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Abstract

We study generalized Jackson networks with single server stations, where some nodes have an
infinite supply of work. We allow in our model simultaneous breakdown of groups of servers, and
group repair strategies, thereby capturing the feature that repairing several servers simultaneously
may lead to more efficient repair actions and thus may reduce the repair time. In addition, we allow
for servers to have infinite supply. We will establish the existence of a steady-state distribution of
the queue-length vector at stable nodes for different type of failure-regimes. As it turns out, the
distribution of the failure/repair regime and the steady-state distribution of the queue-length vector
at stable nodes decouple in a product-form way, and we will provide closed-form solutions for the
long run throughput of the network. It is a well known problem in reliability, that the distribution
of the time between breakdowns is hard to estimate. We illustrate the impact of our results with an
analysis of parameter insecurity of the throughput of the systems for different breakdown regimes.

Keywords: Jackson networks; group breakdowns, group repairs; infinite supply queues;

1 Introduction

Open Jackson networks are a well established class of models in, e.g., production, telecommunication,
computer systems; for surveys see [Kel79] and [CY01]. Although real life systems typically don’t meet
the rather restrictive conditions for Jackson networks, such as exponential service times, independence
of service times amongst servers, and infinite waiting capacity at service stations, Jackson networks are
typically used in performance analysis of complex networks for coming up with an approximate indication
of the long-run system performance. Indeed, simulation of complex networks is (i) time consuming, and
(ii) the true specification of service time distributions and possible stochastic dependencies between the
behavior of nodes is often not known, which makes Jackson networks a valuable tool in performance
analysis.

In this paper, we study Jackson networks with the following two additional features:

• We allow for breakdown and repair of individual servers and for simultaneous breakdown and repair
of groups of servers (i.e., repair can be grouped). This allows (i) to model simultaneous breakdown
of groups of servers, and (ii) model group repair strategies. For example, repairing several servers
simultaneously may lead to more efficient repair actions and thus may reduce the repair time.

• We allow for servers to have infinite supply. Infinite supply has the aim to utilize the capacity
of a server to the fullest. For example, in service center models it is typically assumed that an
agent, when not answering a call, switches to low priority works such as answering email and
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administrative duties. In a traffic model of a highway network, an infinite supply node represents
a highway segment with an on-ramp during a rush-hour period where a constant flow of vehicles
requiring access to the highway is present. In production processes, an additional inventory with
raw material guarantees that the machine will not idle even when there is sometimes no external
demand.

This paper provides an analysis of networks enjoying both of the above features within one framework.
The key contribution of the paper is that we obtain a product-form solution for the steady-state distri-
bution of the queue-length vector at stable nodes for different type of failure-regimes (a precise definition
of ”stable node” will be provided later in the text). In addition, our analysis shows that the distribution
of the failure/repair process and the steady-state distribution of the queue-length vector at stable nodes
decouple in a product-form way. Elaborating on these results we establish closed-form solutions for the
long-run throughput of subnetworks and of the network, respectively.

With our product-form result at hand, we further investigate the impact of the distribution of the time
between breakdowns of the individual servers on the throughput of the network. This is motivated by the
fact that during usual operation breakdowns are to be avoided and typically only censored observations are
available, which is in contrast to repairs (indeed, repair times are observable and can often be influenced
by a decision maker). We will provide a robustness analysis of the system throughput with respect to this
parameter insecurity and will show how a similar analysis for sojourn times is derived. Our analysis shows
how for different breakdown and repair regimes, the corresponding risk profiles for system-oriented and
customer-oriented performance metrics can be evaluated. It is worth noting that this efficient risk analysis
step is only possible due to the simple closed-form solutions obtained for the performance measures. We
believe that a robustness analysis as performed in this paper should become a part of performance
modeling.

The paper is organized as follows. In Section 2 we present a motivating example, and we will introduce
the basic notation and concepts with the help of this example. A literature review is provided in Section 3.
The main technical analysis is carried out in Section 4. In Section 5, we provide explicit solutions for
availability and performance measures. Eventually, Section 6 is devoted to robustness analysis of the
performance measures. Most of the technical proofs are postponed to the Appendix.

2 Motivating Example

We explain the basic setup for our analysis with the following example. Consider the Jackson network
with J = 7 nodes, depicted in Figure 1, where we assume throughout that servers are FCFS single-
server stations with infinite waiting capacity. The set of all nodes is denoted by J̃ = {1, . . . , J}. In
addition we will denote the outside world, that is, the source as well as the sink, as node 0. We identify
the labeling of the service rate µi with the server labels, so that µi refers to server i. There are two
arrival streams with arrival rate λ1 and λ2, respectively, and throughout the paper it is assumed that
arrival processes are of Poisson type. Routing is Markovian and possible routes are indicated by arrows.
Specifically, the probability that a customer after finishing service at server, say, i, moves to server j,
is given by r(i, j). Apart from these classical features of a Jackson network, we assume that there is a
set of nodes V such each j ∈ V has infinite supply. This is indicated in the figure by dotted arrows.
We complement this definition by introducing W = J̃ \ V as the set of all nodes without infinite supply.
In this example, V = {1, 5, 7} and W = {2, 3, 4, 6}. For j ∈ V , customers in the infinite supply chain
have low priority, where customers arriving either from the outside or from another server have high
priority with preemptive-resume regime: Service of a low priority customer is interrupted as soon as a
high priority customer arrives. When a low priority customer is served and fed into the network, he
becomes a high priority customer. Routing decisions, service times, and inter-arrival times are assumed
to be mutually independent. The network displayed in Figure 1 is inspired by a model of a highway
network. Nodes represent road segments and nodes with infinite supply model road segments with an
on-ramp, where it is assumed that there is constant flow of incoming traffic to the on-ramp. Note that
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Figure 1: Example of queueing network with infinite supply

in queueing models for traffic systems one typically only models the flow in one direction and fits the
service rate of the queues to the traffic characteristics, see, for example, [VWV00, WV06].

Suppose that λ1 < µ1, µ3 and µ1 > µ3. Then, without infinite supply at node 1, node 3 is stable
in the classical definition as the rate with which customers arrive to node 3 is smaller than the service
rate. In case of infinite supply at node 1, however, node 1 acts as Poisson source and the incoming traffic
rate at node 3, which is then µ1, is larger than the service rate, which causes node 3 to become instable.
Whether a node is stable or not can be decided from the traffic equations of the network and details are
provided in Section 4.1. We let S ⊆ J̃ denote the set of stable nodes and by U the set of unstable nodes.

To complete this introductory example, we denote the set of nodes that are unreliable by D. For
example, take D = {3, 5}. Breakdown and repair can follow complicated schemes: Nodes may break
down isolated or in groups, and repair may happen similarly. It is not required that nodes which are
broken down simultaneously are repaired at the same time. We make the simplifying assumption that
breakdown and repair intensities do not depend on queue lengths. As will become clear from our analysis,
in this model stability of nodes is independent of the breakdown/repair regime. In other words, it is not
possible to ”create” instability in a network by choosing a misguided repair action.

Definition 2.1 If the nodes in ∅ ⊆ I ⊆ D are broken down, then

1. if I ⊂ H ⊆ D, the nodes in H \ I break down with rate α(I,H) ≥ 0,

2. if ∅ ⊆ K ⊂ I, the nodes in I \K are repaired with rate β(I,K) ≥ 0.

α(·, ·), β(·, ·) may be constructed from any pair of non-negative functions A,B : P(D) → [0,∞), subject to
A(∅) = B(∅) = 1 and for all I ⊂ H ⊆ D with A(H)/A(I) < ∞ and for all ∅ ⊆ K ⊂ I B(I)/B(K) < ∞
(where we set 0/0 = 0).
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With these functions we set for all subsets of down nodes I ⊆ D

α(I,H) =
A(H)

A(I)
, I ⊂ H ⊆ D, and β(I,K) =

B(I)

B(K)
, ∅ ⊆ K ⊂ I. (1)

The parametric form (1) of the breakdown and repair rates is selected because it stems from a versatile
recipe for to construct correlated multidimensional birth-death processes. A statistical procedure to
check whether this form is justified is to determine in a first step all possible values A(I) = α(∅, I}) and
B(I) = β(I, ∅), I ⊆ D, and then to check stepwise (1).

In our example, there are possible breakdown scenarios {3}, {5}, {3, 5}. We let A(∅) = B(∅) = 1
and assume that the rate with which a breakdown of server i = 3, 5 occurs is given by A({i}) = τi, and
the corresponding repair rate by B({i}) = ρi. In the same vein, let A({3, 5}) = τ3 + τ5 be the rate with
which the operating system enters breakdown state {3, 5}, and let B({3, 5}) = 2min(ρ3, ρ5) be the rate
with which the systems jumps from breakdown state {3, 5} to the state ∅ with all server operating. The
rates A(I) and B(K) are the basic input data for our model. Note that these rates do, for example, not
cover transition rate from {3} to {3, 5}. Following (1) we now construct transition rate mappings α and
β covering all possible intermediate state transitions. More specifically, for i ∈ D let α(∅, {i}) = τi and
β({i}, ∅) = ρi, α(∅, {3, 5}) = τ3 + τ5 and β({3, 5}, ∅) = 2min(ρ3, ρ5). Eventually, given that node i ∈ D
is broken down, the breakdown rate of the other node, say, j be given by

α({i}, {3, 5}) = τ3 + τ5
τi

whereas from breakdown scenario {3, 5} node i ∈ D alone has repair rate

β({3, 5}, {j}) = 2min(ρ3, ρ5)

ρi
.

All other values for breakdown and repair rates are zero.
Note that these breakdown and repair rates from (1) define a generator for a Markov process Y =

{Yt : t ≥ 0} on state space (P(D), 2P(D)). By inspection we see that

π := (π(K) := A(K)/B(K), K ∈ P(D)) (2)

fulfills
π(K) · α(K,K ∪G) = π(K ∪G) · β(K ∪G,K)

for all K,G ∈ P(D) which implies that, after normalization, π is the steady state of the breakdown and
repair process. Even more, we have proved that Y is reversible.

In our example, we have only three possible breakdown scenarios and the repair process has states
∅, {3}, {5}, {3, 5}. The stationary distribution π of Y reads

π(∅) = c−1, π({3}) = c−1 τ3
ρ3

, π({5}) = c−1 τ5
ρ5

, π({3, 5}) = c−1 τ3 + τ5
2min(ρ3, ρ5)

,

with normalizing constant

c = 1 +
τ3
ρ3

+
τ5
ρ5

+
τ3 + τ5

2min(ρ3, ρ5)
.

3 Literature Review and Related Work

Investigation of generalized Jackson networks with infinite supply has recently found much interest in the
literature and it turned out that the feature of infinite supply makes analysis of the network considerably
harder than that of classical product form networks of the BCMP and Kelly type.

Infinite supply of lower-priority work ( ≡ infinite virtual queues ≡ IVQ) is used frequently, e.g., in
[LY75] in an M/G/1 queueing system to utilize idle times. Recent works using this concept of infinite
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supply are, e.g., [Guo08] where generalized Jackson networks are considered or [KNW09] where a push-
pull network with infinite supply is investigated.

A special class of multi-class queueing networks with virtual infinite buffers has been introduced in
[KW02] and [AW05]. For single-class ergodic networks of Jackson type with infinite supply of work at some
nodes G. Weiss [Wei05] has obtained a product-form solution of the steady state queue length distribution
at nodes without infinite supply. He discussed as an example a particular computer communication system
that works according to MAN (metropolitan area network) Ethernet RPR (resilient packet ring), where
ring traffic has priority over the traffic generated at nodes.

Another application from a different field where such model fits is in wireless sensor networks. The
nodes (sensors) continuously sense their environment and have to forward the data to a central station
(sink). This is usually not possible by direct communication, so the nodes act additionally as transmission
stations for data from other sensor nodes. If forwarding transmissions from other nodes has priority, the
own data constitute the infinite buffer which generates the infinite supply for the node.

The work of Guo [Guo08] and of Guo, Lefeber, Nazarathy, Weiss, Zhang [GLN13] is on general multi-
class queueing networks with IVQs under different scheduling policies for the servers. These policies guide
the nodes’ decisions how to dedicate their activities to either the regular standard queues or the infinite
virtual queues. The key research question is the interplay of the production of jobs from the IVQs and
stability of the standard queues.

Another class of models where additional work is added whenever a server becomes idle are queues with
vacations. If a server observes an empty queue ”he goes away to serve at some other place a customer”,
and returns thereafter. If he finds customers waiting there, he immediately starts servicing them, but
when on his return his queue is empty again, he takes ”another vacation” from his main queue to serve
somewhere else, and so on. For a survey, see [Dos90].

4 Jackson Networks with infinite Supply: Breakdown of Nodes

In this section, we consider Jackson networks which at some nodes have infinite supply and where some
nodes break down randomly and are repaired thereafter. Breakdowns of nodes in standard Jackson
networks were investigated in [SD03] and [MD09]. It turns out that breakdown of nodes with infinite
supply require a more specific regime to control breakdown and repair. The consequences of breakdown
of a node are as follows. Whenever a node breaks down,

• service at this node is interrupted, customers (of high as well as of low priority) are frozen there to
wait for restart of the service, which is resumed at the point where it was preempted,

• no new customers are admitted to enter that node,

• customers who select a broken down node to visit are rerouted according one of the classical rules:
stalling, skipping or blocking rs-rd , which will be defined next,

• all these rules, if applicable, are valid for both classes, high and low priority, of customers.

Note, that rerouting does not apply directly to low priority customers, because on departure from a node
with infinite supply they are transformed immediately to high priority, and only thereafter necessary
rerouting is in force. We follow [SD03] and distinguish the following three rerouting rules:

Stalling: Whenever a node breaks down the service system is frozen, i.e., all arrival processes are
interrupted and the service anywhere in the network is stopped. Thus every movement of customers
inside the network and arrivals to the network from the outside are stopped until all broken down nodes
are repaired again, i.e., if nodes in I ̸= ∅ are broken down then for all i ∈ J̃ the I-dependent rates are set
to λI

i = µI
i = 0. We assume that the stopped nodes which are in up status are waiting in warm standby,

i.e., they can break down although they are stalled. Stalling is applied, for example, in the automotive
industry for decreasing variability of the flow of materials. Indeed, stalling prevents that servers continue
sending parts to a server that is broken down and thereby prevents piling up inventory.
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Skipping: Customers are not allowed to enter down nodes and have to skip these nodes. I.e., if the
next destination of a customer is a down node, the customer jumps to this node spending no time there
and immediately performs the next jump according to his routing regime until he arrives at a node in up
status or leaves the network. Whenever a breakdown of a subset I ⊆ D occurs, customers are rerouted
according to the following routing matrix RI = (rI(i, j) : i, j ∈ {0} ∪ J̃ \ I):

rI(j, k) = r(j, k) +
∑
i∈I

r(j, i)rI(i, k) for k, j ∈ {0} ∪ J̃ \ I (3)

with

rI(i, k) = r(i, k) +
∑
l∈I

r(i, l)rI(l, k) for i ∈ I, k ∈ {0} ∪ J̃ \ I. (4)

The external arrival rates during a breakdown of I are

λI
j = λj +

∑
i∈I

λir
I(i, j) for j ∈ J̃ \ I (5)

and λI
k = 0 for k ∈ I. The service intensities are

µI
i =

{
µi, i ∈ J̃ \ I,
0, otherwise.

Blocking rs-rd: Broken down stations are blocked. A customer whose next destination is a down
node stays at his present node to obtain another service there. After the repeated service (rs) the customer
chooses his next destination anew according to his routing matrix (random destination (rd)). Whenever
a breakdown of a subset I ⊆ D occurs, customers are rerouted according to the following routing matrix
RI = (rI(i, j) : i, j ∈ {0} ∪ J̃ \ I) with

rI(i, j) =

{
r(i, j), i, j ∈ {0} ∪ J̃ \ I, i ̸= j,

r(i, j) +
∑

k∈I r(i, k), i ∈ {0} ∪ J̃ \ I, i = j.
(6)

The external arrival rates during a breakdown of I are λI
j = λj for j ∈ J̃ \ I and λI

j = 0 otherwise as well
as the service intensities are

µI
i =

{
µi, i ∈ J̃ \ I,
0, otherwise.

With these preparing definitions we summarize our construction. Consider a Jackson network with
infinite supply and unreliable nodes and rerouting regime is either stalling, skipping, or blocking rs-rd
with the respective rerouting matrices RI . Denote R∅ := R. Then the joint availability-queue length
process is described by the Markov process (Y,X) = ((Y (t);X1(t), ..., XJ(t)) : t ∈ R+) on the state space
P(D)×NJ with transition rates matrix Q = (q(z, z′) : z, z′ ∈ P(D)×NJ ) defined for all z = (n1, . . . , nJ )
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and all I ⊆ D, i, j ∈ J̃ \ I, i ̸= j:

q(I, n1, ..., ni, ..., nJ ; I, n1, ..., ni + 1, ..., nJ) = λI
i +

∑
k∈V \I

µI
kr

I(k, i)1{0}(nk),

q(I, n1, ..., ni, ..., nJ ; I, n1, ..., ni − 1, ..., nJ) = µI
i r

I(i, 0)1N+(ni),

q(I, n1, ..., ni, ..., nj , ..., nJ ; I, n1, ..., ni − 1, ..., nj + 1, ..., nJ) = µI
i r

I(i, j)1N+(ni),

q(I, n1, ..., nJ ;H,n1, ..., nJ) = α(I,H) =
A(H)

A(I)
, I ⊂ H ⊆ D,

q(I, n1, ..., nJ ;K,n1, ..., nJ ) = β(I,K) =
B(I)

B(K)
, K ⊂ I ⊆ D,

q(I, n1, ..., nJ ; I, n1, ..., nJ ) = −
∑

i∈J̃\I

λI
i −

∑
i∈J̃\I

∑
k∈V \I

µI
kr

I(k, i)1{0}(nk)

−
∑

i∈J̃\I

µI
i (1− rI(i, i))1N+(ni)−

∑
I⊂H⊆D

α(I,H)−
∑

K⊂I⊆D

β(I,K),

and q(z, z′) = 0 otherwise for z ̸= z′.

Theorem 4.1 With the above definitions:

(i) If at time t all nodes are up, i.e., Y (t) = ∅, then the departure streams from node j ∈ V is a Poisson
process with rate µj. Thus the departure stream from j ∈ V to i ∈ J̃ is Poisson with rate µjr(j, i).

(ii) Whenever nodes in I ̸= ∅ are broken down and either skipping or blocking rs-rd is in force, the
departure stream of node j ∈ V \ I with infinite supply in up-status is Poisson with rate µj. The

departure stream from j ∈ V \ I to i ∈ J̃ \ I is Poisson with rate µjr
I(j, i), where rI(j, i) is

determined by the rerouting regime in force. If a node k ∈ V with infinite supply is broken down,
i.e., k ∈ V ∩ I, the Poisson departure stream of this node is interrupted until its server is repaired.
In case of stalling, all Poisson arrival streams stop whenever a breakdown occurs (I ̸= ∅), and the
Poisson streams are reactivated when all nodes recur to the up-status.

Proof: Consider the network in its different availability states of nodes:
Case I: All nodes are in up-status (I = ∅), all departure times from node j ∈ V

• are independent of the state of the node due to the infinite supply,

• and therefore have independent and identically exponentially distributed interdeparture times with
rate µj , the service rate of the node.

Thus, the departure stream of node j ∈ V is a Poisson process with rate µj . Hence for node i ∈ J̃ , the
arrival stream from node j ∈ V is a Poisson process with rate µjr(j, i), because a portion of r(j, i) of the

departure stream is directed to node i ∈ J̃ .
Case II: Nodes in I ̸= ∅ are broken down and rerouting is according to blocking rs-rd or skipping, all

departure times from node j ∈ V \ I

• are independent of the state of the node due to the infinite supply,

• and therefore have independent and identically exponentially distributed inter departure times with
rate µj , the service rate of the node.

Therefore the departure stream of node j ∈ V is a Poisson process with rate µj . Thus, for node i ∈ J̃ \ I,
the arrival stream from node j ∈ V \ I is a Poisson process with rate µjr

I(j, i), because a portion of

rI(j, i) of the departure stream is directed to node i ∈ J̃ \ I (decomposition of a Poisson process by some
probability independent of all the process and of its times of events). this holds for all states I ⊆ D of the
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availability process Y which means that whenever a node with infinite supply breaks down, its Poisson
departure stream is interrupted until the node is repaired.

Case III: Nodes in I ̸= ∅ are broken down, under stalling all network processes - except breakdown
and repair processes - are frozen, i.e., no service is provided in the network and there are no arrivals.
Thus, as long as not all nodes are in up status, there are no customer flows in the network. �

4.1 The Traffic Equations under Breakdowns

Different traffic equations required for analysis of the long-time behavior are provided in the subsequent
definition. We start with providing the traffic equations for networks without breakdowns and repairs.

Definition 4.2 The general traffic equations for Jackson networks with infinite supply but no breakdowns
and repairs are

ηi = λi +
∑
j∈W

min(ηj , µj)r(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (7)

A node i is stable if ηi determined by (7) is strictly less than µi, otherwise the node is unstable.

It is worth noting that for networks without unstable nodes the traffic equations in Definition 7 reduce
to the (standard) traffic equations of a Jackson network with infinite supply [Wei05]

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ . (8)

In the following we present the version of the traffic equations which are appropriate for the specific
breakdown regime.

Definition 4.3 The (standard) traffic equations for unreliable Jackson networks with infinite supply are
as follows:

(i) In case of stalling,

ηi = λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i), i ∈ J̃ , (9)

as long as all nodes are in up status (I = ∅). Otherwise ηIi = 0 for all i ∈ J̃ .

(ii) In case of rerouting according to blocking rs-rd or skipping,

ηIi = λI
i +

∑
j∈W\I

ηIj r
I(j, i) +

∑
j∈V \I

µI
jr

I(j, i), i ∈ J̃ \ I, (10)

for all I ⊆ D.

The traffic equations for some I ⊆ D remain valid only as long as the availability status is unchanged.
Whenever the availability status of the system changes, the traffic equations are adapted according to the
new set of broken down nodes. Thus each traffic equation (10) may have different solutions for different I.
The following two lemma show under which constraints the solution of the traffic equation (10) remains
the same on J̃ \ I for all ∅ ⊆ I ⊆ D.

Lemma 4.4 Consider a Jackson network where nodes in D ⊆ J̃ are unreliable and nodes in V ⊆ J̃ have
an infinite supply of work. W := J̃ \V is the set of nodes without infinite supply. Let for all nodes i ∈ W
without infinite supply hold ηi < µi where (ηi : i ∈ J̃) is the unique solution of (8), resp. (9). In case of
breakdowns of nodes we assume that customers are rerouted according to the blocking rs-rd regime.
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(i) If the following reversibility constraints hold:

ηir(i, j) = ηjr(j, i) ∀i, j ∈ W, (11)

ηir(i, j) = µjr(j, i) ∀i ∈ W, j ∈ V, (12)

Then for all nodes i ∈ W \ I the solution ηIi of the traffic equation (10) equals ηi for all I ⊆ D.

(ii) Let (11) and (12) hold. If we additionally require the reversibility constraint

µir(i, j) = µjr(j, i) ∀i, j ∈ V, (13)

Then for the solution of (10) holds ηIi = ηi for all i ∈ V \ I and all I ⊆ D, as well.

Proof: (i): We make the ansatz ηi = ηIi for all i ∈ W \ I and all I ⊆ D. We then obtain with the
solution ηi of the traffic equations (8) for any I ⊆ D: ∀i ∈ W \ I

ηi = λI
i +

∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

= λi + ηi

(
r(i, i) +

∑
k∈I

r(i, k)
)
+

∑
j∈W\I,j ̸=i

ηjr(j, i) +
∑

j∈V \I

µjr(j, i)

= λi +
∑

k∈I∩W

ηir(i, k)︸ ︷︷ ︸
(11)
= ηkr(k,i)

+
∑

k∈I∩V

ηir(i, k)︸ ︷︷ ︸
(12)
= µkr(k,i)

+
∑

j∈W\I

ηjr(j, i) +
∑

j∈V \I

µjr(j, i)

= λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i) = (8).

(ii): For any I ⊆ D holds ∀i ∈ V \ I:

ηIi
(10)
= λI

i +
∑

j∈W\I

ηIj︸︷︷︸
(i)
=ηj

rI(j, i) +
∑

j∈V \I

µjr
I(j, i)

(6)
= λi +

∑
j∈W\I

ηjr(j, i) + µi

(
r(i, i) +

∑
k∈I

r(i, k)
)
+

∑
j∈V \I,j ̸=i

µjr(j, i)

= λi +
∑

j∈W\I

ηjr(j, i) +
∑

k∈I∩W

µir(i, k)︸ ︷︷ ︸
(12)
= ηkr(k,i)

+
∑

k∈I∩V

µir(i, k)︸ ︷︷ ︸
(13)
= µkr(k,i)

+
∑

j∈V \I

µjr(j, i)

= λi +
∑
j∈W

ηjr(j, i) +
∑
j∈V

µjr(j, i)
(8)
= ηi.

�

Remark 4.5 The reversibility constraints (11), (12) and (13) are different from the classical reversibility
constraints which are the local balance equations of the routing process. But the interpretation of (11),
(12) and (13) is the same: the departure rate from i in the direction j equals the departure rate from j
in the direction i.

For rerouting in order to skip broken down nodes, we assume that the unreliable nodes in V are rate
stable according to [KNW09][p. 76], i.e., these nodes have equal input and output rates. Because such
node i ∈ V ∩ D has precisely an output rate (of priority jobs) µi due to the infinite supply, it is on
average, fully loaded already by customers of preemptive priority. So, intuitively, there are only a few
low priority customers (from the infinite supply) served.
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Lemma 4.6 Let for all nodes i ∈ W without infinite supply hold ηi < µi where (ηi : i ∈ J̃) is the unique
solution of (8). In case of breakdowns of nodes we assume that customers are rerouted according to the
skipping regime. Let the following constraint (rate stability) hold:

ηi = µi ∀i ∈ V ∩D. (14)

Then for all nodes i ∈ J̃ \ I the solution ηIi of the traffic equation (10) for all I ⊆ D equals ηi.

Proof: We make the ansatz ηi = ηIi for all i ∈ W \ I and all I ⊆ D. We then obtain with the solution
ηi of the traffic equations (8) for any I ⊆ D: ∀i ∈ W \ I

λI
i +

∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

= λi +
∑
k∈I

λkr
I(k, i) +

∑
j∈W\I

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)
+
∑

j∈V \I

µj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)
)

= λi +
∑

j∈W\I

ηjr(j, i) +
∑

j∈V \I

µj(r(j, i)︸ ︷︷ ︸
(8)
= ηi−

∑
j∈I∩W ηjr(j,i)−

∑
j∈I∩V µjr(j,i)

+
∑
k∈I

rI(k, i)
(
λk +

∑
j∈W\I

ηjr(j, k) +
∑

j∈V \I

µjr(j, k)︸ ︷︷ ︸
(8)
= ηk−

∑
j∈I∩W ηjr(j,k)−

∑
j∈I∩V µjr(j,k)

)

= ηi −
∑

j∈I∩W

ηjr(j, i)−
∑

j∈I∩V

µjr(j, i)+

+
∑
k∈I

ηkr
I(k, i)−

∑
k∈I

rI(k, i)
∑

j∈I∩W

ηjr(j, k)−
∑
k∈I

rI(k, i)
∑

j∈I∩V

µjr(j, k)

= ηi −
∑

j∈I∩W

ηj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(4)
= rI(j,i)

)
+
∑
k∈I

ηkr
I(k, i)−

∑
j∈I∩V

µj

(
r(j, i) +

∑
k∈I

r(j, k)rI(k, i)︸ ︷︷ ︸
(4)
= rI(j,i)

)

= ηi +
∑

k∈I∩W

ηkr
I(k, i)−

∑
j∈I∩W

ηjr
I(j, i) +

∑
k∈I∩V

ηkr
I(k, i)−

∑
j∈I∩V

µjr
I(j, i)

= ηi +
∑

k∈I∩V

(ηk − µk)︸ ︷︷ ︸
(14)
= 0

rI(k, i) = ηi. (15)

Since ηIj = ηi holds for all j ∈ W \ I and all I ⊆ D, it follows for all i ∈ V \ I and I ⊆ D:

ηIi = λI
i +

∑
j∈W\I

ηIj r
I(j, i) +

∑
j∈V \I

µjr
I(j, i) = λI

i +
∑

j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i)

which is the very left side of (15) with i ∈ V \I. The above computations in (15) are valid for all i ∈ J̃ \I,
hence it follows ηIi = ηi for all i ∈ V \ I and I ⊆ D, too. �

We illustrate the adjusted traffic equations with the example presented in Section 2, where nodes in
D = {3, 5} are unreliable. Then the condition (14) requires η5 = µ5 because node 5 ∈ D ∩ V . Therefore
node 5 is not stable and (7) is the relevant traffic equation. Due to the feed forward structure of the
network we can evaluate the arrival rates directly.

Example 4.7 For I = ∅, η is just the solution of the standard traffic equation (7) given by:

η1 = λ1, η2 = λ2, η3 = µ1, η4 = r(3, 4)µ1 + r(2, 4)λ2,

η5 = r(3, 5)µ1, η6 = r(3, 4)µ1 + r(2, 4)λ2 + r(5, 6)µ5, η7 = r(2, 7)λ2.

Now suppose nodes in D = {3, 5} are down and consider stalling, then ηi = 0 for all i.
In case of skipping, we obtain ηIi = ηi, for i ∈ {1, 2, 4, 6, 7}, and ηIi = 0, for i = 3, 5. Eventually, blocking
rs-rd can not be implemented in this network, if ηIi = ηi, for i ∈ {1, 2, 4, 6, 7} is required because the
routing chain is not reversible.
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Figure 2: The Two-Way-Tandem Network

Blocking rs-rd does not apply to the system put forward in Example 4.7. In the following we will
present two examples of networks that do meet the requirements. One will be a network having a linear
topology and the other one having a star-shaped topology.

Example 4.8 (Two-way tandem network) Consider a network with J = {1, 2, 3}, V = {2}, W =
{1, 3}, and D = V , i.e., all infinite supply nodes are prone to failure. Routing is given by

r(1, 2) = a, r(1, 0) = 1− a, r(2, 3) = b, r(2, 1) = 1− b, r(3, 0) = c, r(3, 2) = 1− c,

and

r(0, 1) =
λ1

λ1 + λ2
, r(0, 3) =

λ2

λ1 + λ2
,

for 0 < a, b < 1 and λi > 0, i = 1, 2. The network can be visualized as a two-way tandem of three nodes,
see Figure 2. The infinite supply is depicted by a dashed arrow pointing to server 2, and the nodes that
are prone to failure are depicted by bold circles. Note that by incorporating node 0 into the network, the
linear topology is transformed into a ring.

For ease of analysis we parameterize the model in the following way. We let λ1 = (1− a)t, for t > 0,
and λ2 = at, and b = 1− c. The service rates are set to

µ1 > t, µ2 = t
a

c
and µ3 > t

a

c
.

The standard traffic equations (7) then have the solution

η1 = t, η2 = η3 = t
a

c
.

Note that this implies that U = {2}.
With this choice of parameters it can be seen after some tedious algebra that the network satisfies the

reversibility conditions put forward in Lemma 4.4 and rate stability in Lemma 4.6 thus all three blocking
disciplines apply.

Recall that D = {2}. Hence, ∅, {2} are the only two possible breakdown scenarios and with the
breakdown and repair rates from the motivating example in Section 2 we have

π(∅) = ρ2
ρ2 + τ2

and π({2}) = τ2
ρ2 + τ2

.

Example 4.9 (Star-shaped network) Consider a network with J = {1, 2, . . . , 6}, V = {2, 3, 4}, W =
{1, 5, 6}, and D = V , i.e., all infinite supply nodes are prone to failure. Jobs arrive from the outside with
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Figure 3: The Star-Shaped Network

rate λ to node 1. From node 1 they go with probability r/5 to any of the nodes 2 to 6, for r ∈ (0, 1).
After finishing service at node i = 2, . . . , 6, jobs are send back to the central node 1. From there they
leave the system with probability 1 − r, or are sent back to service according to one of the servers in
the set {2, . . . , 6} according to the routing scheme described above. The network can be visualized as a
star-shaped network with one central node and five nodes in the periphery, see Figure 3. The infinite
supply is depicted by a dashed arrow pointing to server 2, 3, 4, and the nodes that are prone to failure are
depicted by bold circles. The traffic equations are given by

η1 = λ+ µ2 + µ3 + µ4 + η5 + η6,

where η5 = η6 = rη1/5, provided that nodes 5, 6 are stable. For blocking rs-rd and skipping to be
applicable, we let

ηi =
r

5
η1 = µi, 2 ≤ i ≤ 4,

which implies η1 = λ/(1− r), and thus

r

5

1

1− r
λ = µi = ηi, 2 ≤ i ≤ 4.

Eventually, we let
r

5

1

1− r
λ < µ5, µ6,

in order to let 5, 6 be stable nodes. Indeed, this choice implies ηi < µi, i = 5, 6. The above conditions imply
that the reversibility conditions put forward in Lemma 4.4 and the rate stability condition put forward in
Lemma 4.6 are satisfied for the star-shaped network.
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Recall that D = {2, 3, 4}. Hence, ∅, {2}, {3}, {4}, {2, 3}, {3, 4}, {2, 4} and D are the possible
breakdown scenarios and with the breakdown and repair rates from the motivating example in Section 2
we have

π(∅) =

(
1 +

4∑
i=2

τi
ρi

+
τ2 + τ3

2min(ρ2, ρ3)
+

τ2 + τ4
2min(ρ2, ρ4)

+
τ3 + τ4

2min(ρ3, ρ4)
+

τ2 + τ3 + τ4
3min(ρ3, ρ3, ρ4)

)−1

and
π({i}) = π(∅) τi

ρi
,

for i = 2, 3, 4,

π({i, j}) = π(∅) τi + τj
2min(ρi, ρj)

,

for 2 ≤ i, j ≤ 4, with i ̸= j, and

π(D) = π(∅) τ2 + τ3 + τ4
3min(ρ3, ρ3, ρ4)

.

4.2 Long-Time Behavior

Theorem 4.10 Let W ∩U = ∅, so all nodes without infinite supply are stable. Denote by η = (η1, ..., ηJ )
the unique solution of the traffic equations (8).
Under stalling regime, it holds that:

(i) For nodes without infinite supply, the joint marginal limiting distribution is:

lim
t→∞

P (Y (t) = I;Xi(t) = ni : i ∈ W ) =

∑
K⊆D

A(K)

B(K)

−1

A(I)

B(I)

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni

, (16)

for all I ⊆ D and all (ni : i ∈ W ) ∈ N|W |, and this is a stationary distribution on W as well.

(ii) If the global network process is started with an initial distribution which has the marginal (16) on
W , the arrival stream from i ∈ W to j ∈ V is Poisson with rate ηir(i, j) whenever all nodes are in
up status. And these streams are independent given the nodes are up.

(iii) If the global network process is started with an initial distribution which has the marginal (16) on
W , then the marginal limiting distribution for a stable node i ∈ V with r(i, i) = 0 is:

lim
t→∞

P (Y (t) = I;Xi(t) = ni) =

∑
K⊆D

A(K)

B(K)

−1

A(I)

B(I)

(
1− ηi

µi

)(
ηi
µi

)ni

, (17)

for all I ⊆ D and all ni ∈ N, if and only if ηi < µi, and this is a one-dimensional stationary
distribution as well.
If ηi ≥ µi for node i ∈ V , then for its limiting probability holds for all I ⊆ D and all ni ∈ N:

lim
t→∞

P (Y (t) = I;Xi(t) = ni) = 0, (18)

if the global network process is started with initial distribution which has marginal (16) on W .

The proof is postponed to the appendix.
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Theorem 4.11 Assume that W ∩ U = ∅, so all nodes without infinite supply are stable. Denote by
η = (η1, ..., ηJ) the unique solution of the traffic equations (8). In case of breakdowns customers are
rerouted according to the blocking rs-rd regime or the skipping regime. If blocking rs-rd is in force we
require the reversibility-constraints (11) and (12). If skipping is in force, let (14) hold. Then for nodes
without infinite supply the joint marginal limiting distribution is given by:

lim
t→∞

P (Y (t) = I;Xi(t) = ni : i ∈ W ) =

∑
K⊆D

A(K)

B(K)

−1

A(I)

B(I)

∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni

, (19)

for all I ⊆ D and all (ni : i ∈ W ) ∈ N|W |, and this is a stationary distribution on W as well.

The results of Goodmann and Massey [GM84] are on classical Jackson networks where some nodes
are not stable. They prove a product-form limiting distribution for the stable subnetwork, but there is no
such result for the stationary distribution, i.e. for the finite time horizon. The reason is that the exploding
unstable nodes will influence the stable part of the network and over any finite (transient) time horizon
[0, t] the departure streams from the unstable nodes fail to be of Poisson type. Put differently, only the
limiting distribution is known. Fortunately, the proofs of Theorem 4.10(i) and (iii) and of Theorem 4.11
allow for establishing the following result on the transient phase of the network process.

Corollary 4.12 Under the conditions put forward in Theorem 4.10 and Theorem 4.11, the process

(Y,XW ) := (Y,Xi : i ∈ W )

is an ergodic homogeneous Markov process of its own. If, in addition, for i ∈ V it holds that ηi < µi,
then the process

(Y,Xi)

is an ergodic homogeneous Markov process of its own for i ∈ V .

Remark 4.13 In the setting of Theorem 4.11 a statement as in Theorem 4.10(iii) cannot be proved with
the methods used here. This is due to the properties of the rerouting regimes skipping and blocking rs-rd.
Whenever nodes in I ̸= ∅ are down, immediate feedback may emerge even at nodes in V with r(i, i) = 0.
If i ∈ V \ I and r(i, j) > 0 for at least one j ∈ I holds, then rI(i, i) > 0 may occur.

On the other hand, if the network’s topology prevents occurrence of feedback by skipping or rs-rd
regime in case of breakdown it is possible to prove a counterpart to Theorem 4.10(iii) in the setting of
Theorem 4.11.

Our motivating example from Section 2 in Figure 1 is a feed forward network according to the following
definition. Feed forward networks are an important subclass of Jackson networks.

Definition 4.14 A network with node set J̃ with |J̃ | = J is a feed forward network if there exist an
enumeration J̃ = {1, 2, . . . , J} of the nodes such that

r(i, j) > 0 =⇒ i < j (20)

holds.

Note that a feed forward network can not be reversible and therefore in case of breakdowns we must recur
to stalling or skipping as rerouting scheme. The following property of feed forward networks is intuitive.

Lemma 4.15 If in a feed forward network with node set J̃ = {1, 2, . . . , J} a subset ∅ ⊆ I ⊆ J̃ of nodes
is down and either skipping or stalling is applied as rerouting scheme, then it holds

rI(i, j) > 0 =⇒ i < j , (21)

and therefore there is no immediate feedback at all nodes.
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Theorem 4.16 Consider a feed forward network with node set J̃ = {1, 2, . . . , J}. Assume that W∩U = ∅,
so all nodes without infinite supply are stable. Denote by η = (η1, ..., ηJ) the unique solution of the traffic
equations (8). In case of breakdowns customers are rerouted according to the skipping regime. Assume
that (14) holds.

If the global network process is started with an initial distribution which has the marginal (16) on W ,
then the marginal limiting distribution for a stable node i ∈ V is:

lim
t→∞

P (Y (t) = I;Xi(t) = ni) =

∑
K⊆D

A(K)

B(K)

−1

A(I)

B(I)

(
1− ηi

µi

)(
ηi
µi

)ni

, (22)

for all I ⊆ D and all ni ∈ N, if and only if ηi < µi, and this is a one-dimensional stationary distribution
as well.
If ηi ≥ µi for node i ∈ V , then for its limiting probability holds for all I ⊆ D and all ni ∈ N:

lim
t→∞

P (Y (t) = I;Xi(t) = ni) = 0, (23)

if the global network process is started with initial distribution which has marginal (16) on W .

The proof of this theorem is analogously to that of Theorem 4.10, part (iii) with using Lemma 4.15.

5 Computation of Availability and Performance Measures

We discuss in this section some implications of the results found it the previous section. Evaluating these
performance metrics is possible due to explicit access to the joint distribution of availability and (some
of the) queue lengths. Standard performance evaluation requires ergodicity of the underlying Markov
processes which allows to approximate long-time average cost functions by integrals of the cost function
under the stationary distribution. Unfortunately, for the networks with unstable nodes that are non-
ergodic, the stationary distribution fails to exist. Our framework overcomes this restriction and allows
to investigate even non-ergodic networks across subnetworks where stabilization in the long run occurs.
As stated in Corollary 4.12 some important subnetworks of stable nodes can be considered as networks
of their own. Therefore for these parts we can extend the traditional analysis directly, as will be seen
below. But we emphasize that even if there exists no equilibrium on the stable subnetworks, performance
analysis for long-time averages of cost functions is possible via integrals of the cost function under the
limiting distribution on stable nodes, respective subnets, for details we refer to Section 4.2 in [MD09]
and Section 4.6.4 in [Myl13]. In the following, we will state our results for the setting put forward in
Corollary 4.12.

Due to the load-independent breakdown and repair rates, the availability process Y in Theorem 4.10
and Theorem 4.11 is an ergodic Markov process of its own with unique limiting and stationary distribution

π(I) =

∑
K⊆D

A(K)

B(K)

−1

· A(I)

B(I)
∀I ⊆ D. (24)

From this the stationary (time) point availability of a Jackson network with infinite supply and unreliable
nodes (or subnetworks thereof) may be computed similar to [SD03, p.185] as

PA(H)(t) :=
∑

K⊆D\H

π(K), for H ⊆ D, t ≥ 0

where π(I) is the probability that exactly the nodes in I ⊆ D are under repair, given by (24).
An important performance metric is in any system the throughput which in classical Jackson networks

is easily accessible. Computation of throughput in our systems is different from classical Jackson networks
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due to the infinite supply and random availability of service. We first define the stationary throughput
of a subnetwork and use as abbreviation for the marginal queue length distributions for some node set
M ⊆ J̃ and (nj : j ∈ M)

πM (I, nj : j ∈ M) :=
∑

(nℓ:ℓ∈J̃\M)∈NJ−|M|

π(I, (nj : j ∈ M), (nℓ : ℓ ∈ J̃ \M)) (25)

If M = {j} we abbreviate π{j} = πj .

Definition 5.1 Consider a Jackson network with infinite supply where nodes without infinite supply are
stable and nodes in D ⊆ J̃ are unreliable. The stationary throughput THi of a node i ∈ W without infinite
supply is

THi =
∑

(I,nj :j∈W )∈P(D)×N|W |

πW (I, nj : j ∈ W )µI
i 1N+(ni),

The stationary throughput THj of a stable node j ∈ V with infinite supply is

THj =
∑

(I,nj)∈P(D)×N

πj(I, nj)µ
I
j .

The stationary throughput THW of the subnetwork of nodes without infinite supply is

THW =
∑
I⊆D

∑
i∈W\I

THir
I(i, 0) ,

and the stationary throughput THS of the subnetwork of stable nodes is

THS = THW +
∑
I⊆D

∑
j∈(V∩S)\I

THjr
I(j, 0).

Proposition 5.2 Denote by η = (η1, ..., ηJ ) the unique solution of the traffic equations (7). We assume
that all nodes without infinite supply of work are stable, i.e., W ∩ U = ∅. So in this situation the traffic
equations (7) reduce to (8).
In case of breakdowns stalling regime is in force. Then the stationary throughput at nodes i ∈ W (no
infinite supply) is THi = ηi · π(∅).

Let r(i, i) = 0 hold for all i ∈ V ∩ S then the stationary throughput at stable nodes i ∈ V ∩ S with
infinite supply is THi = µi · π(∅) and the throughput of the stable subnetwork is

THS = π(∅) ·
(
λ−

∑
i∈V

(ηi − µi)−
∑

j∈V∩U

µjr(j, 0)
)
.

Proof: The proof uses the results of Theorem 4.10. For i ∈ W we get

THi =
∑

(I,nj :j∈W )∈P(D)×N|W |

πW (I, nj : j ∈ W ) µI
i︸︷︷︸

=0 if I ̸=∅

1N+(ni) =
∑
ni∈N

πi(∅, ni)µi1N+(ni)

=
∑
ni∈N

πi(∅, ni + 1)µi =
∑
ni∈N

π(∅)
(
1− ηi

µi

)(
ηi
µi

)ni+1

µi = ηi · π(∅),

and for j ∈ V ∩ S:

THj =
∑

(I,nj)∈P(D)×N

πj(I, nj) µI
i︸︷︷︸

=0 if I ̸=∅

=
∑
nj∈N

πj(∅, nj)︸ ︷︷ ︸
=π(∅)

µi = µi · π(∅).
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The throughput of the stable subnetwork is obtained after some direct manipulations

THS =
∑
i∈S

THir(i, 0) =
∑
i∈W

ηir(i, 0) · π(∅) +
∑

j∈V∩S

µjr(j, 0) · π(∅)

=
(
λ−

∑
i∈V

(ηi − µi)−
∑

j∈V ∩U

µjr(j, 0)
)
· π(∅).

�

Proposition 5.3 Denote by η = (η1, ..., ηJ ) the unique solution of the traffic equations (7). We assume
that all nodes without infinite supply are stable, i.e., W ∩ U = ∅. So in this situation (7) reduces to (8).

1. If the rerouting is according to blocking rs-rd and if (11), (12) and (13) hold, the stationary
throughput at a node j ∈ W is THj = ηj ·

∑
I⊆D,j/∈I π(I) and the stationary throughput of the

subnetwork W is

THW =
∑
I⊆D

π(I) ·
(∑
i∈J̃\I

λi −
∑
i∈V\I

µir(i, 0)−
∑
i∈V\I

(ηi − µi)
)
.

2. If the rerouting is according to skipping and if (14) holds, the stationary throughput at a node
j ∈ W is THj = ηj ·

∑
I⊆D,j/∈I π(I) and the stationary throughput of the subnetwork W is

THW =
∑
I⊆D

π(I) ·
(
λ(1− rI(0, 0))−

∑
i∈V\I

µir
I(i, 0)−

∑
i∈V\I

(ηi − µi)
)
.

Proof: The proof uses the results of Theorem 4.11. For nodes i ∈ W we get

THi =
∑

(I,nj :j∈W )∈P(D)×N|W |

πW (I, nj : j ∈ W )µI
i 1N+(ni)

=
∑

(I,ni)∈P(D)×N

πi(I, ni) µI
i︸︷︷︸

=µi if i/∈I

1N+(ni) =
∑

I⊆D,i/∈I

∑
ni∈N

πi(I, ni + 1)µi

=
∑

I⊆D,i/∈I

π(I)
∑
ni∈N

(
1− ηi

µi

)(
ηi
µi

)ni+1

µi = ηi ·
∑

I⊆D,i/∈I

π(I),

The throughput of the subnetwork W is

THW =
∑
I⊆D

∑
i∈W\I

THir
I(i, 0) =

∑
I⊆D

π(I)
∑

i∈W\I

ηir
I(i, 0).

Since ηi = ηIi holds for all i ∈ J̃ \ I and I ⊆ D (see Lemma 4.4 or Lemma 4.6 resp.), ηi solves

ηi = λI
i +

∑
j∈W\I

ηjr
I(j, i) +

∑
j∈V \I

µjr
I(j, i).

Summing over all i ∈ J̃ \ I on both sides yields∑
i∈J̃\I

ηi =
∑

i∈J̃\I

λI
i +

∑
i∈J̃\I

∑
j∈W\I

ηjr
I(j, i) +

∑
i∈J̃\I

∑
j∈V \I

µjr
I(j, i)

⇔
∑

i∈J̃\I

λI
i =

∑
i∈W\I

ηir
I(i, 0) +

∑
i∈V \I

µir
I(i, 0) +

∑
i∈V \I

(ηi − µi)

⇔
∑

i∈W\I

ηir
I(i, 0) =

∑
i∈J̃\I

λI
i −

∑
i∈V \I

µir
I(i, 0)−

∑
i∈V \I

(ηi − µi). (26)
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In case of (i) equation (26) is equivalent to∑
i∈W\I

ηir
I(i, 0) =

∑
i∈J̃\I

λi −
∑

i∈V \I

µir(i, 0)−
∑

i∈V \I

(ηi − µi).

In case of (ii) equation (26) is equivalent to∑
i∈W\I

ηir
I(i, 0) = λ

∑
i∈J̃\I

rI(0, i)

︸ ︷︷ ︸
=(1−rI(0,0))

−
∑

i∈V \I

µir
I(i, 0)−

∑
i∈V \I

(ηi − µi).

�
We conclude this section by noting that that the asymptotic mean queue-length at a stable node is

easily computable due the product form of the asymptotic distribution. Indeed, following Theorem 4.10,
Theorem 4.11 and Theorem 4.16, the asymptotic mean queue-length at a stable node can be computed
like in the standard Jackson network case. Evoking Little’s law, see [Stid72, Stid74], mean waiting times
at stable nodes follow just as easy. For example, for a stable node which is unreliable, i.e., j ∈ W ∩D,
we obtain under skipping as rerouting scheme the mean stationary sojourn time Wj as

Wj =
1

µj − ηj

 ∑
I⊆D,j /∈I

π(I)

−1

.

6 Robustness Analysis of the Throughput

As pointed out in the introduction, breakdown rates are hard to estimate via historical data. There-
fore, one is typically confronted with uncertainty about the true value of the parameters defining the
distributions of the time between breakdowns, in our case the failure rate. This is known as parameter
uncertainty in the literature, see, for example, [HaMe92], for a discussion on integration of parameter
uncertainty into queueing models and [Hend03] for a discussion on parameter insecurity from a broader
perspective. In the following, we will apply our results to a robustness analysis of our model against the
statistical insecurity in the breakdown rates.

In modeling parameter insecurity the choice of the distribution is of importance and one typically
chooses a particular distribution based on - possible incomplete - knowledge that is available. For example,
if the mean and the variance is known, and, if in addition, we know that the parameter may take values
in R, the most general distribution is the normal distribution, where ”most general” refers to the fact
that this distribution maximizes the entropy. On the other hand, when, due to expert knowledge, it
is known that the parameter falls into interval, say, [a, b], then the uniform distribution on [a, b] is the
entropy maximizing distribution; see, for example, [Kull59].

In the following we make the reasonable assumption that the ”true” breakdown rates τi are not
revealed to us and we therefore assume that τi follows a given distribution Fi. By virtue of Proposition 5.2
and Proposition 5.3, assuming the τi to be random only affects the stationary distribution π of the
availability process Y , see (2) for a definition of π. Hence, instances of the throughput can be easily
obtained by sampling the τi’s according to their assumed distribution and evaluating the realization of
π. Creating a sufficient number of samples, the density and the cumulative distribution function of the
throughput can be estimated and evaluated for further robustness analysis.

A similar robustness analysis can be performed for mean sojourn times via application of Little’s law.

6.1 Example 1

We revisit the example put forward in Section 2, see Figure 1. Nodes in D = {3, 5} are unreliable, see
Example 4.7. For illustrating purposes, we analyze the throughput at node 5, denoted by TH5. Sampling
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(τ3(ω), τ5(ω)) and computing TH5 via Proposition 5.2 and Proposition 5.3 yields a realization TH5(ω) of
the throughput for the respective breakdown regime.

We denote by
TH5

est. = E[TH5(ω)]

the expected throughput, where the expectation is taken with respect to the distribution of (τ3(ω), τ5(ω)).
Alternatively, let τ̂i denote the value of the point estimator for τi, for i = 3, 5. Computing the throughput
with rates τ̂3 and τ̂5, then yields TH5

analytical. Note that in standard queuing applications one typically
computes TH5

analytical. In the following numerical examples we will illustrate to what extend this may
lead to misguided decisions. To this end, we will also estimate the relative value at risk

RVaR =
TH5

analytical − q0.05(TH5)

TH5
analytical

,

which yields the relative maximal discrepancy between the actual throughput TH5 and the analytical
throughput that can occur with probability of at least 0.05. The RVaR is helpful in assessing the risk
involved in considering the sample-based rates τ̂i as true values. We will compare the value at risk for
the different rerouting regimes under breakdowns.

For the numerical example, we let µ5 = 3 and set the breakdown and repair rates to

τ3 = 1.0, τ5 = 5.0, ρ3 = 1.1, ρ5 = 1.01.

It is worth noting that the throughput at note 5 has under stalling the explicit solution

µ5

1 + τ3
ρ3

+ τ5
ρ5

+ τ3+τ5
2min(ρ3,ρ5)

and under skipping

µ5

(
1 + τ3

ρ3

)
1 + τ3

ρ3
+ τ5

ρ5
+ τ3+τ5

2min(ρ3,ρ5)

,

and is independent of the arrival rates and the service rates at nodes other than 5. Put differently, the
throughput of node 5 to the outside is independent of the arrival rates and the service rates at the other
nodes. It is worth noting that blocking rs-rd cannot be applied to this system as the reversibility
conditions put forward in Lemma 4.4 do not hold.

For i = 3, 5, let τ̂i denote the failure rate in the analytical model, which is assumed to be fixed, and
let τi with

τi = τ̂i + ρ · (τ̂i(U − (1/2))),

denote the actual failure rate, where U is uniformly distributed on [0, 1] modeling the parameter insecurity,
and ρ denotes the level of insecurity. For the experiments, we let ρ = 0.5 (small insecurity), which means
that τi may differ up to 25 % from τ̂i, ρ = 1 (medium insecurity, which means that τi may differ up to
50 % from τ̂i, ρ = 2 (high insecurity), which means that τi may differ up to 100 % from τ̂i. For the
statistical analysis we sample N = 106 realizations of the long-run throughput. Table 1 gives the results
under stalling, and Table 2 gives the results under skipping.

The tables illustrate that the risk profile of the two disciplines is significantly different. Not surpris-
ingly, the throughput under skipping is larger than under stalling, which stems from the additional factor
τ5/ρ5 in the expression for the throughput under skipping. The RVaR, however, of stalling is smaller
than that of skipping, which means that stalling is more robust with respect to parameter insecurity in
the breakdown rate. We illustrate the different risk profiles of the two breakdown schemes by plotting
a histogram of the throughput values. Figure 4 shows the resulting histogram for stalling and Figure 5
shows the resulting histogram for skipping.

The figures illustrate that the risk profile of the two disciplines is significantly different, and thereby
support our findings in Tables 1 and Table 2.
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ρ = 0.5 ρ= 1 ρ = 2

TH5
est. 0.2472 0.25747 0.3282

TH5
analytical 0.2441 0.2441 0.2441

VaR 0.03594 0.06268 0.0997
RVaR 0.1472 0.2567 0.4084

Table 1: Output analysis for Stalling varying ρ.

ρ = 0.5 ρ= 1 ρ = 2

TH5
est. 0.4712 0.4883 0.5998

TH5
analytical 0.4661 0.4661 0.4661

VaR 0.0798 0.1440 0.2447
RVaR 0.1712 0.3089 0.5251

Table 2: Output analysis for Skipping varying ρ.
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Figure 4: Histogram for Throughput at node 5 under Stalling
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Figure 5: Histogram for Throughput at node 5 under Skipping

ρ = 0.5 ρ= 1 ρ = 2

TH3
est. 0.3365 0.3466 0.4025

TH3
analytical 0.3333 0.3333 0.3333

VaR 0.0434 0.0769 0.1250
RVaR 0.1304 0.2307 0.3750

Table 3: Output analysis for blocking rs-rd in the Two-Way Tandem for varying ρ.

The reported fact that stalling is more robust with respect to parameter insecurity than skipping is
not a general property of the breakdown disciplines. For example, letting τ3 = 5 and τ5 = 1 we obtain
for ρ = 0.5 a RVaR of stalling of 0.1448 and a RVaR of skipping of 0.04530, which shows that in this
case skipping is more robust than stalling. It is also worth noting that according to our experience other
distributional models for the parameter insecurity may lead to other results.

6.2 Example 2: Two-Way Tandem Network

We revisit the linear network in Example 4.8. For the numerical experiment we choose a = b = c = 1/2,
and λ1 = λ2 = 1. The throughput at node 3 under blocking rs-rd is then given by

TH3 = η3
ρ2

ρ2 + τ2
,

where η3 = 2 for the numerical setting. We model the parameter insecurity as described in Example 6.1.
For the statistical analysis we sample N = 106 realizations of the long-run throughput. Table 3 gives

the results under blocking rs-rd. Figure 6 shows the resulting histogram for the throughput at node 5
under blocking rd-rs together with a non-parametric density fit.
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Figure 6: Statistical Analysis of Throughput at node 3 in the Two-Way-Tandem under blocking rd-rs
at ρ = 2

ρ = 0.5 ρ= 1 ρ = 2

TH4
est. 0.4668 0.4676 0.4720

TH4
analytical 0.4666 0.4666 0.4666

VaR 0.0385 0.07859 0.1711
RVaR 0.0825 0.1683 0.3654

Table 4: Output analysis for skipping in the Star-Network for varying ρ.

6.3 Example 3: Open Star-Network

We revisit Example 4.9. Then, the throughput at station 4 under skipping is given by

TH4 = η4

(
π(∅) + π({2}) + π({3}) + π({2, 3}

)
,

where the explicit equations for the probabilities are provided in Example 4.9. For the numerical experi-
ment we let r = 1/2 and λ = 5, so that η4 = 1. Furthermore, we choose τi = 1 and ρi = 2, for i = 2, 3, 4.
We model the parameter insecurity as described in Example 6.1. For the statistical analysis we sample
N = 106 realizations of the long-run throughput. Table 4 gives the results under skipping.

Figure 7 shows the resulting histogram for the throughput at node 4 under skipping with a non-
parametric density fit.

Conclusion

In this article we have integrated simultaneous breakdown and repair of servers together with infinite
supply servers in one frame-work. We obtained closed-form analytical solutions of the steady-state queue
length distribution at stable nodes. Numerical examples have illustrated that robustness analysis of such
networks with respect to parameter insensitivity is an insightful tool that becomes feasible due to the
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Figure 7: Statistical Analysis of Throughput at node 4 in the Star-Network under Skipping for ρ = 2

product-form type solution. Future research will be on extending our results to state-dependent and,
more generally to path history dependent failure rates.
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Appendix

7 Proof of Theorem 4.10

(i): Assume first that all nodes are in up status (I = ∅). We start the proof with evocation of the
Subnetwork Argument from the proof of theorem 13 in [SDH14]. It guarantees that the subnetwork
W constitutes as a Jackson network where the source and sink represent {0} ∪ V . The corresponding
queueing process X̃ := ((X̃i(t) : i ∈ W ) : t ∈ R+) is a Markov process of its own. The traffic equations
of the described subnetwork W are given by

η̃i = λ̃i +
∑
j∈W

η̃jr(j, i), i ∈ W, where λ̃i := λi +
∑
j∈V

µjr(j, i),
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so ηi = η̃i holds for all i ∈ W . According to Jackson’s theorem (see [Jac57]), X̃ has the unique stationary
and limiting distribution

lim
t→∞

P (Xi(t) = ni : i ∈ W ) =
∏
i∈W

(
1− ηi

µi

)(
ηi
µi

)ni

, ∀(ni : i ∈ W ) ∈ N|W | , (27)

because ηi < µi for all i ∈ W holds. Thus, even if the subnetwork V of nodes with infinite supply is not
in equilibrium, the equilibrium on the subnetwork W of nodes without infinite supply is preserved, if the
initial distribution has the joint marginal (27).

This joint queue length process X̃ is coupled with an availability process Y which only depends on
the interaction of the nodes in D ⊆ J̃ but not on their load. Whenever a node in D breaks down, stalling
occurs, so all nodes go into a warm standby and all arrivals and services are interrupted until all nodes
recur to the up status. The network process (Y, X̃) is a Markov process on the state space P(D)×N|W |.
the balance equations for the subnetwork W are for all (∅, nk : k ∈ W ) ∈ {∅} × N|W | given by

π(∅, nk : k ∈ W )

∑
i∈W

(
λi +

∑
j∈V

µjr(j, i)
)
+
∑
i∈W

µi(1− r(i, i))1N+(ni) +
∑

∅≠I⊆D

α(∅, I)


=
∑
i∈W

π(∅, nk : k ∈ W \ {i}, ni − 1) ·
(
λi +

∑
j∈V

µjr(j, i)
)
· 1N+(ni)+

+
∑
i∈W

π(∅, nk : k ∈ W \ {i}, ni + 1) · µi

(
1−

∑
j∈W

r(i, j)
)
+

+
∑
i∈W

∑
j∈W\{i}

π(∅, nk ∈ W \ {i, j}, ni + 1, nj − 1) · µir(i, j) · 1N+(nj)

+
∑

∅≠I⊆D

π(I, nk : k ∈ W ) · β(I, ∅) , (28)

and for all (I, nk : k ∈ W ) ∈ P(D)× N|W | with I ̸= ∅

π(I, nk : k ∈ W )

 ∑
I⊂H⊆D

α(I,H) +
∑

∅≠K⊂I

β(I,K)


=

∑
∅≠K⊂I

π(K,nk : k ∈ W ) · α(K, I) +
∑

I⊂H⊆D

π(H,nk : k ∈ W ) · β(H, I) . (29)

We have to show, that (16) solves these equations. In the following we denote

π̂(I, nk : k ∈ W ) :=
A(I)

B(I)

∏
i∈W

(
ηi
µi

)ni

for all (I, nk : k ∈ W ) ∈ P(D) × N|W |, which is (16) before normalization, and plug it into the above
balance equations instead of π(I, nk : k ∈ W ).

In the first equation (28) the term

π̂(∅, nk : k ∈ W )α(∅, I) = π̂(∅, nk : k ∈ W )A(I) = π̂(I, nk : k ∈ W )B(I)

on the left-hand side is equal to the term π̂(I, nk : k ∈ W )β(I, ∅) = π̂(I, nk : k ∈ W )B(I) on the right-
hand side for each ∅ ̸= I ⊆ D. the remainder of (28) is the global balance equation of a classical Jackson
network which has the solution (see [Jac57])

π̂(∅, nk : k ∈ W ) := π̂(nk : k ∈ W ) =
∏
i∈W

(
ηi
µi

)ni

.
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Consider the second equation (29) for some fixed I ̸= ∅. For any K ⊂ I, K ̸= ∅, the term

π̂(I, nk : k ∈ W )β(I,K) = π̂(I, nk : k ∈ W )
B(I)

B(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)

on the left-hand side is equal to the term on the right-hand side

π̂(K,nk : k ∈ W )α(K, I) = π̂(K,nk : k ∈ W )
A(I)

A(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)
.

Moreover, for any I ⊂ H ⊆ D the term

π̂(I, nk : k ∈ W )α(I,H) = π̂(I, nk : k ∈ W )
A(H)

A(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)

on the left-hand side is equal to the term

π̂(H,nk : k ∈ W )β(H, I) = π̂(H,nk : k ∈ W )
B(H)

B(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)

on the right-hand side.
The proof of (i) is finished by normalization, which is possible because ηi < µi holds for all i ∈ W .

(ii): It is well known that ergodic Jackson networks have, in equilibrium, Poisson departure streams
from node i to the sink with rate η̃ir̃(i, 0), see [Mel79, Example 7.1]. From the proof of (i), we know
that the subset W behaves like an ergodic Jackson network with unreliable nodes of its own with λ̃i :=
λi +

∑
j∈V µjr(j, i) and

η̃ir̃(i, 0) = ηi

(
1−

∑
j∈W

r(i, j)
)
= ηi

(
r(i, 0) +

∑
j∈V

r(i, j)
)
.

Hence, if the subnetwork W is in equilibrium, as long as all nodes are in up status, departures to the
sink from nodes i ∈ W are Poisson streams with rate ηir(i, 0) and departures from i ∈ W to any node
j ∈ V are also Poisson streams with rate ηir(i, j), because a portion of r(i, j)/(r(i, 0) +

∑
j∈V r(i, j)) of

the departure stream from node i ∈ W is directed to j ∈ V .

(iii): Under the condition that all nodes j ∈ J̃ are in up status, we start the proof with evocation of
the M/M/1 Argument from the proof of theorem 13 in [SDH14].

This argument leads to the conclusion, that if the subnetwork W is in equilibrium and if r(i, i) = 0
holds, node i ∈ V behaves as an M/M/1− system of its own. The corresponding queue length process

X̂ is a birth-death process on state space N with birth rates λ̂i = ηi and death rates µi.
This queue length process X̂ is here coupled with an availability process Y on P(D), D ⊆ J̃ , where

breakdown and repair of nodes only depend on the interaction of the nodes but not on their queue length.
Whenever a node in D breaks down, stalling occurs, so all nodes go into a warm standby and all arrivals
and services are interrupted until all nodes recur to the up status.
The network process (Y, X̂) is a Markov process on the state space P(D)×N. The balance equations are

πi(∅, ni)
(
λ̂i + µi1N+

(ni) +
∑

∅≠I⊆D

α(∅, I)
)

= πi(∅, ni − 1) · λ̂i · 1N+(ni) + πi(∅, ni + 1) · µi +
∑

∅≠I⊆D

πi(I, ni) · β(I, ∅) (30)

for all (∅, ni) ∈ {∅} × N and

πi(I, ni)
( ∑
I⊂H⊆D

α(I,H) +
∑

∅≠K⊂I

β(I,K)
)

=
∑

∅≠K⊂I

πi(K,ni) · α(K, I) +
∑

I⊂H⊆D

πi(H,ni) · β(H, I) (31)
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for all (I, ni) ∈ P(D)× N with I ̸= ∅.

We have to show, that (17) solves these equations. In the following we set

π̂i(I, ni) :=
A(I)

B(I)

(
ηi
µi

)ni

for all (I, ni) ∈ P(D)× N as the non normalized proposed solution density.

In the first equation (30) the term

π̂i(∅, ni)α(∅, I) = π̂i(∅, ni)A(I) = π̂i(I, ni)B(I)

on the left-hand side is equal to the term π̂i(I, ni)β(I, ∅) = π̂i(I, ni)B(I) on the right-hand side for each
∅ ̸= I ⊆ D. the remainder of (30) is the global balance equation of an M/M/1−system which has the
solution

π̂i(∅, ni) := π̂i(ni) =

(
ηi
µi

)ni

,

since λ̂i = ηi holds.

Consider the second equation (31) for some fixed I ̸= ∅. For any K ⊂ I, K ̸= ∅, the term

π̂i(I, ni)β(I,K) = π̂i(I, ni)
B(I)

B(K)
= π̂i(∅, ni)

A(I)

B(K)

on the left-hand side is equal to the term on the right-hand side

π̂i(K,ni)α(K, I) = π̂i(K,ni)
A(I)

A(K)
= π̂i(∅, ni)

A(I)

B(K)
.

Moreover, for any I ⊂ H ⊆ D the term

π̂i(I, ni)α(I,H) = π̂i(I, ni)
A(H)

A(I)
= π̂i(∅, ni)

A(H)

B(I)

on the left-hand side is equal to the term

π̂i(H,ni)β(H, I) = π̂i(H,ni)
B(H)

B(I)
= π̂i(∅, ni)

A(H)

B(I)

on the right-hand side. The proof of (iii) is finished by normalization, which is possible from ηi < µi.

The limiting probability (18) for unstable nodes with infinite supply follows from the same arguments
as in the proof of theorem 15 in [MD09].

8 Proof of Theorem 4.11

Consider the subset W of nodes without infinite supply. For any subset I ⊆ D of broken down nodes, we
have the following facts for the subset W \ I which remain in force as long as I is unchanged:

• All service times of all up-nodes are exponentially distributed and the service discipline at all nodes
is FCFS.

• Routing of customers is Markovian: A customer completing service at node i ∈ W \ I will either
move to some node j ∈ W \ I with probability rI(i, j) or leave the subnetwork with probability
1−

∑
j∈W\I r

I(i, j).
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• At each node i ∈ W \ I, we have external arrivals from the source which are independent Poisson
streams with rate λI

i ≥ 0. Furthermore all arrivals from nodes j ∈ V \ I with infinite supply into
nodes i ∈ W \ I are independent Poisson streams at rate µjr

I(j, i), see Theorem 4.1. The sum of
independent Poisson streams is a Poisson stream, hence the arrival stream from the outside of the
subset W \ I into each node i ∈ W \ I is a Poisson process with rate λI

i +
∑

j∈V \I µjr
I(j, i).

• All service times and all interarrival times are independent of each other.

Let X̃ := ((X̃i(t) : i ∈ W \ I) : t ∈ R+) be the queueing process of this subnetwork. The process is
supplemented with a Markov process Y = (Y (t) : t ∈ R+) which describes the availability status of the
nodes and therefore gives information on how long the network process on the subnet W \ I lives until it
jumps to the next Markov process on some randomly chosen subnetW \K, K ⊆ D. Rerouting is according
to the blocking rs-rd regime (skipping, resp.). The balance equations of the joint availability-queue length
process (Y, X̃i : i ∈ W ) are ∀(I, ni : i ∈ W ) ∈ P(D)× N|W |

π(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
λI
i +

∑
j∈V \I

µjr
I(j, i)

)
+

+
∑

i∈W\I

µi(1− rI(i, i)) · 1N+(ni) +
∑

I⊂H⊆D

α(I,H) +
∑

K⊂I⊆D

β(I,K)
)

=
∑

i∈W\I

π(I, nk : k ∈ W \ {i}, ni − 1) ·
(
λI
i +

∑
j∈V \I

µjr
I(j, i)

)
·1N+(ni)

+
∑

i∈W\I

π(I, nk : k ∈ W \ {i}, ni + 1) · µi

(
1−

∑
j∈W\I

rI(i, j)
)
+

+
∑

i∈W\I

∑
j∈W\I,j ̸=i

π(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µir
I(i, j) · 1N+(nj)

+
∑

K⊂I⊆D

π(K,nk : k ∈ W ) · α(K, I) +
∑

I⊂H⊆D

π(H,nk : k ∈ W ) · β(H, I) . (32)

We have to show that the distribution given by (19) solves equation (32) for all (ni : i ∈ W ) ∈ N|W |

and all I ⊆ D. In the following we set

π̂(I, nk : k ∈ W ) :=
A(I)

B(I)

∏
i∈W

(
ηi
µi

)ni

for all (ni : i ∈ W ) ∈ N|W | and all I ⊆ D, and consider equation (32) for some fixed I ⊆ D.

For any K ⊂ I, K ̸= ∅, the term

π̂(I, nk : k ∈ W )β(I,K) = π̂(I, nk : k ∈ W )
B(I)

B(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)

on the left-hand side is equal to the term on the right-hand side

π̂(K,nk : k ∈ W )α(K, I) = π̂(K,nk : k ∈ W )
A(I)

A(K)
= π̂(∅, nk : k ∈ W )

A(I)

B(K)
.

Moreover, for any I ⊂ H ⊆ D the term

π̂(I, nk : k ∈ W )α(I,H) = π̂(I, nk : k ∈ W )
A(H)

A(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)
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on the left-hand side is equal to the term

π̂(H,nk : k ∈ W )β(H, I) = π̂(H,nk : k ∈ W )
B(H)

B(I)
= π̂(∅, nk : k ∈ W )

A(H)

B(I)

on the right-hand side. The remainder of (32) is

π̂(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
λI
i +

∑
j∈V \I

µjr
I(j, i)

)
+
∑

i∈W\I

µi(1− rI(i, i)) · 1N+(ni)
)

=
∑

i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni − 1) ·
(
λI
i +

∑
j∈V \I

µjr
I(j, i)

)
·1N+(ni)+

+
∑

i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni + 1) · µi

(
1−

∑
j∈W\I

rI(i, j)
)
+

+
∑

i∈W\I

∑
j∈W\I,j ̸=i

π̂(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µir
I(i, j) · 1N+(nj). (33)

With ηIi = λI
i +

∑
j∈W\I η

I
j r

I(j, i) +
∑

j∈V \I µjr
I(j, i) (see (10)) this is equivalent to

π̂(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
ηIi −

∑
j∈W\I

ηIj r
I(j, i)

)
+
∑

i∈W\I

µi(1− rI(i, i)) · 1N+(ni)
)

=
∑

i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni − 1) ·
(
ηIi −

∑
j∈W\I

ηIj r
I(j, i)

)
·1N+(ni)+

+
∑

i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni + 1) · µi

(
1−

∑
j∈W\I

rI(i, j)
)
+

+
∑

i∈W\I

∑
j∈W\I,j ̸=i

π̂(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µir
I(i, j) · 1N+(nj).

Under the required condition of either (11) and (12) in case of blocking rs-rd or (14) in case of skipping
holds ηi = ηIi for all i ∈ W \ I and all I ⊆ D for the respective reduced traffic equations. therefore from
Lemma 4.4 or Lemma 4.6 respectively this is equivalent to

π̂(I, nk : k ∈ W ) ·
( ∑
i∈W\I

(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
+
∑

i∈W\I

µi(1− rI(i, i)) · 1N+(ni)
)

=
∑

i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni − 1) ·
(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
·1N+(ni)+

+
∑

i∈W\I

π̂(I, nk : k ∈ W \ {i}, ni + 1) · µi

(
1−

∑
j∈W\I

rI(i, j)
)
+

+
∑

i∈W\I

∑
j∈W\I,j ̸=i

π̂(I, nk : k ∈ W \ {i, j}, ni + 1, nj − 1) · µir
I(i, j) · 1N+(nj).

Plugging in π̂(I, nk : k ∈ W ) = A(I)
B(I)

∏
i∈W

(
ηi

µi

)ni

yields∑
i∈W\I

(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
+
∑

i∈W\I

µi(1− rI(i, i)) · 1N+(ni)

=
∑

i∈W\I

µi

ηi
·
(
ηi −

∑
j∈W\I

ηjr
I(j, i)

)
·1N+(ni) +

∑
i∈W\I

ηi
µi

· µi

(
1−

∑
j∈W\I

rI(i, j)
)
+

+
∑

i∈W\I

∑
j∈W\I,j ̸=i

ηi
µi

µj

ηj
µir

I(i, j) · 1N+(nj)
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⇔ 0 = −
∑

i∈W\I

µi

ηi
·

∑
j∈W\I,j ̸=i

ηjr
I(j, i) · 1N+(ni) +

∑
i∈W\I

∑
j∈W\I,j ̸=i

µj

ηj
ηir

I(i, j) · 1N+(nj).

Thus π̂(I, nk : k ∈ W ) = A(I)
B(I)

∏
i∈W

(
ηi

µi

)ni

solves the balance equations (32). The last step of proving

(i) is by normalizing π̂, which is possible because ηi < µi holds for all i ∈ W .
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