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1 Introduction

Bayesian ideas are already comparably old. Already in the 18th century Thomas Bayes
and Pierre-Simon Laplace developed first conclusions on the Bayes-calculus. Nowadays
Bayes-theory or Bayes-Statistics is a highly developed part of Mathematical Statistics.
The significant difference to usual Mathematical Statistics is the assumption that the
parameter of the statistical model is a realization of a random variable. The distribu-
tion of that random variable is called a-priori-distribution. Usually one interprets the
a-priori-distribution as something like a previous information on the value of the pa-
rameter of the model. But note that sometimes one has a more concrete explanation
for such an a-priori-distribution. For example in the actuarial field it is the concretely
given distribution of the socalled risk parameter in a collective of insurance risks. The
classical approach of Bayes-Statistics is to calculate a socalled a-posteriori-distribution
out of the a-priori-distribution by integrating the data of a statistical sample. With that
a-posteriori distribution one derives optimal statistical decision rules then. These deci-
sion rules are called Bayes-rules.

A lot of research on the Bayes-rules was done already. For surveys on most import-
ant things see the books of Berger (1985), Gosh et.al. (2003) and Robert (1994). An
elegant introduction (in German) was given by the author (see Kremer (2005)).
Recently the author noted a certain gap in the field of Bayes research. The closing of
that gap is contents of the following paper, that is quite elegant and closed in its results.

2 The context

Let be given the sample X = (X1, ..., Xn) as random variables:

Xi : (Ω,A, P )→ (R,B)

and the random-variable θ (on also (Ω,A, P ) with values in a set Θ), describing as
realisation ϑ the parameter of the underlying stochastic model. Denote with

PX
ϑ := PX|θ=ϑ

the conditional probability (measure) of the X given the realisation ϑ of θ. With this
notation the probability law P θ ist the a-priori-distribution (of θ) and the contitional
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distribution of θ given X = x, the socalled a-posteriori-distribution (of θ), just
in symbol: P θ|X=x. The last one can be computed (usually) with the socalled Bayes-
Theorem (see on this e.g. Kremer (2005), Theorem 2.1, on page 30 there).
For all that follows assume that the X1, ..., Xn are i.i.d. given θ, what means in details:

(A) PX|θ=ϑ =
⊗n

i=1 P
Xi|θ=ϑ , ∀ϑ

(B) PXi|θ=ϑ = PXj |θ=ϑ , ∀ϑ, ∀i 6= j .

Usually one assumes in addition that the PXi|θ=ϑ are dominated by a σ-finite measure
µ, giving the µ-density fXi

ϑ of the conditional distribution of Xi given ϑ, with symbol:

PXi
ϑ := PXi|θ=ϑ .

So far for the general notations. The new parts of the paper are specialized to the
additional model assumptions:

(C) θ has a Erlang(a,b)-distribution with (given) fixed a ∈ N and parameter b ∈
(0,∞), meaning P θ has the Lebesgue-density:

fb(ϑ) =
ba

Γ(a)
· ϑa−1 · exp(−bϑ)

on ϑ ∈ (0,∞)

(D) PXi
ϑ is a Erlang(α, ϑ)-distribution with (given) fixed α ∈ N and parameter
ϑ ∈ (0,∞), meaning that one has (with µ as Lebesgue-measure):

fXi
ϑ (y) =

ϑα

Γ(α)
· yα−1 · exp(−ϑ · y)

on y ∈ (0,∞).

Note that for n = 1 the model given by (A)-(D) is related to the model in Johnson &
Kotz (1970), section 8.2.

3 Basic results

For giving Bayes-rules under the model defined through (A)-(C), one can take certain
general theorems in Kremer (2005). These shall be listed up adequately in the following:

Result 1:
The assumptions (A), (B) with ϑ ∈ (a1, b1) ⊂ R. Suppose that one has:

(a) P θ is dominated by the Lebesgue-measure with density of type:

f(ϑ) = [C(ϑ)]m · exp(−x0 · ϑ)

D(m,x0)
,
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where m ≥ 0 is fixed, C(·) is a positive function, x0 ∈ (b1, b2) ⊂ R is a parameter
and D(m,x0) is the norming constant such that:∫ a2

a1

f(ϑ) dϑ = 1 .

(b) PXi
ϑ is dominated by the Lebesgue-measure and has the density:

fXi
ϑ (y) = C(ϑ) · exp(−ϑ · y) · h(y)

with the function C(·) of (a) and h(·) is an adequate, nonnegative, measurable
function.

Then the a-posteriori-distribution P θ|X=x has the Lebesgue density according to the
formula:

f θ|X=x(ϑ) = [C(ϑ)]n+m · exp (− (x0 +
∑n

i=1 xi)ϑ)

D (n+m,x0 +
∑n

i=1 xi)
(3.1)

where x = (x1, . . . , xn) and D (n+m,x0 +
∑n

i=1 xi) is again the norming constant like
in (a).

This result is Theorem 2.14 in Kremer (2005). It will be applied later on to models
according assumptions (A)-(D).

For the next let the function γ on θ be defined according:

γ(ϑ) = E(Xi|θ = ϑ) (3.2)

=

∫
y PXi

ϑ (dy),

and consider the problem of estimating γ(ϑ), based on (the data) X. The corresponding
optimal estimator (in the context of the above Bayes-model (see all in front of (C)in part
2.)) is the so called Bayes-estimator. For its general definition see part 4.1 in Kremer
(2005).

Result 2:
Take the complete context of Result 1 with in addition:

f(b)− f(a) = 0.

The Bayes-estimator is given according to:

γ̂(x) =
x0 +

∑n
i=1 xi

m+ n

with x = (x1, . . . , xn).
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This result is just Theorem 4.6 in Kremer (2005). Also it will be applied later on.

Finally let Θ be split up into two disjoint sets H and K:

Θ = H +K. (3.3)

A decision (based on X) shall be made between the hypotheses:

ϑ ∈ H

and the alternative:
ϑ ∈ K.

The Bayes-rule for this (so called) testing problem is called Bayes-Test. For details on
it see again Kremer (2005), part 3.1.

Result 3:
Take the assumptions (A),(B) of section 2 and assume the existence of µ-densities fXi

ϑ (·)
of PXi

ϑ . Suppose fXi
ϑ (yi) is measurable in (ϑ, yi). Then one has as Bayes-Test:

ϕ(x) =

{
1, when P θ|X=x(K) > c1

c1+c2

0, otherwise,

with x = (x1, . . . , xn).

Here c1, c2 are certain weighting constants in the so called Bayes-risk (see Theorem
3.2 in Kremer (2005)). They are for defining a certain loss-function (see Kremer (2005),
page 53). Most simple is to take c1 = c2 = 1.
The proof of a more generalized version of Result 3 can be found in Kremer (2005),
pages 55-57 (note, the above ϕ is given in the remark on page 57).

4 Bayes-estimator

Take the Bayes-context of section 2 with (A),(B) and more special (C),(D) in ad-
dition. One has:

Theorem 1:
The Bayes-estimator of γ(ϑ) (according to (3.2)) is given by:

γ̂(x) = α ·
(
b+

∑n
i=1 xi

a+ α · n− 1

)
with (the sample) x = (x1, . . . , xn), when more strongly α 6= 1.
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Remark1:
Note the excluded case α = 1 is just the (classical) exponential distribution, what (in
usual applications, like nonlife insurance rating) is of no such great importance.
But also note, that this exponential case is already done in (Kremer 2005), example 2.11
amd example 4.5 case 4.

Remark 2:
From the properties of the Erlang(α, ϑ)-distribution one knows that:∫ ∞

0

y fXi
ϑ (y) dy =

α

ϑ
,

what means:

γ(ϑ) =
α

ϑ
. (4.1)

Proof of Theorem 1:
The fXi

ϑ of (D) is of type (b) of section 3. One has:

C(ϑ) =
ϑα

Γ(ϑ)
, h(y) = yα−1.

Also fb of (C) is of the Type (a) of section 3. Here one has:

x0 = b, m =
a− 1

α
. (4.2)

Obviously the conditions of result 1 are given with: a1 = 0, a2 = ∞, b1 = 0, b2 =
∞. Since:

fb(0) = 0, fb(∞) = 0

all conditions of result 2 are given. Inserting there into the formula of γ̂(x) special choices
(4.2), one arrives at the result of theorem 1.

One certain interest is:

Remark 3:
From formula (3.1) and (4.1) one concludes easily that the a-posteriori-distribution
P θ|x=x with (x = x1, . . . , xn)is just the

Erlang(a+ α, b+
n∑
i=1

xi),

what is for n = 1 in agreement with one result in table 3.2 in Robert (1994).
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Remark 4:
Example 4.9 in Robert (1994) is related to the above theorem. In the special situation
n = 1 one has for the Bayes-estimator δπ1 (X) in Robert and the γ̂(X) of theorem 1:

γ̂(X) = α · δπ1 (X).

The factor α can be easily explained. Robert takes the loss function:

L(ϑ, δ) =

(
δ − 1

ϑ

)2

,

whereas the above is based on:

L(ϑ, δ) =
(
δ − α

ϑ

)2

.

5 Bayes-Test

Suppose again that the Bayes-context of section 2 with (A), (B) and with in addition
(C), (D) is given. Considered shall be an adequate testing problem now, more concretely
the hypotheses:

H = [ϑ0,∞)

against the alternative:
K = (0, ϑ0),

where ϑ0 is fixed and given. That this type is most nearlying, one concludes from (4.1).

Usually most nearlying is H = (0, ϑ0) against K = (ϑ0,∞). But since in (4.1) one
has ϑ−1, above H and K are the most right choice.
One has:

Theorem 2:
The Bayes-test for H against K is given by:

ϕ(x) =

{
1, when x̄n >

1
n
· (k (a, α, ϑ0)− b)

0, otherwise,

when x = (x1, . . . , xn) and with:

x̄n = (
1

n
) ·

n∑
i=1

xi

k (a, α, ϑ0) = F−1
ϑ0

(
c1

c1 + c2

)
,
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where F−1
ϑ0

is the inverse of the (strictly monotone increasing) function:

Fϑ0(z) = 1− exp(−ϑ0 · z) ·
a∗−1∑
l=1

(ϑ0 · z)l

l!
,

with:
a∗ = a+ α .

Proof:
According to Remark 2 one has:

P θ|X=x(K) = Fϑ0(b∗)

with

b∗ = b+
n∑
i=1

xi ,

since the Erlang(a∗, b∗)-distribution has the distribution function value Fy(b∗) at the
point y. As a consequence the condition:

P θ|X=x(K) >
c1

c1 + c2

is equivalent with:

b∗ > F−1
ϑ0

(
c1

c1 + c2

)
and that again with

x̄n >
1

n
· (k(a, α, ϑ0)− b) .

Remark 5:
Note that Fϑ0 is the distribution function of the Erlang(a∗, ϑ0)-distribution. This means,
that one can compute the k(a, α, ϑ0) just as γ-fractile (with γ = c2

c1+c2
) of the Erlang(a∗, ϑ0)-

distribution.

Note that the above Bayes-test of theorem 2 can not be found in Berger (1994) (not
even for the special case n = 1!) or somewhere else.

Finally a fine:

Application:
Also in Bayes-statistics one thinks about certain confidence regions on the parameter ϑ.
A quickest introduction into that area can be found again in Kremer (1994) (see part 4.4
there). There one derives confidence regions from the Bayes-tests. Denote with C(x) a
confidence region for the parameter ϑ based on (the sample) x = (x1, ..., xn). According
to formula (3.7) in Kremer (2005) it has greatest sense to take:

C(x) = {ϑ : ϕϑ(x) = 0}
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where ϕϑ is the test of theorem 2 with choice ϑ instead of ϑ0. Obviously:

C(x) =

{
ϑ : x̄n ≤

1

n
(k(a, α, ϑ)− b)

}
what can be rewritten as:

C(x) =

{
ϑ : Fϑ

(
b+

n∑
i=1

xi

)
≤ c

}

with
c = c1/(c1 + c2)

(compare proof of theorem 2).

For practical applications one needs an adequate value for c. Certainly one wants that
the confidence region holds in a certain confidence level, say (1− δ) with a fixed, chosen
δ ∈ (0, 1) (small, e.g. 0.05). Consequently one has the condition for choosing c:

P θ|X=x(C(x)) ≥ 1− δ , (5.1)

where one can replace
”
≥“ through

”
=“. According to remark 2 one has P θ|X=x, it is

Erlang (a+α, b+
∑n

i=1 xi). But first rewrite C(x) into more nice form. Take the notation:

Gb∗(ϑ) := Fϑ

(
b+

n∑
i=1

xi

)

with

b∗ = b+
n∑
i=1

xi .

Since also Gb∗(·) is strictly increasing, also its inverse G−1
b∗

exists what gives:

C(x) = {ϑ : ϑ ≤ G−1
b∗

(c)} .

The condition (5.1) (with
”
≥“ replaced by

”
=“) means as a consequence that G−1

b∗
(c)

must be the δ-fractile uδ(x) of P θ|X=x. Alltogether one has as Bayesian-confidence-
region for ϑ:

C(x) = (0, uδ(x)] , (5.2)

where uδ(x) is the δ-fractile of the Erlang(a + α, b +
∑n

i=1 xi)-distribution. C(x) is a
HPD δ-credible region in the sense of Robert (1994) (see definition 5.7 there). But
note, that the above results (especially (5.2)) are not given by Robert (and others).
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6 Parameter-estimation

For application of the results of the section 4 and 5 one needs to know the parameter
b of the a-priori-distribution (remember a ∈ N, α ∈ R were assumed to be given (and
known)).
Since b is not given, one needs an estimator for b. For deriving such an estimator suppose,
one has k replications of the X, say:

Xj = (Xj1, ..., Xjn) , j = 1, ..., k .

with for each the random variable θj (= θ) of the parameter ϑj (= ϑ) (j = 1, ..., k).
Assume for the following:

a) θ1, ..., θk are identically distributed.

b) (Xj, θj), j = 1, ..., k are independent.

c) Xj1, ..., Xjn are i.i.d. given θj (for j = 1, ..., k). (defined in analog to (A), (B)).

Obviously one has the context of section 6.2 and 6.3 in Kremer (2005).

In addition assume that θj is distributed like the θ in (C) (for all j = 1, ..., k) and
that:

P
Xji

ϑ := PXji|θj=ϑ

is that P
Xji

ϑ of (D) (for all j = 1, ..., k and i = 1, ..., n).

According to section 6.2 in Kremer (2005) one gets the socalled moment-estimator
for the b as the solution b̂ of

Eb̂(E(Xji|θj)) = X̄.. (6.1)

with:

X̄.. :=
1

k · n
·

k∑
j=1

n∑
i=1

Xji

and where the outer integral Eb(·) stands for the integration over θj = ϑj according to
the Erlang(a, b)-law. According to (4.1) one has

E(Xji|θj) =
a

θj
,

and since:

E(θ−1
j ) =

b

a− 1

it follows as equation for b̂ from (6.1):

α · b̂

a− 1
= X.. .
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Obviously one has a moment-estimator b̂ME for b simply:

b̂ME =
a− 1

α
· X̄.. .

Finally one also likes to know, how to calculate the maximum-likelihood-estimator
for b in the above given Bayes-context. According to section 6.3 the b̂ is a solution of
the equation:

k∑
j=1

d

db

(
ln

∫ ( n∏
i=1

fXi
ϑ (Xji)

)
Pb(dϑ)

)∣∣∣∣∣
b=b̂

= 0 , (6.2)

where Pb is the a-piori-distribution with parameter b (a is known!).

Inserting all densities (according to (C) and (D)), one gets after routine calculations:

d

db

(
ln

∫ ( n∏
i=1

fXi
ϑ (Xji)

)
Pb(dϑ)

)
=
a

b
− (a+ n · α) ·

(
b+

n∑
i=1

Xji

)−1

As consequence, (6.2) gives as equation for b̂:

k · a
b̂

= (a+ n · α) ·
k∑
j=1

1

b̂+
∑n

i=1Xji

.

With further modifications one arrives at the final result, that the maximum-likelihood-
estimator b̂ML of b is given as:

b̂ML = n · B̂ ,

where B̂ ist (the) solution of the equation:

B̂ =
a

a+ n · α
· 1

S(B̂)
(6.3)

with the S(·) according:

S(B) =
1

k
·

k∑
j=1

1

B + X̄j.

,

where:

X̄j. =
1

n
·

n∑
i=1

Xji .

Clearly the solution B̂ of (6.3) has to be calculated in practical application with an
adequate method of numerical mathematics. Certainly the practitioner might prefer the
b̂ME to the b̂ML. But note, according to certain general theoretical investigations of
Asymptotic Statistics, also the more unhandy b̂ML has its sense.
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7 Final remarks

Note, that the author’s roots go back to non-parametric statistics. He made elegant rese-
arch on Bahadur efficiencies of rank tests (see e.g. Kremer (1979), (1981), (1982a),(1985)).
At the begin of the 80th he changed more to mathematical risk theory. In that field he
brought a lot of new research in Bayes-techniques in premium rating (see e.g. Kremer
(1982b), (1982c), (1996), (2005b)) and wrote also many papers on the statistics of loss re-
serving (see e.g. Kremer (1984), (1999), (2005c)). Biggest work he gave in mathematical
stochastics of reinsurance (see e.g. Kremer (2005a), (2008)).
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Abstract

Bayesian techniques are usually no standard techniques of Mathematical Statistics. Ne-
vertheless they are applied in different fields of research and practice, e.g. in insurance
premium rating. Many theoretical results were derived about Bayesian-statistical me-
thods. Applied to more special model assumptions they give often handy techniques for
application. The present paper gives also under spezialized conditions such theory-based
techniques, that were not yet given like that in the literature up to now.
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