorphisms from M to R6, the conditions that define a renor-

malizable theory do not change. Section 2.1.1 shows that the 1PI diagrams for a renor-

malizable φ3 QFT over a six dimensional space have two or three external legs. Therefore,

Corrollary 7.7 provides another way of proving Theorem 4.1. This is worked out in the

following example.

Remark 39. By equation (46), one can ignore the propagators associated to external legs and

define the Schwartz kernel of the Feynman integral as the product of propagators associated

to internal edges. Notice that this construction can be simplified to parallel the construction

in flat phase space.

Example 12. Let Kreg
Γ be the Feynman integral for a 1PI graph Γ. By the Feynman rules,

this is written

Kreg
Γ (z)(x1, . . . xEΓ

) =

∫

MV

I∏

1

Gz+1
i (xi1 , xi2) dvol(x1, . . . , xV )

with I the number of internal legs of Γ, EΓ the number of external vertices, V the number

of internal vertices, and xi1 , xi2 ∈ {x1, . . . , xV+EΓ
}. The integral is taken over the internal

vertices of the diagram. This is a one parameter family of distributions on M×EΓ . The

associated one parameter family of operators AregΓ (z) of the Feynman graph Γ gives the
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map

AregΓ (z) : (M×i, g⊗i) → (M×j , g⊗j) ,

for a fixed z 6= 0, where i + j = EΓ. For the Feynman diagrams, equation (45) can be

written:

〈AregΓ (z)f, g〉 =

∫

Mj

AregΓ (z)(f(x1, . . . , xi))g(x1, . . . , xj) dvol(x1, . . . , xj) =

∫

MEΓ

Kreg
Γ (z)(x1, . . . , xi, y1 . . . yj)g(y1, . . . , yj)f(x1, . . . , xi) dvol(x1, . . . xj , y1 . . . , yj)

for f ∈ Si(EM ) and g ∈ Sj(EM ). This inner product gives a Laurent polynomial in z,

〈Aren
Γ f, g〉 ∈ C{{z}}.

Remark 40. The calculations for the poles of Gz+1(x, x) have all been done locally. However,

Theorem 7.4 defines the meromorphic function associated to Tr ∆−z−1
M in terms of global

functions on M . Therefore these calculations can be extended to a global regularization

scheme of a QFT over a compact curved background space-time.

Having established z is the regularization parameter, one needs to check the effect of this

regularization parameter on the Lagrangian for the field theory. As on a flat background,

one wants the Lagrangian

∫

M

[

−1

2
φ(x)∆Mφ(x) + λφ(x)3

]

dvol(x)

to remain dimensionless under regularization.

Using the convention where c = ~ = 1, and the notation [x] = length units of the physical

quantity x, give the following unit identifications 1 = [length] = [mass]−1 = [energy]−1.
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Thus

[φ(x)] = −2

[∆M ] = −2

[λ] = 0

[ dvol] = 6 .

(49)

The conformal dimension of the Laplacian raised to a power is
[
∆1+z
M

]
= −2(1 + z). This

induces a scaling of the regularized Lagrangian by a scale factor Λ2z where [Λ] = 1,

L(z) =

∫

M

[
1

2
φ(x)(−∆)1+zM φ(x) + λΛ−2zφ(x)3

]

Λ2z dvol(x) . (50)

The term Λ2z dvol(x) = Λ2z
√

|g|d6x corresponds to a scaling of the metric, for instance

g → Λ
2z
3 g .

The renormalization mass parameter is given by Λ2z under ζ-function regularization.

Remark 41. This scaling factor Λ plays the role of the renormalization mass in dimensional

regularization. Notice that sign of the exponent of λ is opposite the sign of the exponent

in dimensional regularization. This is because λ is actually a length scale and not a mass

scale as previosly defined.

Now I can regularize a Feynman integral.

Theorem 7.8. Let AΓ be the operator associated to the Feynman diagram Γ. Then, for

f ∈ C∞(M×i) and h ∈ C∞(M×j), wit i+ j = EΓ, 〈AregΓ (z)f, h〉 depends only on the metric

g of M , and the combinatorics of the graph Γ.
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Proof. Let EΓ be the number of external vertices of the graph Γ, and V the total num-

ber of vertices. It is sufficient to regularize 〈AΓφe, φf 〉 where φe =
∏j
i=1 φei

(xei
), φf =

∏EΓ
j φfi

(xfi
) are products of eigenfunctions of ∆M . These functions correspond to the

external data at vertex ei or fi. Write

〈AΓφe, φf 〉 =

∫

MV

φeφf

I∏

i=1

∞∑

k=0

φki
(xi1)φki

(xi2)

λki

dvol(x1, . . . , xV ) .

This can be regularized using the Mellin transform

1

λs
=

1

Γ(1 + s)

∫ ∞

0
tse−tλdt

then

〈AΓ(z)φe, φf 〉 =

1

Γ(1 + z)I

∫

MV

φeφf

∞∑

k1...kI=0

φki
(xi1)φki

(xi2)

∫ ∞

0
e−

P

i tiλki

I∏

i=1

tzi dti dvol(x1, . . . , xV ) .

Conservation of momentum is applied at each trivalent vertex by the relation

∫
∑

i,j,k

φi(y)φj(y)φk(y)dy =

∫
∑

i,j,k

φi(y)
∑

l

ajkl φl(y)dy =
∑

j,k,i

ajki .

Since the quantity ajki is symmetric on i, j, and k I write it instead as a(i, j, k). The quantity

a(i, j, k) is tensorial, and depends only on the metric of M . Define a function ε′(v) that
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gives the set of edges incident on the vertex v. Applying conservation of momentum gives

〈AΓ(z)φe, φf 〉 =

1

Γ(1 + z)I

∫

MV

∫ ∞

0

∞∑

k1...kI=0

e−
P

i tiλki

I∏

i=1

tzi dti

V−EΓ∏

v=1

a(ε′(v)) dvol(x1, . . . , xV ) .

Working out the a(ε′(v)s re-indexes the eigenvalues in terms of the graphs loop number, L

and loop indices, li. From here, one can apply the Schwinger trick, and carry out calculations

in a manner similar to [18], Chapter 6. The operator AΓ(z) is a convolution product of the

∆−1
M , twisted by the quantities a(ε′(v)). Since the trace of ∆−sM and a(ε′(v)) depend only

on the metric of M , so does 〈AM,Γφe, φf 〉.

Remark 42. If M is a flat manifold, then

a(i, j, k) =







1 if i+ j + k = 0,

0 else.

In this case, a(i, j, k) = δ(i+ j + k), imposes conservation of momentum at each vertex.

Corrollary 7.9. There is a graph polynomial associated to each Feynman graph on M . The

terms of the polynomial are similar to the terms found in [18], chapter 6. The coefficients

of the terms, however, are functions of a(i, j, k).

7.4 The renormalization bundle for ζ-function regularization

Given a Lagrangian, L, on a general manifold M , and a Hopf algebra

HL = C[{1PI Feynman graphs of L}] ,
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one can construct a renormalization bundle for ζ-function regularization.

Define the affine group scheme GL = Spec HL, with Lie algebra gL. The group of

algebra homomorphisms Homalg(HL,A) is written GL(A), where A = C{{z}} as before.

Let ∆ be the complex infinitesimal disk around the origin. The regulator z is in this space,

defined by the complex power to which the Laplacian ∆M in the Lagrangian is raised.

Remark 43. The symbol ∆ stands for both the infinitesimal disk and the Lagrangian. The

meaning should be clear from context.

Remark 44. Notice that over a flat background space, ζ-function regularization and di-

mensional regularization are equivalent. They can be represented as sections of the same

renormalization bundle. Direct calculation shows that they differ only by a holomorphic

function. Therefore γdim reg ∼ γζ reg under the G(A+) gauge equivalence introduced in

section 6.

Notice that by Theorem 4.1,

regularization ∈ Homvect(S(Ê), GL(A)) .

That is, the regularization process maps from the the background manifold M to the group

underlying Feynman graphs G(A). This corresponds to sections of the bundle

K ×M

��

∆ ×M

��

M

(51)

since the operators associated to the Feynman graphs depend on the metric g on M , and
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thus the position in M .

Remark 45. In previous sections, I work over flat background. There, as with any constant

metric, the operators associated to the Feynman integrals are independent the position in

M , and this product with M could be ignored. For non-constant metrics, it needs to be

introduced.

Theorem 7.10. The renormalization bundle for dimensional regularization is a special

case of the renormalization bundle for ζ-function regularization over a general background

manifold. Sections of the renormalization bundle in curved space-times depend on position

over M .

P ∗ ×M → B∗ ×M → ∆∗ ×M →M .

By Theorem 7.10 all the analysis on the ζ-function renormalization bundle parallels

the analysis of the Connes-Marcolli renormalization bundle. The counterterms of a theory

under ζ function regularization are conformally invariant [13]. That is, varying the length

scale of the manifold, the counterterms stay constant. If γL is one of the sections defined

by regularization,

d

dt
(γLtz)− = 0 .

That is, γL ∈ GΦ(A). One can calculate β(γL).

Proposition 7.11. The function β(γL) is given by zR̃(γL). Since the physically interesting

action of the renormalization group on γL is given by tY γL, β(γL) = zR̃(γL−). This is
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completely determined by the counterterm, γL−.

Proof. This is a direct application of Theorem 5.18.

For π : A → A−, and a primitive 1PI graph x ∈ H, the counterterm for γL,f is

γL f− = π(Ax(f)) .

By Theorem 7.8, this depends only on the metric of M and the structure of x. In fact, for

any x ∈ ker(ε), the counterterm is written

γL,f −(x)(z) =
−1∑

−n

ai(f)zi .

All the coefficients depend only on x and the metric g. Specifically,the β-function of this

theory, β(γL) = Res (γL−) depends only on the metric on M .

7.5 Non-constant conformal changes to the metric

Finally, I can extend this analysis to ζ-function regularization under a non-constant reg-

ularization mass parameter. To do this, I need to view the scalar fields as densities on a

manifold M and adjust the Laplacian by adding a suitable multiple of the scalar curvature.

7.5.1 Densities

While compactness and orientability are not necessary for the arguments of the following

sections, I will keep with the conventions of the previous sections and let M be a smooth,

compact, oriented Riemannian n-manifold. It has a principal Gln(R)-bundle Frame(M) of

frames, whose fibers Framex(M) are ordered bases {v1, . . . , vn} for the tangent space TxM .
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The structure group Gln(R) acts freely and transitively on the fibers by rotating the frames.

A representation ρ : Gln(R) → Aut(V ) of the structure group as automorphisms of a

vector space V defines a vector representation

V ×Gln(R) Frame(M) →M

over M . For a general (not necessarily orientable) manifold, M , the determinant of the

structure group defines a bundle

det : Gln(R) → R× = Gl1(R) .

Definition 42. For an orientable manifold and for any r ∈ R the representation

|det |r/n : Gln(R) → R×+

defines a line bundle which I denote R(r).

The sections of the bundle R(r) → M are called r densities on M . The bundle can be

trivialized by choosing a metric, g, for M . Let φ be a section of R(r) →M . Given a choice

of g, it can be written uniquely as

φ = f |g| r
2n

for some f ∈ C∞(M).

Example 13. The canonically trivial bundle R×M is naturally isomorphic to R(0). That
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is, there is an isomorphism on the space of sections of the trivial line bundle

Γ(M,R ×M) ≃ C∞(M) .

Sections of R(n) can be trivialized by a choice of g and written

φ(x) = f |g| 12 ; f ∈ C∞(M)

as defined above. Similarly, the bundle ΛnT ∗(M) of n-forms is naturally isomorphic to

R(n). The space of sections

Γ(M,R(n)) = {f dx1 ∧ . . . ∧ dxn|f ∈ C∞} ≃ C∞(ΛnT ∗(M)) = Ωn .

Example 14. Lebesgue theory canonically assigns an integral

ω 7→
∫

M
ω : Ωn(M) → R

to a smooth section of the bundle of forms, and hence to a measurable section of R(n). A

Riemannian metric g on M defines a nowhere-vanishing n-form

dvol(g) = |g|1/2dx1 ∧ · · · ∧ dxn .

This allows one to integrate functions (0-forms) on M :

f 7→
∫

M
f dvol(g) .
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Remark 46. In section 7.3, where g is fixed, I use the notation dvol(x) to emphasize the

dependence of the volume element on the variable x. In this section, where the metric is

not fixed, I use the notation dvol(g) to emphasize the dependence of the volume element on

the metric g.

If φ is a continuous section of R(r), then for any s > 0, |φ|s is a continuous section of

R(rs). In particular, when n ≥ r > 0,

||φ||n/r :=

∫

M
|φ|n/r

defines an analog of a classical Banach norm. This becomes apparent under a trivialization

||φ||n/r =

∫

M
(|f ||g| r

2n )n/r =

∫

|f |n/r dvol(g) .

When r = 0, the norm is given by the classical essential supremum. I can now consider

sections of R(r), and write L(r) for the Lebesgue space of r densities, with these norms. In

this terminology, n-forms become n-densities, the Banach space dual of L(d) is L(n − d),

and Hölder’s inequality becomes the assertion that the point-wise product

L(d0) ⊗ L(d1) → L(d0 + d1)

is continuous with respect to the natural norms.

Notice that sections of R(n2 ) define a Hilbert space L(n2 ) with inner product

〈φ, ψ〉 =

∫

M
φψ .
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This inner product is independent of the Riemannian metric. A choice of g defines an

isometry with the classical Lebesgue space L2(M, g). Let φ = f |g| 12 and ψ = h|g| 12 . The

inner product is

〈φ, ψ〉g =

∫

M
f |g| 14h|g| 14dx1 ∧ . . . ∧ dxn .

Finally, there is a linear operator

φ 7→ |g|
d1−d0

2n φ (52)

that maps smooth sections of density d0 to those of density d1. When d1 ≥ d0 it defines a

continuous linear map from L(d0) to L(d1).

7.5.2 Effect of conformal changes on the Lagrangian

I can use this formalism to study how the Lagrangian varies under conformal changes to

the metric

g → ef(x)g ; f(x) ∈ C∞(M) .

For ease of notation, let u = ef . The Lagrangian density for renormalizable scalar field

theory on an n-dimensional Riemannian is given by

L =
1

2
φ(x)(−∆M )φ(x) + λφ

2n
n−2 (x) ,

where I consider φ, m and λ to be densities of different weights. Notice that φ is raised to

an integral power only when n ∈ {3, 4, 6}.
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To emphasize the Laplacian’s dependence on the metric g on M , write

∆g = div ◦ ∇ =
1
√

|g|
∂i(
√

|g|gij∂j) .

Yamabe’s theorem [44] states:

Theorem 7.12. [Yamabe] Let φ ∈ C∞(M), and let g be a metric on M . Then the

quantity

∫

M
φ [−∆g +

1

4

n− 2

n− 1
R(g)] φ · dvol(g) (53)

is invariant under the conformal rescaling g 7→ ḡ = e2f(x)g, φ 7→ φ̄ = e
n−2

2
fφ, where

f ∈ C∞(M).

Proof. The proof uses Yamabe’s identity [44]

u2R(ḡ) = R(g) − 4
n− 1

n− 2
u−(n

2
−1)∆gu

n
2
−1 .

It is perhaps most easily verified by checking that

∫

M
[|φ̄|2ḡ +

1

4

n− 2

n− 1
R(ḡ)φ̄2] · dvol(ḡ) =

∫

M
[|dφ|2g +

1

4

n− 2

n− 1
R(g)φ2] · dvol(g) ,

where f ∈ C∞(M) and the inner product of the one form dφ with itself is

∫

M
|dφ|2g dvol(g) =

∫

M
−φ∆gφ dvol(g)

by integration by parts.

148



Notice that I choose a metric in the above proof. Instead of choosing a metric, I can

interpret Theorem 7.12 as a statement about invariant densities φ of some weight r. To

determine the weight of φ, notice that the function φ̄ is invariant under the conformal scaling

g 7→ u2g. Therefore φ is a (n−2
2 ) - density trivialized by a choice of Riemannian metric so

that

φ = (|g| 12 )
(n−2)

2n h .

Then equation (53) is a linear map from L(n−2
2 ) → R.

Definition 43. For ease of notation, define the conformally invariant Laplacian

∆[g] = ∆g −
1

4

n− 2

n− 1
R(g) .

As an operator

∆[g] : L(
n− 2

2
) → L(

n+ 2

2
)

it is a quadratic form on L(n−2
2 ). The [g] subscript indicates that the Laplace operator

depends only on the conformal equivalence class of g.

The Lagrangian for a renormalizable scalar theory in terms of this conformally invariant

operator ∆[g] and densities φ is

L =

∫

M
φ(−∆[g] +m2)φ+ λφ

2n
n−2

where m is a 1-density, λ is a (0)-density, and M is a 6-manifold. The free part of this
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Lagrangian

LF =

∫

M
φ(−∆[g] +m2)φ

is invariant under the transformations g → u2g.

Theorem 7.13. There is a meromorphic family of quadratic forms on (n−2
2 )-densities,

Ỹg(r) = |g| 1
2nY 1+r

g |g| 1
2n ,

that defines the self-adjoint operator that represents the free term in the Lagrangian of a

scalar field theory.

Proof. In order to carry out the arguments from section 7.3, −∆[g] + m2 must be a self-

adjoint operator acting on the Hilbert space L(n2 ). By equation (52),

|g| 1
2nφ ∈ L(

n

2
) .

Rewrite

LF =

∫

M
φ|g| 1

2n |g|−1
2n (−∆[g] +m2)|g|−1

2n |g| 1
2nφ .

Now I can define an operator

Yg := |g|− 1
2n (−∆[g] +m2)|g|− 1

2n

that acts on the Hilbert space L(n2 ).
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Proceeding as before, I raise Yg to a complex power. This gives a family of Lagrangians

L(z, g) =

∫

M
φ|g| 1

2nY 1+z
g |g| 1

2nφ .

As before, Tr Y1+z
g has simple poles in z. Following the same arguments as in Corrollary

7.7, I can expand around z = 0 and write this as a Laurent series

Y 1+z
g =

∞∑

i=−1

aiz
i (54)

where ai are operators.

However, since φ ∈ L(n−2
2 ), the self-adjoint operator in the Lagrangian must be a

quadratic form on L(n−2
2 ). To define such an operator, use equation (52) to get

Ỹg(z) = |g| 1
2nY 1+z

g |g| 1
2n .

Remark 47. Notice that by raising Yg to a complex power, the expression φỸg(z)φ is now a

n− 2z density.

Under the conformal change of metric

g 7→ u2g = ḡ

Yg transforms as

Yg → u−1Ygu
−1 = Yḡ
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The operator Ỹḡ(z) can be written,

Ỹḡ(z) = |g| 1
2nu

(
u−1Ygu

−1
)1+z

u|g| 1
2n . (55)

The kernel of this operator is defined by a family of pseudo-differential operators with top

symbol

ξ 7→ |ξ|2+2z
g .

Remark 48. When u is constant, equation (55) corresponds exactly to equation (50).

Proposition 7.14. For a general u = ef , Ỹḡ can be expanded as a Taylor series in f as

Ỹḡ(f, z) = e−2fzỸg(z) .

Proof. Recall that u = ef(x). The terms of the Taylor series of Ỹḡ(r)at f = 0 are given as

follows

order 0 The 0th order term is given by evaluating Ỹḡ(r) at f = 0. This gives

|g| 1
2nY 1+r

g |g| 1
2n = Ỹg(r)

order f Taking the derivative of Ỹḡ(r) in terms of f gives

[2ef |g| 1
2n (e−fYge

−f )1+r|g| 1
2n ef

+ef |g| 1
2n (1 + r)(e−fYge

−f )r(−2e−fYge
−f )|g| 1

2n ef ] .

(56)
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To simplify matters later, write

(e−fYge
−f )r(−2e−fYge

−f ) = −2(e−fYge
−f )r+1 .

Evaluating (56) at f = 0 gives

2Ỹg(r) − 2(1 + r)Ỹg(r) .

order f2 Taking the derivative of (56)

[4ef |g| 1
2n (e−fYge

−f )1+r|g| 1
2n ef ]

−4ef |g| 1
2n (1 + r)(e−fYge

−f )r+1|g| 1
2n ef

−4ef |g| 1
2n (1 + r)(e−fYge

−f )r+1|g| 1
2n ef

+4ef |g| 1
2n (1 + r)2(e−fYge

−f )r+1|g| 1
2n ef ] .

(57)

The first two terms come from the derivative of the first term of (56). The third comes

from taking the derivatives of outer terms of the second term of (56), and the fourth

term comes from the derivative of the middle term of the second term of (56).

Evaluating (57) at f = 0 gives

4Ỹg(r) − 8(r + 1)Ỹg(r) + 4(r + 1)2Ỹg(r) .

This simplifies to

22(1 − (r + 1))2Ỹg(r) .
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order fn Continuing along these lines shows that the nth derivative of Ỹḡ(r) with respect

to f , evaluated at f = 0 is

2n(1 − (r + 1))nỸg(r) = 2n(−r)nỸg(r) .

Writing this out as a Taylor expansion

Ỹḡ(r) =
∞∑

n=0

(−2rf)n

n!
Ỹg(r) = (

∞∑

n=0

(−2rf)n

n!
)Ỹg(r) = e−2frỸg(r) .

Remark 49. This construction defines a family of effective Lagrangians

L(r, [g]) =

∫

M
u−2r

[

φỸg(r)φ+ u2rλφ
2n

n−2

]

,

where [g] denotes a conformal class of metric. This is the natural analog, in a flat back-

ground, of the classical family of effective Lagrangians

L(r) =

∫

R6

[

φ(−∆ +m2)1+rφ+ λΛ−2rφ
2n

n−2

]

Λ2r d6x ,

with Ỹg(r) corresponding to (−∆ +m2)1+r. In the first display, φ is a n−2
2 density. In the

second display, φ is a function. This Lagrangian is not conformally invariant when u 6∈ C×.

Using the conformally corrected Laplacian Ỹg does not change the Feynman graphs or

the divergence structure of the theory. The bundle B is now a fiber over the manifold M .

Interpreting the mass parameter u ∈ B as 1 density over M , u = ef(x) ∈ B×M I can define
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a bundle B(M) = ∆×C×(1)×GLn(C)M that contains the renormalization mass. The entire

renoromalization bundle can be written

P := P ×GLn(R) Frame(M) → B(M)

which is diffeomorphic, but not naturally, to the product of M with the Connes-Marcolli

renormalization bundle. The action of the rescaling group C× extends to an action of the

infinite dimensional group of local conformal rescalings.

The equivariant connection on P → B becomes an equivariant connection on P →

B×GLn(R)M , and the β-function becomes a map from M to g. I leave its explicit calculation

for future work.
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A Rota-Baxter algebras

As mentioned in section 4, the fact that γ†− and γ†+ are both in G(A) depends on the fact that

the projection map π : A → A− transforms A into a Rota-Baxter algebra. In this section

I define these algebras, prove the above claim, and show how Rota-Baxter algebras can be

used to generalize the regularization scheme currently under consideration. Everything in

this section can be found in [9], [10], and [12].

A.1 Definition and Examples

Let k be a commutative ring, and A a (not necessarily associative) k algebra.

Definition 44. A Rota Baxter algebra of weight θ ∈ k is the pair (A,R) where R is a linear

operator

R : A→ A

such that, for x, y ∈ A,

R(x)R(y) + θR(xy) = R(R(x)y) +R(xR(y)) .

Remark 50. This implies that R(A) is closed under multiplication. Therefore, R(A) is an

algebra.

Definition 45. 1. Let R̃ = θ −R.

2. A Rota-Baxter ideal is an ideal I ⊂ A such that R(I) ⊂ I.

3. Let (A,R) and (B,P ) be two Rota-Baxter algebras of equal weight. A Rota-Baxter

homomorphism is an algebra homomorphism such that f : A→ B and P ◦ f = f ◦R.
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Proposition A.1. The operator R̃ = θ −R is also a Rota-Baxter operator of weight θ.

Proof. By direct calculation

(θ −R)(x)(θ −R)(y) + φ(θ −R)(xy) = (θ −R)((θ −R)(x)y) + (θ −R)(x(θ −R)(y))

where φ is the weight for (θ −R). Expanding this equation shows that R̃ is a Rota-Baxter

algebra if and only if φ = θ.

Notice that by the definition, one can write R̃(A) = A/(kerR) and R(A) = A/(ker R̃) .

Corrollary A.2. Writing R(x)R(y) = R(z), with z = −θxy + (R(x)y) − (xR(y)) gives

R̃(x)R̃(y) = −R̃(z).

Remark 51. The R̃ here is different from the R̃ defined in section 5.4.1. I keep this unfor-

tunate nomenclature in order to be consistent with the existing literature. Only R̃ = θ−R

will be used in the rest of this section.

Example 15. Integration by parts Let A = Cont(R,R), the algebra of continuous

functions from R to R. Define the Rota-Baxter operator

I(f)(x) =

∫ x

0
f(t)dt .

Let G(x) = I(g)(x) and F (x) = I(f)(x). One sees that

F (x)G(x) =

∫ x

0
f(t)G(t)dt+

∫ x

0
F (t)g(t)dt ,

or that

I(f)(x)I(g)(x) = I(fI(g)(t))(x) + I(I(f)(t)g)(x) ,
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which shows that I(f)(x) is a Rota-Baxter operator of weight 0.

The case where R is an idempotent linear operator on A gives rise to a special case of

Rota Baxter algebras.

Lemma A.3. If R is an idempotent Rota Baxter operator, then so is R̃. Both R and R̃

have weight 1.

Proof. First notice that 1−R is also an idempotent operator. Therefore, A can be decom-

posed into submodules A = R(A) ⊕ (1 −R)(A). Therefore, one can write

ab = (R(a)+(1−R)(a))(R(b)+(1−R)(b)) = R(a)b+aR(b)−R(a)R(b)+(1−R)(a)(1−R)(b) .

Therefore,

R(ab) = R(R(a)b) +R(aR(b)) −R(R(a)R(b)) +R((1 −R)(a)(1 −R)(b)) =

R(R(a)b) +R(aR(b)) −R(a)R(b) + 0 .

The third term comes from the fact that R is idempotent, and that R(A) is a submodule.

The last from the decomposition. Therefore, R has weight 1, and R̃ is also idempotent, and

the decomposition is actually a subalgebra decomposition.

In general, R(A) and R̃(A) are always subalgebras of A. Lemma A.3 shows that if R is

idempotent, one can decompose A = R(A) ⊕ R̃(A). I use the convention that if A is unital

R(1) = 0.

Definition 46. Define a new product in A as

x ∗R y = R(x)y + xR(y) − θxy
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for x, y ∈ A. This gives a new algebra A′ = (A, ∗R). If this has a Rota-Baxter operator R′

associated to it, one can build up a hierarchy of Rota-Baxter algebras and operators.

Lemma A.4. If A is an associative Rota-Baxter algebra, then so is (A, ∗R) and

x1 ∗R . . . ∗R xn =
1

θ
(
n∏

1

R(xi) − (−1)n
n∏

1

R̃(xi)) .

Proof. The lemma follows by induction. The n = 1 case is obvious. For n = 2, first notice

that by the definition of this product,

R(x ∗R y) = R(x)R(y) and R̃(x ∗R y) = −R̃(x)R̃(y) . (58)

It follows that

x ∗R y =
1

θ
(R(x)R(y) − R̃(x)R̃(y)) .

For n > 2, let z = x1 ∗R . . . ∗R xn−1. By induction on equation (58), one has that

R(z) =
n−1∏

1

R(xi) and R̃(z) = (−1)n−1
n−1∏

1

R̃(xi) .

Then

z ∗R xn =
1

θ
(R(z)R(y) − R̃(z)R̃(y)) =

1

θ

(
n∏

1

R(xi) − (−1)n
n∏

1

R̃(xi)

)

.

Definition 47. Given a Lie algebra, A, with the bracket [x, y] = xy − yx, one has a
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Rota-Baxter Lie algebra

[R(x), R(y)] + θR[x, y] = R[R(x), y] +R[x,R(y)] .

A.2 Spitzer’s identities

Spitzer’s non-commutative identity is the main tool for developing the group properties of

renormalization.

A.2.1 Spitzer’s commutative identity

Spitzer’s Commutative identity comes from a generalization of the solution to the differential

equation

dy

dt
= y(t)a(t), y(0) = 1

which has the integral form

y = 1 +

∫ t

0
y(t)a(t)dt

with y, and a ∈ A. Generalizing from integration by parts, which is a Rota-Baxter algebra

of weight 0, to any Rota-Baxter algebra of any weight gives

y = 1 +R(ya) . (59)

The solution to equation (59) is as follows:

e−R(
log(1−θax)

θ
) =

∞∑

0

xnR(R(. . . R(a)a . . . a)a)
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is Spitzer’s commutative identity. Proof of this can be found as a special case of the proof

of the non-commutative Spitzer’s Identity.

A.2.2 Spitzer’s non-commutative identity

Let (A,R) be a non-commutative complete filtered algebra (with a decreasing filtration),

and a filtration preserving Rota Baxter operator of weight θ 6= 0.

Definition 48. One can define a metric on A as a filtered algebra. Let

l(a) =







{max k|a ∈ A(k)}, a 6∈ ∩nA(n);

∞, else.

The metric is given by

d(a, b) = 2−l(b−a)

Completion of A is defined with respect to this metric.

Definition 49. Let a ∈ A1. Define ǎ := (1 + θa)−1 − 1 ∈ A1.

Spitzer’s Non-Commutative Identity. Given (A,R), a complete, filtered, non-commutative

Rota-Baxter algebra of weight θ, and a ∈ A1, Spitzer’s non-commutative identity is

eR(χ(
ln(1−θa)

θ
)) =

n∑

0

(−1)nR(R . . . (R(a)a) . . . a) .

In order to prove this, and define the terms involved, one needs some tools about non-

commutative algebras.

Baker-Cambell-Hasdorff Formula. In a non-commutative algebra, A, the following
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identity holds:

exey = ex+y+BCH(x,y)

where the first few terms are

BCH(x, y) =
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + . . .

For a closed form, see [34].

One has the following recursive definition:

Definition 50. Let

χ0(u) = u

and

χn(u) = u−BCH(R(χn−1(u)), R̃(χn−1(u))) .

Because R preserves the filtration, take the limit and write

lim
n→∞

χn = χ(u) = u− 1

θ
BCH(R(χ(u)), R̃(χ(u))) . (60)

Lemma A.5. This definition lets one write

eθχ(u)+BCH(R(χ(u),R̃(χ(u)))) = eθu = eR(χ(u))e(θ−R)(χ(u)) . (61)

Lemma A.6. If R is an idempotent Rota-Baxter operator which is also an algebra homo-

morphism, one has:

1. R(χ(u)) = R(u) and R̃(χ(u)) = R̃(u).
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2. Equation (61) becomes

eu = eR(u)e(u−R(u))

or

eR̃(u) = e−R(u)eu = eR̃(u)+BCH(−R(u),u)

Proof. [10]

Definition 51. If u ∈ A1, then write eθu = 1 + θa, with a ∈ A1 and θ 6= 0 ∈ k. The

expression eθu is well defined due to completeness:

u =
log(1 + θa)

θ
. (62)

I now return to the proof of Spitzer’s non-commutative identity.

Proof of Spitzer’s Non-commutative Identity. One can write

e−R(χ(u)) = 1 +R

(
∞∑

1

(−1)n(χ(u))∗Rn

n!

)

=

1 +R

(
∞∑

1

(−1)n

n!θ
(R(χ(u)n − (−1)nR̃(χ(u))))

)

,

where the first equality comes from equation (58), the second from Lemma A.4. Using

Equation (58) again

e−R(χ(u)) = 1 +R

(
1

θ
(e−R(χ(u)) − eR̃(χ(u)))

)

= 1 +R

(
1

θ
(e−R(χ(u)) − e−R(χ(u))(1 + θa))

)

= 1 −R
(

e−R(χ(u))a
)

.
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The fourth from the fact that

eθu = eR(χ(u))eR̃(χ(u))

from equation (61) and definition 51. Thus e−R(χ(u)) satisfies the recursion relation

y = 1 −R(ya) =
n∑

1

(−1)nR(R . . . (R(a)a) . . . a) .

To generalize this result one defines the following relations:

1. Define

X = eR(χ( 1+θa
θ

)) ; Y = eR̃(χ( 1+θa
θ

))

These are Spitzer’s non-commutative relations. They satisfy the recursive equations

X = 1A −R(Xa) ; Y = 1A − R̃(aY )

with a defined as above.

2. The inverses are defined as

X−1 = 1A −R(ǎX−1) ; Y −1 = 1A − R̃(Y −1ǎ))

Lemma A.7. X(1 + θa)Y = 1.

Using this notation, e−R(χ(u)) satisfies the conditions for X−1. Similarly, one sees Y =

eR̃(χ(u)). Also, X and Y are clearly elements of the algebra A.
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A.3 Application to the Hopf algebra of Feynman graphs

This section returns to the complete filtered unital algebra of linear maps (Hom(H, A), ⋆)

for some Rota-Baxter algebra (A,P ), of weight θ 6= 0. Define e = η ◦ ǫ be the unit map.

Ebrahimi-Fard, Guo and Kreimer rewrite the Birkhoff decomposition of elements in G(A)

in terms of Spitzer’s non-commutative relations.

Theorem A.8. For γ† ∈ G(A). One can write γ† = e⋆a with a ∈ Hom(H, A)(1). u =

γ† − e ∈ Hom(H, A)(1).

1. R : Hom(H, A) → Hom(H, A) is a Rota-Baxter operator given by R = P ◦ f .

(Hom(H, A), R) is a filtered non-commutative, associative, unital Rota-Baxter alge-

bra.

2. The renormalization equations are

γ†− = −P (γ† +
∑

γ

γ†−γ
†) = e−R(γ†− ⋆ u)

and

γ†+ = P̃ (γ† +
∑

γ

γ†−γ
†) = e− R̃(γ†+ ⋆ (γ†⋆−1 − e) .

Therefore, one can write X = γ†− and Y −1 = γ†+ where X, and Y are defined as above.

3. Given the definition of P and P̃ , X and Y are algebra homomorphisms. Therefore γ†−

and γ†+ ∈ G(A).

4.

γ† = ea = eR(χ(a)) ⋆ eR̃(χ(a)) .
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If A = C{z}[z−1], this corresponds to the Birkhoff Decomposition expression

γ† = γ†⋆−1
− ⋆ γ†+ = X−1Y −1 .

5. The renormalization equations can be rewritten in terms of the Bogoliubov operator:

R̄[γ†] = γ† +
∑

γ

γ†− ⋆ γ
†

or as γ†− = −R(R̄[γ†]). Thus one has R̄[γ†] = e∗R−χ(a) = γ†−−e. Similarly, R̃(R̄[γ†]) =

2e− γ†.

This shows that dimensional regularization and renormalization by minimal subtraction

can be formulated as a factorization problem in a non-commutative algebra with idempotent

Rota-Baxter map. The decomposition of the Hopf algebra homomorphisms are determined

by the decomposition map associated to the Rota-Baxter operator on A. The properties of

this decomposition implies that γ†− and γ†+ ∈ G(A). In fact, both the set of counterterms

and the set of renormalized algebra homomorphisms form subgroups of G(A). Furthermore,

since the Rota-Baxter operator in A is idempotent, it gives a direct decomposition of A,

which establishes the uniqueness of the Birkhoff Decomposition in this case.

Finally, this theorem implies that it doesn’t matter what the algebra A is, as long as it is

a unital Rota-Baxter algebra with idempotent operator. Under these conditions, one has a

unique Birkhoff decomposition determining the counterterms and the renormalized algebra

homomorphisms. Since choosing A physically amounts to choosing a class of regularization

schemes, this gives the physicist significant freedom in choosing the regularization scheme.
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B Rings of polynomials and series

Let k be a ring. Let x be a formal indeterminate over k.

k[x] The ring of polynomials in x with k

coefficients

f(x) =
∑n

1 aix
i

k[x, x−1] The ring of polynomials in x and

x−1

f(x) =
∑m
−n aix

i

k(x) The ring of rational functions in x. f
g with f , g ∈ k[x]; g 6= 0

k[[x]] Formal power series in x. f(x) =
∑∞

0 aix
i

k((x)) Also written k[[x]][x−1] or k[[x, x−1]

Formal power series in x with

finitely many powers of x−1.

f(x) =
∑∞
−n aix

i

For the following two rings, let k = C.

C{x} Formal power series in x with non-

zero radii of convergence.

∃r > 0 such that f(x) =
∑∞

0 aix
i

converges for |x| < r.

C{{x}} Also written k{x}[x−1]. Convergent

formal power series with finitely

many powers of x−1.

If f(x) =
∑∞
−n aix

i, ∃r > 0 such

that
∑∞

0 aix
i converges for |x| < r.

There are the following inclusions on these sets:

k[x] ⊂ k[x, x−1] ⊂ k(x)

k[x, x−1] ⊂ k{{x}} ⊂ k((x))
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k[x] ⊂ k{x} ⊂ k[[x]]

If k = C then C{x} is the set of meromorphic functions that do not have a pole at 0.

Also, there is a map C(x) →֒ C{{x}} that assigns to each rational function its meromorphic

expansion about 0.
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