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Abstract

We analyze monotonicity of base stock levels in multi - item inventory - production sys-
tems where arriving demand triggers production of a new unit. Rubio and Wein (Rubio, R.,
Wein, L.M.: Setting base stock levels using product-form queueing networks. Management
Science 42(2), 259–268 (1996)) used open Jackson networks to describe such integrated mod-
els. They conjectured that the base stock level should increase with the utilization in the
production system and confirmed this for a single - product system via numerical investiga-
tions. We present a basic analytical proof of the general presumption for single- and multi
- item systems utilizing stochastic orderings and discuss the implications for resetting base
stock levels when load and/or capacity in the manufacturing network change. We further
develop a new algorithm to evaluate the optimal base stock levels.

Keywords: Queueing, Stochastic processes, Inventory, Stochastic Ordering

1 Introduction

For a manufacturing system which produces items of different types on a make-to-stock basis,
we consider a queueing network model to determine an optimal base stock policy. A base stock
policy prescribes a target total inventory position for each product to balance backorder and
inventory holding costs. In the system, produced items are stored in a finished good (FG)
inventory to serve exogenous demand. If there are finished goods at stock when demand arrives,
it is satisfied immediately, otherwise it is backordered (negative FG). In both cases, an order
for producing a new item is placed instantaneously, which is counted as work-in-process (WIP).
Consequently, the sum of FG and WIP inventory is maintained at a fixed level for each product
in this CONWIP-like system. Related models are base stock systems with multiple production
stages each holding its individual buffer stock (see Buzacott et al. (1992) and Lee and Zipkin
(1992)).

Using networks of queues to investigate complex inventory systems found some interest at
the end of the 20th century; see the references in Toktay et al. (2000), Rubio and Wein (1996),
and the work on similar models in Zazanis (1994) and Spearman and Zazanis (1992). A survey of
related models for integrated inventory-production systems is in Krishnamoorthy et al. (2011).
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Our starting point is the paper of Rubio and Wein Rubio and Wein (1996) whose base stock
model consists of a multi-item inventory and a replenishment network of the Jacksonian type.
They show that it is sufficient to study the steady state WIP to determine the optimal base
stock level.

We focus on monotonicity behavior of optimal base stock policies within the parameters of
the network and discuss the following important monotonicity property for optimally setting the
target base stock level: Whenever the demand intensity for a product increases and/or some-
where in the network the production capacity decreases, the optimal base stock level increases
(we use ”increasing” for ”non decreasing”, and similarly ”decreasing”).

Although this property seems to be intuitive and natural, it is not easy to prove. In fact,
Rubio and Wein provided a proof only for the case of a single-item inventory-production system
where all stations have the same utilization (in their terminology: a balanced network). For the
single-product case in an unbalanced network, they conjectured that such monotonicity should
hold as well, relying on numerical experiments (see Rubio and Wein (1996), p. 263). The main
objective of the present paper is to prove the monotonicity property even for a more general
system, i.e., the manufacturing system does not have to be balanced nor reduced to the singe-
product case. This advises the inventory controller on how to increase (decrease) the target base
stock level when demand increases (decreases) and/or capacity is reduced (expanded).

Our paper is structured as follows: In section 2 we present the inventory-production model.
In section 3 we describe Jackson networks with different classes of customers representing the
different types of WIP in the replenishment network. We prove the monotonicity behavior
of base stock levels related to the system’s utilization in section 4. In section 5, we provide
new numerical insights for the balanced and unbalanced single-item case and prove a general
monotonicity property suggested by the numerical results.

For queueing networks we only cite facts and refer for details to the literature. For the
numerical evaluations, we restrict our presentation mainly to the case of exponential single
server queues. This is only for simplicity of presentation. As it will be seen, the algorithm and
the experiments can be easily extended to more general systems.

2 Manufacturing queueing system with backordering

We consider a multi-item manufacturing system with products u, u = 1, ..., U . In the system,
we distinguish between the FG and WIP inventory which contain the finished and unfinished
goods, respectively. Unsatisfied demand is captured by the backorder level for each type of good.

If an exogenous demand for a specific good arrives, the corresponding WIP inventory in-
creases in the same amount as the FG inventory for this good decreases. This ensures that
the demanded item is eventually reproduced. On the other hand, finished produced items are
transferred from the manufacturing network to the FG inventory, i.e., are converted from WIP
to FG items. Let Au(t) be the cumulative demand of product u in [0, t] and Du(t) the amount
of finished items moved to the FG inventory until t. For the WIP inventory Nu(t) we therefore
have: Nu(t) = Au(t)−Di(t). For t = 0, we assume Nu(t) = 0.
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The WIP processes (Nu(t) : t ≥ 0) for u = 1, . . . , U, are determined by the manufacturing
system, which will be described in terms of stochastic networks of generalized Jacksonian type
in section 3 below.

Let Zu(t) denote the FG inventory level of product u, where negative levels count backordered
items. Without loss of generality, the initial level is set as the base stock level zu, u = 1, ..., U .

Demand reduce the FG inventory whereas finished produced items increment it: Zu(t) =
zu + Di(t) − Au(t). Therefore, the base stock level is equal to the total inventory position:
Nu(t) + Zu(t) = zu.

The WIP level can grow arbitrarily high because it also includes the backordered products
whereas Zu(t) is bounded from above by zu. Zu(t) can be divided into two parts: the on-
hand inventory ZOu (t) and backorders ZBu (t). Thus, Zu(t) = ZOu (t) − ZBu (t), and we have
ZOu (t) · ZBu (t) = 0.

Shortfalls occur if demand is larger than the base stock level or, differently said, if the
WIP in the replenishment network exceeds the base stock. The expected backorder level is:
E[ZBu (t)] =

∑∞
n=zu

(n− zu)P (Nu(t) = n).
Using also the fact that the FG inventory is the difference of the on-hand inventory and

backorders, we receive: zu = E[Nu(t)] + E[ZOu (t)]− E[ZBu (t)]. Consequently, we obtain for the
expected on-hand-inventory: E[ZOu (t)] = zu − E[Nu(t)] +

∑∞
n=zu

(n− zu)P (Nu(t) = n).
The cost function encompasses item specific costs per time unit: for items of type u = 1, ..., U,

the holding cost cu for WIP inventory, the holding cost hu for FG inventory, the backorder cost
bu. We denote by Cu(zu) the total cost per time unit which originates from type u items when
the base stock level for type u items is set to zu (in the steady state system).

We are interested in the long run overall costs per time unit, which by exploiting the ergodic
theorem for our Markovian system process can be computed via the stationary expected costs.
Let Nu denote a random variable distributed according to the total number of WIP items of
type u under the stationary WIP distribution, which will be given explicitly below.

It turns out that the main decision variables are Nu, the overall WIP of product u = 1, ..., U,
(see Rubio and Wein (1996), p. 261)

U∑
u

E[Cu(zu)] =
U∑
u

(
(hu + bu)

[
zuP (Nu ≤ zu − 1) +

∞∑
n=zu

nP (Nu = n)
]

−buzu + (cu − hu)E[Nu]
)
.

Control variables are stock sizes zu ≥ 0, for product type u = 1, ..., U. Rubio and Wein showed
that the cost minimizing base stock levels z∗u, u = 1, ..., U , can be expressed in terms of the WIP
of product u and the respective inventory and backorder cost per item and time unit only. These
are the smallest integers z∗u ≥ 0, such that for the stationary WIP in the replenishment network
holds

P (Nu ≤ z∗u) ≥ bu
bu + hu

, u = 1, ..., U . (1)
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3 Multi-class Jackson network with exponential service times

To describe the behavior of the WIP in the replenishment system, we use a standard multi-class
Jackson network in which Nu is the total population size of item u. We adapt the notation of
Chao et al. (see Chao et al. (1999), chap. 5) and consider a multi-class Jackson network with
J stations, numbered by j = 1, ..., J . We distinguish in the network products u, u = 1, ..., U
(customer classes). Set nju the number of class u customers at node j, the total population size
at node j as nj = nj1+...+njU , and define nj = (nj1, ..., njU ) and n = (n1, ..., nJ), the joint class
occupation vector. Arrivals of class u at node j from outside of the network follow a Poisson
process with rate λju. rju,ku is the probability that class u customers departing from node j join
node k, and rju,0 is the probability that a class u customer leaves the system after finishing his

service at node j with
∑J

k=1 rju,ku + rju,0 = 1, u = 1, ..., U . Since demand of product u triggers
a class u arrival at the replenishment network leaving as an output of item u, customers in the
network do not change their class (which would be possible in the general setting of Chao et al.
(see Chao et al. (1999), chap. 5).

αju, the total arrival rate of class u at node j, is obtained as the solution (assumed to be
unique) of the so called traffic equations

αju = λju +
J∑
k=1

αkurku,ju, j = 1, ..., J ;u = 1, ..., U. (2)

At node j all customers require an amount of service which is exponentially distributed with
rate µj . The server at node j provides service at rate Φj(nj), which is non-decreasing in nj and
Φj(nj) > 0 if nj ≥ 1. This results in a versatile construction of service regimes. For example,
if the network consists of first-come-first-served (FCFS) multi-sever queues with sj ≥ 1 servers,
we can write Φj(nj) = min {nj , sj}. We define the class u utilization of node j by ρju = αju/µj .

The stationary distribution π of the multi-class Jackson network for the joint class occupation
process with values n = (n1, ..., nJ) is with normalization constants (see Chao et al. (1999), p.

127) Bj =
∑∞

n=0

(
(
∑U

u=1 ρju)n/
∏n
`=1 Φj(`)

)
<∞

π (n) =
J∏
j=1

πj (nj) with πj (nj) = B−1
j

nj !

nj1!...njU !

nj∏
`=1

Φj(`)
−1

U∏
u=1

ρju
nju . (3)

The joint class occupation process (which does not count for positions in the queue) with values
n = (n1, ..., nJ) is in general not Markovian. However, it suffices as state description for the
relevant quantities for our investigations.

Example 1. Deterministic replenishment schedule. Our model encompasses the im-
portant case where each class (product) has its dedicated fixed sequence of service stations to
visit in the replenishment procedure: Each customer (product) class follows its own route in-
side the network. Such networks with class dependent fixed routing are called Kelly networks,
which exhibit stationary distributions with product form structure as introduced before. In such
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a network, class u customers arrive from outside in a Poisson process with rate λu at entrance
node u [1]. The node a class u customer visits in his mth stage of his path is denoted by u [m],
m = 1, ...,M(u), and the probability that a class u customer leaves the network after receiving
service at his last stage M(u) is 1.

Remark 1. So far, we have only considered networks in which customers have exponential
service requirements. For arbitrary service requirements, we refer to BCMP networks (see Chao
et al. (1999), chap. 6), where the service requirement of a customer u at station j may have an
arbitrary distribution, depending on class and node. Denote by Sju a random variable distributed
as class u customers’ service request at node j with mean E(Sju) = µ−1

ju . In this situation, we
need to abandon the FCFS-property and employ the so called symmetric service disciplines (see
Chao et al. (1999), chap. 6, p. 150). We will not need details for our development here and
therefore sketch only an example for the reader’s convenience.

In the context of our replenishment manufacturing system, we could think of a server network
with Φj(nj) increasing in (nj), where all arriving customers (products) have the same priority
and the server’s effort is equally shared among all the customers present at the same node. The
service completion rate is Φj(nj) · nju

nj
µju for customers of class u at node j, u = 1, ..., U . The

utilizations in the network are ρju =
αju

µju
, u = 1, ..., U, j = 1, . . . , J . If the service requirements

are exponentially distributed, the stationary joint queue length distribution is (3). Otherwise,
the stationary distribution of this BCMP network with single servers under processor-sharing
with

∑U
u=1 ρju < 1 and unique solutions of the traffic equations αju, j = 1, ..., J, u = 1, ..., U, is

(see Chao et al. (1999), Theorem 6.1 and Theorem 6.2)

π (n) =

J∏
j=1

πj (nj) with πj (nj) = B−1
j

nj !

nj1!...njU !

nj∏
`=1

Φj(`)
−1

U∏
u=1

ρju
nju , (4)

where Bj =
∑∞

n=0

(
(
∑U

u=1 ρju)n/
∏n
`=1 Φj(`)

)
.

The formulas displayed in (3) and (4) are identical but the cautious reader should recall the
difference of ρju = αju/µj in (3) and ρju = αju/µju in (4).

4 Monotonicities

We apply stochastic order to show that the optimal base stock level increases with the utilization
in the system. We first provide definitions of the used orderings, see Mueller and Stoyan (2002).
Let N and N ′ be two N-valued random variables, FN and FN ′ their cumulative distribution
functions, and fN and fN ′ their probability density functions, respectively.

Definition 1. Usual Stochastic Order N ′ is larger than N in the usual stochastic order,
written N ≤st N ′, if FN (n) ≥ FN ′(n) ∀n ∈ N.

Definition 2. Likelihood Ratio Order N ′ is larger than N in likelihood ratio order, written
N ≤lr N ′, if fN (n)fN ′(k) ≤ fN (k)fN ′(n), ∀k ≤ n ∈ N.
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4.1 Single-product network with single-server nodes

We firstly analyze the special case of a single-product network with exponential FCFS single-
server nodes with U = 1 and sj = 1, j = 1, ..., J . Hence, the capacity functions reduce to
Φj(nj) = 1 if nj ≥ 1. Denote by α = (αj , j = 1, ..., J) the solution (assumed to be unique) of

the traffic equations αj = λj +
∑J

i=1 αiri,j , j = 1, ..., J, where we suppressed index u.
With (Xj , j = 1, ..., J) representing the stationary state of the joint queue length process,

Jackson’s theorem states that for ρj := αj/µj < 1, j = 1, ..., J , we have for (n1, ..., nJ) ∈ NJ

π(n1, ..., nJ) := P (Xj = nj , j = 1, ..., J) =

J∏
j=1

(1− ρj)ρ
nj

j . (5)

Product (5) implies that the stationary distribution of the total WIP is a convolution of geometric
distributions with parameters 1−ρj , j = 1, ..., J . So for single-product systems, (1) is a statement
on N := X1 +X2 + · · ·+XJ .

Proposition 1. If the utilization ρj at some station j is increased, then z∗ increases.

Proof. Consider two J-station networks where X := (Xj , j = 1, ..., J) and X ′ := (X ′j , j =
1, ..., J) represent the stationary states of the joint queue length processes. Moreover, assume
for the utilizations ρj ≤ ρ′j , j = 1, ..., J .

For geometrically distributed random variables Xj ∼ geo◦(1 − ρj) and X ′j ∼ geo◦(1 − ρ′j)
holds: if ρj < ρ′j , then X ′j is larger than Xj in likelihood ratio order, Xj ≤lr X ′j (see Mueller
and Stoyan (2002), p. 63). Since the likelihood ratio order is stronger than the usual stochastic
order, we have: Xj ≤lr X ′j ⇒ Xj ≤st X ′j (see Mueller and Stoyan (2002), p. 12). From the
convolution property of ≤st (see Mueller and Stoyan (2002), p.7), it results

N := X1 +X2 + · · ·+XJ ≤st N ′ := X ′1 +X ′2 + · · ·+X ′J . (6)

From the definition of the usual stochastic order, we conclude

z∗ = inf
z

(
P (N ≤ z) ≥ b

b+ h

)
≤ z′∗ = inf

z

(
P (N ′ ≤ z) ≥ b

b+ h

)
.

Thus, the optimal base stock level z∗ increases in the ρj , j = 1, ..., J .

Recall: For ρj = ρ we obtain the main result of Rubio and Wein (1996).
As an illuminating example, consider a replenishment network with fixed routing (rj,i) and

demand intensities λj , where service intensity can be adjusted. The proven monotonicity implies
that increasing service intensity somewhere results in less stock needed to maintain the cost level.
One can also easily prove that the optimal base stock levels grows with the backorder-to-holding
cost ratio.
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4.2 Multi-product network with multi-server nodes

Rubio & Wein’s conjecture proposes a similar monotonicity of base stock policies for replen-
ishment networks with exponential multi-server nodes, which we extend to an even much more
general system described in Remark 1.

Proposition 2. Consider a generalized multi-class Jackson or BCMP network with queue length
dependent capacities Φj(nj) increasing in the queue lengths (nj). If the service discipline at node
j is FCFS, all customers have an exponential service time request with node dependent mean
µ−1
j ; if the service discipline at node j is processor sharing, a customer of class u may have a

general class and node dependent service time request with mean µ−1
ju .

The utilization of class u customers at j is ρju = αju/µj for FCFS node j, and ρju = αju/µju
for processor sharing node j.

If class u utilization ρju is increased at some station j, then all z∗u increase.

Proof. The basic structure of the proof resembles that of Proposition 1 but is more involved.
To determine z∗u in (1), we need the total number Nu of class u customers in the network. We
start with the total number Nju of class u customers at node j. The marginal distribution for
the number of type u customer at node j is from (3), resp. (4),

P (Nju = nju) =
∑

v=1,...,U,
v 6=u

∞∑
njv=0

πj (nj1, ..., njU )

=
∑

v=1,...,U,
v 6=u

∞∑
njv=0

B−1
j

(nj1 + nj2 + ...+ njU )!

nj1!nj2!...njU !

U∏
v=1

ρjv
njv

nj1+...+nju∏
l=1

1

Φj(l)


=B−1

j ρ
nju

ju

1

nju!

∞∑
m=0

m+nju∏
l=1

1

Φj (l)

 (m+ nju)!

m!∑
(njv :v∈{1,...,U}\{u})∑

v=1,...,U,
v 6=u

njv

=m

m!∏
v=1,...,U,

v 6=u
njv!

∏
v=1,...,U,

v 6=u

ρ
njv

jv

=B−1
j ρ

nju

ju

1

nju!

∞∑
m=0

m+nju∏
l=1

1

Φj (l)

 (m+ nju)!

m!

 U∑
v=1
v 6=u

ρjv


m

.

In order to show that the likelihood ratio order holds, we assume that at some node j the class u
utilization changes from ρju to ρ′ju with ρju < ρ′ju. We rewrite the probability that there are nju

type u customers at node j with Aj (nju) :=
∑∞

m=0

(∏m+nju

l=1
1

Φj(l)

)
(m+nju)!

m!

(∑U
v=1, v 6=u ρjv

)m
7



as

πju (nju) = P (Nju = nju) = B−1
j ρju

nju
1

nju!
Aj(nju) ,

and similarly with ρ′ju

π′ju (nju) = P
(
N ′ju = nju

)
= B′−1

j ρ′ju
nju 1

nju!
Aj(nju) .

Hence, we obtain ρju ≤ ρ′ju ⇔ ρju
nju−kju ≤ ρ′ju

nju−kju for 0 ≤ kju ≤ nju from

πju(nju)

πju(kju)
≤
π′ju(nju)

π′ju(kju)
⇔

ρju
nju 1

nju!Aj (nju)

ρjukju
1
kju!Aj (kju)

≤
ρ′ju

nju 1
nju!Aj (nju)

ρ′ju
kju 1

kju!Aj (kju)
.

Thereafter, N ′ju is larger than Nju in likelihood ratio order and also in usual stochastic order,
and we conclude as above from the product form structure of π that Nu ≤st N ′u. Thus, a higher
base stock z′∗u is needed to fulfill the optimality condition (1) with larger ρ′ju > ρju at node j. We
conclude our arguments for the multi-product system with the remark that (1) is a statement
on Nu =: N1u + · · ·+NJu and N ′u =: N ′1u + · · ·+N ′Ju.

Remark 2. For simplicity of presentation, we focused on the queueing regimes FCFS for multi-
server exponential nodes and processor sharing for nodes with general class and node dependent
service time requests. It is easy to see that Proposition 2 is valid for any symmetric service
discipline at nodes with general class and node dependent service time requests and for any non-
symmetric service discipline at nodes with exponential node dependent service time requests (for
a precise definition see Chao et al. (1999), Theorem 6.1 and Chao et al. (1999), p. 119-120 and
Theorem 5.4, respectively).

Example 2. Consider a system where for each demand class the production schedule is a fixed
sequence of stations which results in fixed arrival rates αju (of class u customers at station
j). Proposition 2 says: Increasing service intensity somewhere results in less stock needed to
maintain the cost level.

Remark 3. If we consider a multi-product network with single-server nodes, the marginal dis-
tribution of type u customers at node j can be simplified to

P (Nju = nju) = B−1
j ρ

nju

ju

1

nju!

∞∑
m=0

(m+ nju)!

m!

 U∑
v=1
v 6=u

ρjv


m

= B−1
j ρju

nju

 1

1−
∑U

v=1,
v 6=u

ρjv

nju+1

=
1−

∑U
v=1 ρjv

1−
∑U

v=1
v 6=u

ρjv

 ρju

1−
∑U

v=1,
v 6=u

ρjv

nju

,
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i.e., the number Nju of type u customers at node j is geometrically distributed with success

probability pju =
1−

∑U
v=1 ρjv

1−
∑U

v=1, v 6=u ρjv
. Due to the product form equilibrium, the type u queue lengths

behave independently over nodes and the probability that there are in total nu type u customers
in the system is P (Nu = nu) =

∑
n1u+...+nJu=nu

P (Nju = nju, u = 1, ..., U) =
∑

n1u+...+nJu=nu

J∏
j=1

pju (1− pju)nju .

5 Algorithmic evaluation of optimal base stock levels

The numerical explorations in Rubio and Wein (1996), in which inequation (1) was numerically
solved in the direct way, are limited to the balanced case of single server FCFS nodes (see
Rubio and Wein (1996), equation (4)). Our approach also applies to networks with unbalanced
parameter settings. For clarity of exposition, we restrict our presentation to single server FCFS
nodes.

The main idea of our new algorithm for determining optimal base stock levels is to use the
so-called Buzen’s algorithm for computing normalization constants in closed networks of queues
(Gordon-Newell networks). Moreover, we exploit the fact that for a given Jackson network (our
manufacturing network) with total population size N the probability P (N = n) is proportional
to the normalization constant in a suitably constructed Gordon-Newell network.

To be more precise: Buzen’s algorithm enables a straightforward and numerically stable
calculation of normalization constants in a closed Gordon-Newell network consisting of J single-
server stations and a fixed number of customers N Buzen (1973). Utilizing the data of the
prescribed Jackson network, we then apply the property that a Gordon-Newell network can be
constructed such that its normalization constant G(N, J) behaves proportionally to P (N = n)
of the given Jackson network (see Chen and Yao (2001), p. 20, Theorem 2.3). Therefore, we
can use the following inequalities to calculate the optimal base stock level of a balanced and
unbalanced single-item system, respectively (see A):

(1− ρ)J
z∗∑
n=0

G(n, J) ≥ b

b+ h
,

J∏
j=1

(1− ρj)
z∗∑
n=0

G(n, J) ≥ b

b+ h
(7)

5.1 Numerical evaluation and results

Rubio and Wein Rubio and Wein (1996) discovered that for balanced networks the optimal base
stock level increases almost linearly with the number of stations as long as ρ ≤ 0.9 holds for
the utilization. On the other hand, their Figures 1 and 2 (see Rubio and Wein (1996), p. 264)
suggest a nearly exponential increase of the optimal base stock level in the utilization for ρ ≤ 0.9.

Exploiting the numerical stability of Buzen’s algorithm, we found that the optimal base stock
level also grows linearly with the number of stations in a balanced network under nearly heavy
traffic conditions (see Figure 1). Moreover, we studied the interrelation of base stock level and
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Figure 1: Optimal Base Stock Level in
Balanced Networks under Heavy Traf-
fic

Figure 2: Optimal Base Stock Level in
Balanced Networks

utilization for 0.01 ≤ ρ ≤ 0.99 and can confirm that the base stock level grows exponentially
with the utilization in a network with balanced stations. See Figure 2 for a typical scenario with
20 stations.

This shows that our algorithm works well even in critical parameter domains. We remark
that utilizations greater than 0.9 should be avoided in practice. However, this parameter domain
is of special interest when applying heavy traffic (diffusion) approximations for performance
prediction.

Figure 3 demonstrates a typical behavior of the optimal base stock level when the number
of stations in an unbalanced network increases from 1 to 20. In this investigation, we considered
utilizations within the range of 0.4 ≤ ρ ≤ 0.99. We start in the four reported experiments with
a single station with ρ1 = 0.4 (dark blue), ρ1 = 0.6 (green), ρ1 = 0.8 (red, light blue) and add
successively stations with higher utilizations. For j = 1, . . . , 19 a newly added station j + 1 has
utilization ρj+1 = ρj + 0.01 (dark blue, green, light blue), or ρj+1 = ρj + 0.005 (red). A detailed
list of the utilizations for the dark blue setting is given in Table 1 (Case 1a).

The somewhat surprising conclusion of the experiments is that even for the case of unbalanced
networks (with linear increase of utilizations for added nodes), the optimal base stock level
increases almost linearly as long as ρj ≤ 0.9 is maintained (dark blue, green, red). On the
other hand, the light blue curve indicates the dramatic change of the safety requirements in
the range of a nearly heavy traffic regime. This property also holds for mixed networks in
which not all utilizations are pairwise different, which can be easily evaluated with the help
of Buzen’s algorithm. Our numerical investigations reported in Figure 4 show, as expected,
that the base stock level increases (decreases) as soon as the utilization of some single station
increases (decreases). We demonstrate two different settings.

Firstly, we reconsider the dark blue line from Figure 3 with linearly increasing utilizations
and maintain the utilizations for all stations apart from station 11 where we reset ρ11 = 0.8 (see
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Figure 3: Optimal Base Stock Level in
Unbalanced Networks

Figure 4: Monotonicity Behavior in
Unbalanced and Irregular Networks

Table 1, Case 1b). This increases the dark blue line to the dark blue dashed line for j = 11, . . . , 20
in Figure 4. Secondly, we consider an irregular network (see Table 1, Case 2a) which results in
the upper black curve. We then decrease the utilization of station 11 where we reset ρ11 = 0.3
and maintain the utilizations for all other stations (see Table 1, Case 2b). This decreases the
black line to the dashed black line for j = 11, . . . , 20. In this numerical research, we found

Station 1 2 3 4 5 6 7 8 9 10
Case 1a 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49
Case 1b 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49
Case 2a 0.70 0.19 0.40 0.83 0.34 0.85 0.66 0.77 0.48 0.30
Case 2b 0.70 0.19 0.40 0.83 0.34 0.85 0.66 0.77 0.48 0.30

Station 11 12 13 14 15 16 17 18 19 20
Case 1a 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
Case 1b 0.80 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
Case 2a 0.90 0.48 0.80 0.15 0.80 0.86 0.78 0.48 0.60 0.40
Case 2b 0.30 0.48 0.80 0.15 0.80 0.86 0.78 0.48 0.60 0.40

Table 1: Utilizations of the numerical experiments

that the advantage of Buzen’s algorithm is twofold: First, it facilitates the direct comparison
of balanced and unbalanced networks, also under nearly heavy traffic conditions, and secondly,
it permits the calculation of base stock levels in systems with both balanced and unbalanced
nodes.

We emphasize that our algorithm can be directly transformed to the case of multi-server
networks and the more general BCMP and Kelly networks by substituting the original Buzen’s
algorithm by the adapted algorithms available in the performance evaluation literature, e.g.
Bruell and Balbo (1980). Another variant is to use the extended mean value analysis for com-
puting the normalization constants, (see Reiser and Lavenberg (1980) and Akyildiz and Bolch
(1983)).
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5.2 A general monotonicity property

Recalling the observed monotonicity of the optimal base stock level, which is nearly linear for
ρj < 0.9 in the homogeneous balanced (Rubio and Wein) and unbalanced (our Figure 3) case,
and the increasing property of the optimal base stock level in the inhomogeneous network (our
Figure 4), leads to the conjecture that the observed interrelation between the base stock level
and number of stations holds in general. We summarize this as our

Proposition 3. If a new station with any utilization is added to the single-item inventory-
production network with single server nodes while the already existing stations maintain their
utilizations, the optimal base stock level increases.

Proof. We consider the general case, thus, the second formula from (7) and compute utilizing
G(0, J) = 1 and

∑
∅ an = 0

J∏
j=1

(1− ρj)
z∑

n=0

G(n, J)−
J+1∏
j=1

(1− ρj)
z∑

n=0

G(n, J + 1)

=
J∏
j=1

(1− ρj)
z∑

n=0

G(n, J)−
J∏
j=1

(1− ρj)
z∑

n=0

G(n, J + 1)

+ρJ+1

J∏
j=1

(1− ρj)
z∑

n=0

(?)︷ ︸︸ ︷
G(n, J + 1)

=
J∏
j=1

(1− ρj)
z∑

n=0

G(n, J)−
J∏
j=1

(1− ρj)

[
z∑

n=0

G(n, J) + ρJ+1

z−1∑
n=0

G(n, J + 1)

]

+ρJ+1

J∏
j=1

(1− ρj)
z∑

n=0

G(n, J + 1)

= ρJ+1

J∏
j=1

(1− ρj)G(z, J + 1) > 0,

where we used Buzen’s formula to transform (?).
This implies that with J + 1 stations a higher base stock level is needed to satisfy the required
minimal cost criterion.

Remark 4. For single item production-inventory systems, we have µju = µj. Therefore, Propo-
sition 3 is also valid for the case of single product systems with general service time distributions
at the nodes whenever Φj(nj) = 1 for nj ≥ 1 holds. This follows directly from formulas (3) and
(4).
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6 Conclusion

We have proved the conjectured monotonicity of optimal base stock levels for an inventory sys-
tem, where replenishment is provided by a complex production system, modeled as a generalized
Jackson network. As Rubio and Wein pointed out, this is a versatile class of models, and we
extended the applicability of their model even to general systems where their required condi-
tions, either homogeneous (equal utilizations) or all utilizations are pairwise different, do not
hold. Our proof relies on the interplay of Jackson network theory and stochastic order theory.

The conjecture of the monotonicity implies: If the (general unbalanced) system produces
items of different types, then, whenever the demand for any product type increases and/or
anywhere in the network production capacity is reduced, an optimal decision of the inventory
controller would be to hold more items on stock.

It is easy to see that the monotonicity proved here holds as well in product form networks
with more general structure (see Chao et al. (1999), chap. 6).

Our ongoing work in this field comprises monotonicity problems in general inventory - pro-
duction networks and provides analytical explanations of the networks’ behavior.

A Base stock algorithm

Initialization:
Set number of stations J ≥ 1;
set utilizations ρj , j = 1, ..., J ;

set backorder-to-holding cost ratio c = b
b+h ;

set threshold t = c∏J
j=1(1−ρj)

;

set base stock level z = 0;
set g(0, j) = 1, j = 1, ..., J ;
set s = 1;

Iteration:
1. If s ≥ t, stop and set zopt = 0; else go to 2;
2. Update z := z + 1;
3. Calculate g(z, j), j = 1, ..., J , with g(z, 1) = ρz1 and

g(z, j) = g(z, j − 1) + ρj · g(z − 1, j) for j = 2, ..., J ;
4. Update s := s+ g(z, J);
5. If s ≥ t, stop and set zopt = z; else go to 2;
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