
U N I V E R S I T Ä T H A M B U R G
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Abstract: We investigate a queueing-location problem where a fixed num-
ber of customers cycle between a set of service stations and a central station,
the location of which has to be determined in a way that the utilization of
the given resources of the network is maximized (measured in throughput).
We show that our objectives result in solving the well-known Weber pro-
blem. We discuss other performance objectives as well and the case that the
demand at the service stations occur only in periods which are interrupted
by no-demand periods.

Keywords: Gordon-Newell network, Weber problem, facility location, throughput, stea-
dy state analysis, travel times.

1 Introduction

We investigate the Weber problem in a dynamical environment which is determined by
a logistic and services network. A typical location problem setting in our framework is
as follows.

Introductory example: We have a set of stations (warehouses) where goods from a
central station (production center) have to be delivered. The locations of the warehouses
are fixed and known in advance.

Trucks are loaded at the central station, drive to one of the warehouses, are unloaded
there, return to the central station, are loaded there again, drive to a warehouse, not
necessarily the same as before, and so on. We take into consideration the distances
between center and warehouses (measured as travel times), the loading and unloading
times, and the delay due to queueing and waiting for loading and unloading, and the
fraction of goods that have to be delivered to the warehouses.
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For a given number of trucks in the system we determine the location for the central
production center such that the utilization of the given resources is maximized.

Maximizing the utilization of the given resources is characterized by maximization
of the overall mean number of delivered goods per time unit, i.e., of the sum of the
throughputs at the warehouses.

We also discuss other optimization criteria like transportation times and transporta-
tion costs.

The methodological approach we use is an integration of queueing network theory and
location theory.

The classical
”
Weber Problem“, sometimes called

”
Fermat-Weber Problem“, da-

tes back as a basic geometrical problem to Battista Cavalieri, Pierre de Fermat and
Evarista Torricelli. Application of the problem to facility location was introduced by
Alfred Weber in [WE09], for a historical survey see [DKLSW04]. The Weber problem,
which will be part of our framework, is as follows:

There are n locations in the plane whose coordinates (aj1, aj2) ∈ R2, j = 1, . . . , n,
are given and known in advance. To each of this locations (demand points) is associated
a positive weight cj , j = 1, . . . , n. We are to find the “location of a further point”
(x1, x2) ∈ R2 (center point, median point) which minimizes the sum of the weighted
Euclidean distances dj(x1, x2) = ((x1 − aj1)

2 + (x2 − aj2)
2)1/2 between the demand

points and the center point to place, that is

n∑

j=1

cjdj(x1, x2) = min! and determine x∗ = arg min
x∈R2

n∑

j=1

cjdj(x1, x2)

The problem can be generalized to the multi-dimensional case and to generalized con-
vex distance functions easily. Being a convex minimization problem it has at least one
solution. A very efficient solution procedure was developed in [WE37] and is now called
the Weiszfeld-algorithm. Although other algorithms have been developed since then, it
is still a very prominent method for solving the problem algorithmically.

Algorithms have also been developed for different convex distance functions, and the
Weiszfeld-procedure has been adapted to these frameworks.

Location problems under stochastic influences have been investigated since the
1970’s by many authors. The research on location problems in connection with queuing
systems began in the mid of the 70’s with a publication by Larson, see [LA74], and was
continued in particular by himself and Berman, see [BLC85] and [BLP87], for discrete
location problems. For surveys, see the relevant chapters in the collections [DH04] and
[MF90].

In [DSS90] and [SJD99] the authors considered several location problems in the plane
for a mobile server, where clients’ (customers’) demand occurs in Poisson streams at
different points in the plane. The service system of the mobile server is assumed to
behave as an M |M |1|∞, M |G|1|∞ or M |G|s|∞ queue.



The guiding principle of these problem solutions is to model the problem as a single
station queueing system with possibly several service channels (single or multi server
stations) and to incorporate “travel times“ of the “server“ to and from the clients into
the service times for the requests of the clients. Queueing occurs at the server station only.

The contribution of the present paper is to investigate besides the central server
the behavior of the clients (warehouses) in detail, and the behavior of the trucks when
unloading at the warehouses, and when waiting for being unloaded there. The interaction
of the central server and clients via the cycling customers (trucks) is dealt with in detail.

In abstract terms our contribution can be described as follows:
We investigate the location problem for the central server in a star-like generalized
Gordon-Newell network where a fixed number of customers cycle between the central
station and (varying with time) the (exterior) service stations. The problem is to find
an optimal location for the central service station, where optimality is defined with re-
spect to maximization of the exterior stations’ throughput. (It will turn out that this is
equivalent to maximize the overall throughput of the network.)

Guided by the introductory example we include into the optimization procedure ge-
neralized travel times or distances. The travel times of the trucks on the lane from the
central station to the exterior stations and back are incorporated into the queueing net-
work models as infinite server queues with service times which are either deterministic
(no overtaking of trucks) or random with any distribution having the prescribed mean
(overtaking of trucks is possible). Therefore, each branch of the network from the center
to the exterior stations consists of three network nodes: one service station (= warehou-
se) and two infinite server stations (= roads to and from the station).
It turns out that we can incorporate into our framework rather general problem specifi-
cations of the introductory example by utilizing general network classes available in the
literature and the insensitivity properties offered by queueing network theory.

For simplicity we will present in a first step the main development in terms of purely
exponential networks, and will thereafter describe the transformation to more realistic
models for the lanes and the loading and unloading stations. Exploiting the exponential
assumptions we can utilize the simplest part of the theory of product form queueing
networks, sketched in Section 3.1, to model and solve the location problem.

Our main finding is described and discussed in Section 2. For the queueing network and
location model we are able to show that we can transform the throughput-maximization
problem into a classical minisum Weber problem as convex optimization problem (we
allow generalized convex distances).
It turns out, rather surprising to us because of being contra intuition, that the service
times at the exterior nodes (the unloading times at the warehouses) are not relevant
for locating the central station. Obviously, this is a strong insensitivity property of the
problem, because we conclude that the (stochastic) properties of the unloading process
can change over time without the optimal location becoming suboptimal.



Similarly, it turns out that the service capacity (loading capacity) at the center does not
enter the optimization criterion for the location of the center, which is intuitive.

The only relevant information for the decision therefore are: The generalized distances
between the center and the exterior nodes and the proportion of demand which has to
be transported to the warehouses.

The consequences for managerial decisions are obvious:
The decision for the facility location can be decoupled from the fine-tuning of the stati-
ons’ performance behavior.
Moreover, whenever we are in a position that we can enhance locally the behavior in the
network (without reducing resources at other nodes) this will not decrease the network’s
throughput.
We discuss this and further consequences at the end of Section 2.

In Section 3.1 we provide the necessary prerequisits from product form queueing net-
work theory, which enable us to formulate the introductory example (and similar pro-
blems) as star-like Gordon-Newell network in Section 3.2 and to compute the target
throughput value for given location.

In Section 3.3 we discuss generalizations and extensions of the location problem, espe-
cially we show how to get rid of the modeling assumption of exponential distribution
in Section 3.1. This is a rather easy consequence of the insensitivity theory for product
form networks.

We consider further in Section 4.1 the case where the demand at the warehouses is
varying over time. I.e., there are subsequent demand and no-demand periods of the ware-
houses. The structure of these sequences of alternating time intervals is very flexible for
the modeling process. It turns out that a direct generalization of our previous results
seems to be not possible. We therefore develop a heuristic approximation to model this
framework which enables us to revert to product form network calculus. This yields again
two results which are counter intuitive: The relevant variables for the location decision
are only: The generalized distances between the center and the exterior nodes and the
proportion of demand which has to be transported to the warehouses.
Additionally there is a strong insensitivity property of this decision procedure with re-
spect to the local properties of the exterior nodes and their variation of demand over time.

While in Section 4.1 the demand and no-demand periods is a set-valued Markov pro-
cess for its own, we discuss in Section 5 the case that the demand/no-demand behavior
of the warehouses depends on the queue-length there, i.e., we allow that no further goods
are requested for if the number of trucks waiting for unloading at the warehouse is above
some threshold. It turns out, that besides some small extensions most of the nice pro-
blem structures from the previous sections are not maintained.

In Section 6 we summarize our findings and sketch directions of further research to
continue the investigations of this paper.



Notation and conventions:
N = {0, 1, 2, . . . } and N+ = {1, 2, . . . }.
Empty sums are 0, empty products are 1, we set 0/0 = 0.
For any set A we denote the set of all subsets of A by P(A).

2 Problem setting and main result

For the readers’ convenience we describe the problem setting and our model in terms of
the introductory example.

We have J − 1 (exterior) stations, the warehouses, numbered j = 2, . . . , J . Station j
is located in the plane at coordinates aj = (aj1, aj2) ∈ R2.

At station j there are sj ≥ 1 facilities (service channels) for unloading trucks, and there
is ample waiting space for trucks that arrive while all unloading facilities are working.
The duration of the unloading time is exponential with expectation µ−1

j . The queueing
regime for trucks is First-Come-First-Served (FCFS).

We are to find a central location x = (x1, x2) ∈ R2, where the central station, number
1, (production center) has to be placed. The distance between station j and the central
station 1 is described by a convex function d : R2 ×R2 −→ R+. For simplicity we denote
dj(x) := d(aj , x).

At central station 1 there are s1 ≥ 1 facilities (service channels) for loading trucks,
and there is ample waiting space for trucks that arrive while all loading facilities are
working. The duration of the loading time is exponential with expectation µ−1

1 . The
queueing regime for trucks is FCFS.

We abbreviate for station j, j = 1, . . . , J , if there are nj trucks in service or waiting,

µj(nj) =

{
µj · nj , if nj ≤ sj ;
µj · sj , if nj ≥ sj .

(2.1)

µj(nj) can be interpreted as actual total service rate at station j, if there are nj trucks
in service or waiting.

A truck being loaded at the central station is directed to warehouse j with probability
ρ(j), j = 2, . . . , J , with

∑J
j=2 ρ(j) = 1. There are N identical trucks circulating in the

system.
We assume that the service times are independent of one another and that the decision

to which warehouse a truck is directed is independent of the history of the system.
Remark: We will show in the following sections that, given the location of the central,

station the system can be described by standard closed queueing network models. There
exists an ergodic Markov process which describes the time evolution of the system and
has a unique steady state (equilibrium) distribution of the system.

We are interested in determining under equilibrium conditions the overall mean num-
ber of trucks leaving the warehouses per time unit. In terms of queueing networks this
is exactly the sum of throughputs of all warehouse stations, which is a well defined
performance measure.



Our aim is therefore to locate the central station 1 for delivering goods to the ware-
houses in such a way that the overall throughput of the warehouses is maximized.

Clearly, the throughput, as well as all network characteristics and performance mea-
sures will depend on the coordinates x = (x1, x2) of the center. We henceforth indicate
this dependence by writing in a system with N trucks and center location x for the
throughput at the warehouses THw(N ; x). (The precise definition of throughput will be
given below.)

Our optimization problem is to find

max
x=(x1,x2)∈R2

{THw(N ; x)} and arg max
x∈R2

{THw(N ; x)}. (2.2)

A little reflection yields the conjecture that the optimal location of the center will not
depend on the loading capacity at the center, but will strongly depend on the generalized
distances dj(x), the proportions (probabilities) ρ(j), j = 2, . . . , J, for branching to the
warehouses, and the unloading capacities at the warehouses.
In view of this our first theorem is to a certain extent counter-intuitive.

Theorem 2.1 Let x∗ ∈ R2 be a solution of the generalized Weber problem:

Find min
x=(x1,x2)∈R2

{
J∑

j=2

ρ(j)dj(x)} and x∗ = arg min
x∈R2

{
J∑

j=2

ρ(j)dj(x)} (2.3)

Then x∗ is a solution of the maximization problem (2.2) as well.

The proof is postponed to Appendix A.

The result of Theorem 1 is striking: With respect to the location of the center station
for optimizing the overall warehouse throughput, the service capacities at the warehou-
ses do not matter. The relevant information for the location decision is
• the (generalized) distances, which we express as travel times dj(x) := d(aj , x), and
• the proportions ρ(j) of goods to be dispatched to warehouse j.

Note: This does not mean that the throughput is independent of these local properties
of the warehouses, as will be shown later there is a functional dependence.

The consequences of these observations for managerial decision making are obvious:
(1) We can at a first step make the decision for the location by way of a standard Weber
problem, and thereafter perform fine-tuning according to the service resources at hand.
(2) Even more: If the system is established and built up, we can increase throughput by
local enhancement of service.
(3) Furthermore: Shifting capacities between the nodes is possible without perturbing
the optimality of the center’s location as long as the fractions of demand for the stations



remain the same.
(4) Optimization of the number of trucks in the system for a target throughput can be
made with the center location fixed already.

Saying it the other way round: Our Theorem 1 states that we can decouple (to a
certain extent) the global decision for optimal location of the center station and local
optimization of the processes performed at the warehouses and at the center station.
E.g., it is intuitively clear that increasing the loading capacity at the center will increase
the throughput at any warehouse (this is a consequence of Theorem 3.7 below).

It is less intuitive, that, if we maintain the capacities at the center and all but one
warehouse and increase the unloading capacity at the remaining warehouse, the through-
put at all warehouses increases. This is a consequence of Theorem 3.7 as well.

Remark: It may be of interest, to point out that our result encourages after fixing
the location to enhance further the functioning of the local service. In the setting of
our problem no analogue to Braess’s paradox occurs, which proves that an “obvious”
enhancement of transportation by opening of additional lanes may decrease throughput
of the system.

Our conclusions are not subject to Braess’s paradox because we have prescribed the
lanes which are open for transportation and do not allow for short cutting.

We will discuss other optimization criteria in Section 3.4 below: Travel times and
travel costs. Before doing this, we will transform the problem described so far into a
queueing network model and discuss the modeling assumptions.

3 The star-like queueing network with central station

In terms of the introductory example the network model under consideration obviously
carries a star-like structure with warehouses as exterior nodes and production center as
center of the star. The network is closed with fixed number of trucks as customers.

The stations (warehouses as well as production centers) are nodes of the networks, the
servers at the production center are the loading places, the servers at the warehouses
are the unloading places, which all can operate in parallel, but there need not be ample
capacity, so queueing may occur. Loading and unloading times are the service times of
the servers and are random. The trucks are the customers circulating in the network.

For each warehouse, the roads from the center node to that warehouse and back are
modeled as two additional nodes in the network with random travel times.

The variable decisions for the trucks’ destinations on leave from the center is modeled
as random decision where to go.

In terms of standard queueing network terms this model is a generalized Gordon-
Newell network. For a shorter presentation and less complicated computations in the
proofs we will develop our results in the setting of classical exponential Gordon-Newell



networks. This requires some rather unrealistic assumptions, but it is easy to get rid of
these assumptions and we will later on discuss why and how the results directly carry
over to the general setting of the previous section.

For referencing we collect relevant results of network theory in the next section.
We assume that all random variables which occur in our models are defined on an

underlying probability space (Ω,F , P ) which will not be mentioned further.

3.1 Prerequisits from stochastic network theory

Definition 3.1 (Gordon-Newell network) Consider a set {1, 2, . . . , J} of service
stations. Station j is a single server with state dependent service intensity and infinite
waiting room under FCFS regime.

There are N > 0 indistinguishable customers cycling according to an irreducible Mar-
kov matrix R = (r(i, j), i, j = 1, . . . , J). Customers arriving at node j request for an
amount of work (service time) there which is exponentially distributed with mean 1.
Whenever there are nj customers present at node j (in service , if any, or waiting),
service is provided with rate µj(nj) > 0. We assume that µj(nj) is nondecreasing in nj.
All requested service times constitute an independent family of random variables.

Let Xj(t) denote the number of customers present at station j at time t ≥ 0, either
waiting or in service (local queue length at station j). Then X(t) := (Xj(t), j = 1, . . . , J)
is the joint queue length vector of the network at time t. We denote by X = (X(t), t ≥ 0)
the joint queue length process of the Gordon-Newell network. States of X are

S(N, J) = {(n1, . . . , nJ) ∈ NJ , n1 + . . . + nJ = N}.

Theorem 3.2 ([JA63], [GN67]) The joint queue length process X = (X(t) : t ∈ R+)
of the Gordon-Newell network is a Markov process which is ergodic (irreducible and
positive recurrent). Let η = (η1, . . . , ηJ) denote the unique probability solution of the
traffic equation

ηj =
∑

i∈J

ηir(i, j), j ∈ J. (3.1)

The ηj are the customers’ visit ratios at nodes j = 1, . . . , J. The unique stationary and
limiting distribution π = π(N, J) of X on S(N,J) is

π(n1, . . . , nJ) = G−1(N, J)

J∏

j=1

nj∏

i=1

ηj

µj(i)
, (n1, . . . , nJ) ∈ S(N, J),

where the norming constant is

G(N, J) :=
∑

n1+...+nJ=N

J∏

j=1

nj∏

i=1

ηj

µj(i)
.



Remark: The assumption that all service times are exponential-1 distributed is not a
restriction. If at node j service times are exponential-νj then this is incorporated into
the state dependent service rates by changing µj(nj) → νj · µj(nj).

Example 3.3 (Exponential multiservers) If at node j for some sj ∈ {1, 2, . . . ,∞}
we have µj(nj) = µj ·min(nj , sj), nj ≥ 0, j ∈ {1, 2, . . . , J} then the stochastic behaviour
of the network’s joint queue length process is identical to that of a Gordon-Newell network
with the same number of nodes, routing structure, population size, but with multiserver
nodes, where node j provides exponential-µj distributed service times to customers by at
most sj service channels.
Especially, this example encompasses the case of infinite server queues, sj = ∞. Such
nodes are well suited to model traffic on lanes.

Lemma 3.4 [CY01] For the Gordon-Newell network in equilibrium the arrival rate at
any node equals the departure rate there. The mean number of departures per time unit
from node j (node-j throughput) in the network with N ≥ 1 customers is

THj(N) :=
∑

(n1,...,nJ )∈S(N,J)

π(n1, . . . , nJ)µj(nj) = ηj
G(N − 1, J)

G(N, J)
. (3.2)

The (overall) throughput of the Gordon-Newell network is the sum of the local throughputs

TH(N) =

J∑

j=1

THj(N) =
G(N − 1, J)

G(N, J)
. (3.3)

Remark: It is possible to take as the solution of the traffic equation (3.1) any (not
normalized) vector η = (η1, . . . , ηJ) which deviates from the normalized version by a
factor. The stationary distribution π is invariant under changing the factor. If we take a
not normalized η and plug it into the norming constants G(N − 1, J), G(N, J) then the
throughput (3.3) reads

TH(N) =
J∑

j=1

THj(N) =




J∑

j=1

ηj


 ·

G(N − 1, J)

G(N, J)
. (3.4)

Theorem 3.5 (Little’s Theorem, [CY01]) Let in steady state denote Lj(N) the
mean number of customers present at node j and Wj(N) the mean sojourn time of a
customer at node j, then

Lj(N) = ηj · TH(N) · Wj(N).

Due to
∑

j∈J̄

Lj(N) = N, we get
∑

j∈J̄

ηjWj(N) =
N

TH(N)
.

Theorem 3.6 [WA89] The throughput of a Gordon-Newell network according to Defi-
nition 3.1 is a nondecreasing monotone function in the number of customers: TH(N) ≥
TH(N − 1), N ∈ N+.



Theorem 3.7 [SS94] Consider a Gordon-Newell network according to Definition 3.1.
If at some node j the service rate is increased (point wise in the number of customers
there) then the throughput at any node and in the network does not decrease.

3.2 The model of the logistic and services network

We have J − 1 (exterior) stations (the warehouses), each with one service channel (for
unloading the trucks = customers), numbered j = 2, . . . , J . Station j is placed in the
plane at coordinates aj = (aj1, aj2) ∈ R2 and a central station, number 1, at coordinates
x = (x1, x2) ∈ R2, with one service channel for loading the trucks.

The distance between station j and the central station 1 is given by a convex function
d : R2 × R2 −→ R+. For simplicity we denote dj(x) := d(aj , x).

We assume stations to have exponentially distributed service times with mean 1 and
assume that service is provided with rate µj(nj) if nj customers (trucks) are present at
station j. N ∈ N+ customers (trucks) are cycling in the network.

If a customer is served (loaded) at station 1, he will be routed to one of the other
stations j and then has to travel distance dj(x).

Traveling this distance is represented as being served by an infinite server station
with (for simplicity of presentation) exponentially distributed service times with mean
dj(x). This infinite server is denoted ja. After passing the road (= being served by
this server), the customer will be served at station j. When his service at warehouse
station j is finished, he has to travel way back to station 1, which is represented again
as being served by an infinite server station with exponentially distributed service times
with mean dj(x). This infinite server station is denoted jb. The routing probability from

server 1 to server ja is r(1, ja) := ρj , j = 2, . . . , J , recall
∑J

j=2 r(1, ja) = 1, all other
routing decisions are deterministic as indicated in the figure below.

With these stations and routing we have constructed a star-like network. We assume
that all requested service times constitute an independent family of random variables.
Routing decisions at node 1 are independent of the previous history of the network.
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Thus, we have obtained a Gordon-Newell network with node set



J̄ = {1, 2a, 3a, . . . , Ja, 2, 3, . . . , J, 2b, 3b, . . . , Jb}, state space

S(N, J̄) = {(nj : j ∈ J̄) ∈ NJ̄ :
∑

j∈J̄

nj = N}, (3.5)

service intensities exp(µja(x)) = exp(µjb(x)) = dj(x)−1, and routing matrix

RJ̄ =




0 r(1, 2a) r(1, 3a) · · · r(1, Ja) 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0

0 0 0 · · · 0 0 1
. . . 0

...
...

...
...

...
. . .

. . .
...

0 0 0 · · · 0 0 0
. . . 1

1 0 0 · · · 0 0 0 · · · 0
1 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

1 0 0 · · · 0 0 0 · · · 0




.

Remark: The assumption of exponentially distributed travel times can be removed,
see the discussion in Section 3.3. Similarly, properties of the loading and unloading pro-
cess and the distributional assumptions put on these times will be discussed as well.
Obviously, this removal opens the way to construct much more realistic models. For-
tunately enough, the formulas and the results derived here will maintain valid even in
the more general setting. The reason behind is insensitivity theory for queueing networks.

Having fixed the model and the notation, we are now in a position to determine with
the help of Section 3.1 the overall throughput at the warehouse stations.

Theorem 3.8 Denote by G(N, J̄ ; x) the norming constant of the system if N trucks are
cycling and the center station is located at x ∈ R2, then

G(N, J̄ ; x) =
N∑

n=0




 ∑

n1+...+nJ=N−n

J∏

j=1

( nj∏

k=1

ηj

µj(k)

)
 2n

n!




J∑

j=2

ηjdj(x)




n
 .

The total throughput of the network is

TH(N ; x) =
G(N − 1, J̄ ; x)

G(N, J̄ ; x)
. (3.6)

The overall throughput at the warehouse stations is

THw(N ; x) = TH(N ; x)

J∑

j=2

ηj =
1

4
· TH(N ; x). (3.7)

The proof is postponed to Appendix A.



3.3 Discussion of the modeling assumptions

Infinite server queues for modeling traffic on lanes are a standard device and
offer a class of flexible models.

Assuming the travel times from center 1 to warehouse j and back via lanes ja and
jb to be exponentially distributed with mean dj(x) enabled us to perform the proofs
within the framework of exponential networks. This yields the most simple formulas for
performance indices, e.g., throughput. We admit that exponential distribution is a quite
unrealistic assumption for modeling traffic. Indeed, for given mean it is the extreme case
with maximal entropy. Fortunately enough, we can remove this restriction and allow
any distribution for the travel times with mean dj(x), obtaining the same throughput.
E.g., taking deterministic-dj(x) times would model a constant flow of traffic without
overtaking. This is the other extreme case with minimal entropy, not realistic either.

A realistic model for travel times of identical trucks is: Random mean-dj(x) travel
times with a small variance, generating some overtaking. We obtain throughput (3.7).

Insensitivity theory for queueing networks is the reason behind this flexibility.
This theory dates back to insensitivity in “Verallgemeinerte Bedienungsschemata“ and
the BCMP and Kelly networks. For a survey see [DA01][Section 9 and 10].

The most prominent observation in insensitivity theory is: “At a symmetric server the
stationary queue length distribution is insensitive against variation of the service time
distribution as long as the mean is fixed.“

This implies especially that we can compute the stationary queue length distribution
at such servers by taking exponential service time - the result is the same for other
distributions with the same mean. Furthermore, this holds for the networks of Gordon-
Newell type as well: At any symmetric node in the network we can vary the shape of the
service time distribution, maintaining the mean, without the queue length distribution
in steady state regime being perturbed.

The important observation for our investigation is that infinite servers are symmetric.
And furthermore, it follows that the norming constants are the same with different ser-
vice time distribution (with mean held constant) as with exponential distributed service
times. With some computational effort it follows that the throughput obeys the same
insensitivity property. As a consequence, the formulas (3.6) and (3.7) from Theorem 3.8
are the valid quantities for our decision analysis in the more general settings as well.

Single server stations under FCFS with state dependent rates for loading and
unloading of the trucks are prescribed for ease of computations and may be substituted
by different service schemes.
(i) If there is ample capacity and all trucks are served in parallel, we have infinite servers
and can allow general service time distributions. The throughput will be the same under
any shape of the service time distributions as long as the mean service time is hold fixed.
(ii) If we have at the center s1 loading facilities, and loading a truck needs an exponential-
µ1 distributed time, we model this as an exponential multiserver queue with s1 channels,
similarly at exterior stations for unloading places. For details see Example 3.3.



(iii) If we have a prescribed, even queue length dependent, service capacity (service rate)
at the central station, and if loading of all trucks present there is in parallel, the suitable
service discipline is “Processor Sharing“ (PS): If there are n1 trucks at the center station
each of them obtains a fraction of 1/n1 of the station’s total capacity. The throughput
of the system will not change if we have non-exponential distributions with the same
mean - a consequence of insensitivity theory because PS is a symmetric service discipline.

Location of the center coincides with one of the warehouse locations: This is
a possible scenario, because we have reduced the queueing-location problem to a purely
location problem - at least as long as the decision making for the center’s location has to
be made. If the center’s optimal position is x = aj then the distances (travel times) fulfill
for this node dj(x) = 0, and consequently, the service times at the infinite servers ja and
jb are zero. This situation is covered by our framework, but the direct application of the
model to our introductory example may be questionable. If necessary, to remedy this
potential problem we may introduce different customer types (= trucks) for the service
of different warehouses. We will not go into detail here, because this is part of ongoing
investigations.

3.4 Minimizing passage-times and transportation costs

Reduction of throughput maximization to the standard minisum Weber problem by
Theorem 2.1 opens a path to solving several further optimization problems in the logi-
stic and services network via reduction as well. In this section we present some examples,
the results hold for the generalized models discussed in Section 3.3 as well.

Our first example is to minimize the expected passage-time in the network, which is the
mean travel time for a truck between two successive departures from the center station.
The expected passage-time Zj(N) to station j is the sum of all expected sojourn times
(waiting plus service times), which a customer (truck) spends waiting and in service at
station j and traveling to and from j, i.e., his sojourns at the “stations” ja, j and jb,
and thereafter at station 1. Let Wi(N) be the expected sojourn time at station i with
N customers in the system:

Zj(N) = Wja(N) + Wj(N) + Wjb(N) + W1(N), j = 2, . . . , J.

The sojourn times depend on the location x of the central server 1, we write Wj(N ; x)
and Zj(N ; x) instead of Wj(N) and Zj(N), respectively.

The overall expected passage-time is

Z(N ; x) :=

n∑

j=2

r(1, ja)Zj(N ; x).



With ηj = (1/4)r(1, ja), j = 1, . . . , J and η1 =
∑J

j=2 ηj we get

Z(N ; x) =
J∑

j=2

r(1, ja)Zj(N ; x) = 4
J∑

j=2

ηjZj(N ; x) = 4
∑

j∈J̄

ηjWj(N ; x).

From Little’s Theorem (Theorem 3.5) we obtain

∑

j∈J̄

ηjWj(N ; x) =
N

TH(N ; x)
.

This yields the optimization problem: Find

arg min
x∈R2

{
Z(N ; x) = 4

N

TH(N ; x)

}
.

So Z(N ; x) attains its minimum at points where TH(N ; x) is maximal and from Theo-
rem 2.1 we conclude that Z(N ; x) attains its minimum at x∗ (given in Theorem 2.1).
Hence, the travel time problem is reduced to a standard Weber problem as well.

In our second example we compute transportation costs for delivering the goods. There
are costs Kj per time unit associated with delivering goods to warehouse j , which occur
for a truck on the way from a station 1 to station j and back, j = 2, . . . , J . Obviously a
similar approach as before via Little’s Theorem is possible. But a little reflection shows
that we can directly convert to a classical minisum Weber problem.

This is due to the fact that on the roads no queueing occurs: the lanes are modeled
as infinite server queues, and therefore the travel times (=sojourn times at stations ja
and jb) are just the service times there.

The mean service time at stations ja and jb is the (convex) general distance dj(x), so
the mean costs occurring with transport from the center 1 to warehouse j is 2Kjdj(x).
So the problem is reduced to the Weber problem:

Find arg min
x∈R2





J∑

j=2

ρ(j)Kjdj(x)



 .

4 Networks with time varying demand

4.1 The model

In this section we consider the network from Section 2 with warehouses where demand
is time varying and occurs only for times of random lengths (= demand periods), inter-
rupted by times of random lengths (= no-demand periods). Under these side constraints
we want to find a location for the center station for optimal utilizing the resources of the
network. Our experience is that there is no smooth solution to the problem similar to



Theorem 2.1. We therefore develop an approximate model which we can solve explicit-
ly by exploiting formulas from product form network calculus as in the previous sections.

The main assumption is:
(A1) Whenever there is no demand from station j the whole branch [ja → j → jb]
is frozen, i.e., traveling on the lanes is stopped and unloading at j, if there is any, is
interrupted until a new demand period commences for j.

Our next assumption is natural:
(A2) Whenever stations {i1, i2, . . . , in} ⊆ {2, 3, . . . , J} are in a no-demand period, a
truck starting from the center 1 is directed to j ∈ {2, 3, . . . , J} \ {i1, i2, . . . , in} with
probability r(1, ja) conditioned on this set of nodes being in a demand period.
Whenever it happens that all stations {2, 3, . . . , J} are in a no-demand period the center
station is stalled as well. If after such period some stations enter their next demand
period the center is immediately activated and the first truck can depart there after an
exponential-µ1 distributed residual loading time.
Remark: Rerouting [SD03][Section 6] according to probabilities r(1, ·) conditioned on
{2, 3, . . . , J} \ {i1, i2, . . . , in} being in demand period is the skipping regime.

The alternating random sequences of demand and no-demand periods can be con-
structed in a very flexible manner. They are defined by intensities for starting demand
and no-demand periods, which are of a rather general structure.
(A3) Take any pair of non-negative functions

A : P({2, 3 . . . , J}) → [0,∞) and B : P({2, 3 . . . , J}) → [0,∞),

subject to A(∅) = 1 and B(∅) = 1 and (recall 0/0 = 0) for all K̄ ⊆ {2, 3 . . . , J}

A(K̄ ∪ Ḡ)

A(K̄)
< ∞ ∀K̄ ∩ Ḡ = ∅ and

B(K̄)

B(K̄ \ H̄)
< ∞ ∀H̄ ⊆ K̄.

Let K̄ ⊆ {2, 3 . . . , J} be the set of the warehouse stations which are in a no-demand
period. Then the stations in the set Ī ⊆ {2, 3 . . . , J} \ K̄, Ī 6= ∅ jointly commence a
no-demand period with intensity

α(K̄, K̄ ∪ Ī) :=
A(K̄ ∪ Ī)

A(K̄)
,

whereas for the stations in the set H̄ ⊆ K̄ the no-demand periods jointly expire (and
the next demand period commences) with intensity

β(K̄, K̄ \ H̄)) :=
B(K̄)

B(K̄ \ H̄)
,

Our aim is again to maximize the overall throughput at the warehouses. To model and
solve this problem we revert to the theory of stochastic networks with unreliable nodes



as developed in [SD03], for more details we refer to [SA06]. The connection to those mo-
dels which provide integrated models for performance analysis and reliability assessment
(shortly: performability theory) is easy to see:
Stations in a no-demand period are considered to be broken down in the reliability con-
text, while stations in a demand period are up and can process service.

A Markov process description of the system’s development uses state space

S(N, J̄) × P({2, 3 . . . , J}). (4.1)

The meaning of a generic state (ni, i ∈ J̄ , Ī) ∈ S(N, J̄ × P({2, 3 . . . , J}) is:
• the stations i ∈ Ī are in no-demand periods,
• at station i ∈ J̄ there are ni trucks, traveling or being loaded or unloaded (or waiting
for this at active stations) if i ∈ {2, 3 . . . , J} \ Ī, or if i ∈ Ī , they are frozen there.

It is easy to see that the state process of the network in this form is Markov. The
stationary distribution π = π(N, J̄) of this network process is [SD03]

π(n, Ī) = G̃−1(N, J̄)
A(Ī)

B(Ī)

∏

j∈J̄

nj∏

i=1

ηj

µj(i)
,

n = (n1, . . . , nJ) ∈ S(N, J̄), Ī ⊆ {2, 3 . . . , J}.

where (ηj , j ∈ J̄) is the solution of the traffic equation (3.1) and G̃−1(N, J̄) the norma-
lization constant.
From π = π(N, J̄) we readily obtain the stationary probability π(Ī) = π(N, J̄)(Ī) that
the subset Ī ⊆ {2, 3 . . . , J} of the warehouses is in no-demand periods.
Because the stationary distribution depends of the location x of the central station, we
write π(n, Ī; x), G̃−1(N, J̄ ; x) and for the local throughputs T̃Hj(N ; x) and T̃Hw(N ; x)
for the sum of the warehouse throughputs.

4.2 Throughput maximization

In Section 2 we reduced maximization of the network’s throughput TH(N ; x) (and of the
warehouse throughputs) to minimization of weighted generalized distances. We argued
that result is somehow contra intuition because the unloading speeds at warehouses do
not influence the optimal location of the center. On the other hand this leads us to
conjecture that a similar reduction might be possible in the system with time varying
demand, i.e., the optimal solution for the throughput maximization obeys an insensitivity
property with respect to changing the characteristics of the demand and no-demand
periods. Indeed we have found such an insensitivity property.



Theorem 4.1 In the network described in Section 4.1 with center station located in
x ∈ R2 the throughput of node (station) i ∈ J̄ is

T̃H i(N ; x) = ηi
G(N − 1, J ; x)

G(N, J ; x)


 ∑

Ī⊆{2,3...,J}, i/∈Ī

A(Ī)

B(Ī)


 ∑

K̄⊂{2,3...,J}

A(K̄)

B(K̄)




−1
 , (4.2)

where G(N − 1, J ; x), G(N, J ; x) are normalization constants in the network with time
invariant demand, see Theorem 3.2, and the overall throughput of the network is

T̃H(N ; x) =
∑

i∈J̄

T̃H i(N ; x), (4.3)

and the overall throughput of the warehouses is

T̃Hw(N ; x) =
1

4
· T̃H i(N ; x). (4.4)

The optimal location x∗ ∈ R2 for the center station which maximizes the total throughput
of the network, all local throughputs, and the sum of all throughputs at the warehouses
as well, is the solution of the minisum Weber problem:

Find min
x∈R2

{
J∑

j=2

ρ(j)dj(x)}. (4.5)

Proof: The local throughput (4.2) can be found in [SD03][Proposition 7.4] and (4.3),
(4.4) are from additivity of rates, respectively direct from definition. This representation
of the global throughput separates a factor which contains the distances from remain-
der terms which are not dependent on the distances. But the factor which contains the
distances is the same as occurring in Theorem 2.1. �

Although the insensitivity has been proven, some comments may be in order:
(i) The result is still surprising. An intuitive guess would suggest that the optimal lo-
cation moves towards stations which have, on average, shorter no-demand periods and
away from those stations which have on average long no-demand periods. However, here
is an argument from the hindsight: assume that station j has on average long no-demand
periods, and therefore j - and also stations ja and jb - are frozen for long times. If the
center station 1 would move away from j, the distance to j increases, which implies that
the service rates of stations ja and jb decrease at the same time. According to Little’s
Theorem (Theorem 3.5), the average number of customers at station j and on the lanes
ja and jb would increase. So, more trucks would be frozen for a longer time. This ob-
viously decreases throughput.
(ii) Although the insensitivity of Theorem 4.1 is in line with the insensitivity in Theo-
rem 2.1, there is a more critical point with the result here: As we pointed out at the
beginning of this section our model is a heuristic modeling approximation for obtaining
explicit throughput formulas which can be dealt with analytically. The argument in (i)



now shows that to a certain extent the insensitivity observed here may be due to this
model specification, i.e., it may be partly an artefact.

An interesting question arises from considering the general framework of the perfor-
mability models in [SD03] and [SA06]. For our present problem the models there offer
to let the length of the demand periods and of the no-demand periods depend on the
load of the stations, i.e., the number of trucks on the lanes and the queue lengths at the
unloading station. It turns out that results similar to Theorems 2.1 and Theorem 4.1 are
in general not provable, especially, insensitivity under changing the warehouse stations’
characteristics no longer holds. For more details see the Section 5.

5 Throughput formulae for queue length dependent time

varying demand

In this section we discuss the location problem when the length of the demand and
no-demand periods depend on the load of the stations, i.e., the number of trucks on
the lanes and the queue lengths at the unloading station. The general message is that
results similar to Theorems 2.1 and Theorem 4.1 do not hold, especially, insensitivity
under changing the warehouse characteristics does not hold.

The setting is now with more general alternating random sequences of demand and
no-demand periods. They are defined by rather general intensities for starting demand
and no-demand periods. The construction is as follows [SD03][Definition 3.1].

(A3’) Take any pair of non-negative functions

A, B :
⋃

Ī⊆{2,3...,J}

(
{Ī} × N|Ī|

)
→ [0,∞)

subject to A(∅, ni : i ∈ ∅) := B(∅, ni : i ∈ ∅) := 1.

Let K̄ ⊆ {2, 3 . . . , J} be the set of the warehouse stations which are in a no-demand
period and let (nj : j ∈ J̄) be the joint queue lengths state.

Then the stations in the set Ḡ ⊆ {2, 3 . . . , J} \ K̄, Ḡ 6= ∅ jointly commence a no-
demand period with intensity

α(K̄, K̄ ∪ Ḡ, ni : i ∈ J̄) :=
A(K̄ ∪ Ḡ, ni : i ∈

⋃
j∈K̄∪Ḡ{ja, j, jb})

A(K̄, ni : i ∈
⋃

j∈K̄{ja, j, jb})
,

whereas for the stations in the set H̄ ⊆ K̄ the no-demand periods jointly expire (and
the next demand period commences) with intensity

β(K̄, K̄ \ H̄, ni : i ∈ J̄) :=
B(K̄, ni : i ∈

⋃
j∈K̄{ja, j, jb})

B(K̄ \ H̄, ni : i ∈
⋃

j∈K̄\H̄{ja, j, jb})
.



We require all intensities α(K̄, K̄ ∪ Ḡ, ni : i ∈ J̄) and β(K̄, K̄ \ H̄, ni : i ∈ J̄) to be finite
(recall 0/0 = 0).

It is easy to see that an ergodic Markov process description for this system can be
constructed with state space S(N, J̄)×P({2, 3 . . . , J}), for more details see the comments
to formula (4.1). The steady state distribution of this process is [SD03][Theorem 6.5]

π(n1, . . . , nJ , Ī) =
A(Ī , ni, i ∈

⋃
j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})
G̃−1(N, J)

J∏

j=1

nj∏

i=1

ηj

µj(i)
,

with (η1, . . . , ηJ) the probability solution of the traffic equation (3.1) and the norming
constant

G̃(N, J) :=
∑

(n1,...,nJ )∈S(N,J)


∑

Ī⊆J̄

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




J∏

j=1

nj∏

i=1

ηj

µj(i)
.

The node-j throughput in the network with N ≥ 1 customers is

T̃Hj(N) =
∑

(n1,...,nJ )∈S(N,J)

∑

Ī,J̄ ,j /∈Ī

π(n1, . . . , nJ , Ī)µj(nj),

and the overall throughput of the network is

T̃H(N ; x) =
∑

i∈J̄

T̃H i(N ; x). (5.1)

For an in-depth analysis, we first stipulate a convenient form for the throughput. We
restrict our presentation to the case of state independent service rates.

Theorem 5.1 In a Gordon-Newell network with unreliable nodes we have

T̃H(N ; x) =
G̃(N − 1, J̄ ; x)

G̃(N, J̄ ; x)
.



Proof: We compute the throughput at node 1, the other computations run similar

T̃H1(N ; x) =
∑

n∈S(N,J̄)

∑

Ī⊂{2,3...,J}

1/∈Ī

π(n, Ī; x)µ1(n1) =
∑

n∈S(N,J̄)

∑

Ī⊂{2,3...,J}

π(n, Ī; x)µ1(n1)

=
∑

n∈S(N,J̄,)

G̃(J̄ , N ; x)−1


 ∑

Ī⊂{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




·
J∏

j=1

(
ηj

µj

)nj J∏

i=2

(
ηnia+nib

i

nia!nib!µ
nia
ia (x)µnib

ib (x)

)
µ1(n1)

=
∑

n∈S(N−1,J̄)

G̃(J̄ , N ; x)−1


 ∑

Ī⊂{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




·
J∏

j=1

(
ηj

µj

)nj J∏

i=2

(
ηnia+nib

i

nia!nib!µ
nia
ia (x)µnib

ib (x)

)
µ1

η1

µ1

=
∑

n∈S(N−1,J̄)

G̃(J̄ , N ; x)−1


 ∑

Ī⊂{2,3...,J}

A(ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(ni, i ∈
⋃

j∈Ī{ja, j, jb})




·
J∏

j=1

(
ηj

µj

)nj J∏

i=2

(
hi(x)nia+nib

nia!nib!

)
µ1

η1

µ1

=
G̃(N − 1, J̄ ; x)

G̃(N, J̄ ; x)
η1

�

Our aim is again to maximize the sum of the warehouse throughputs. In general, the
problem can not be reduced to the solution of the problem in the network without
unreliable nodes from Section 3.

We start with showing that for one customer (=truck) in the system throughput
maximization can always be reduced to solving a standard Weber problem. But it is
usually not equivalent to problem (2.3) from Section 3.

Example 5.2 For one customer in the network we have to maximize

max
x∈R2

{
G̃(0, J̄ ; x)

G̃(1, J̄ ; x)
η1

}
, which is equivalent to minimizing min

x∈R2

{
G̃(1, J̄ ; x)

}
,

because G̃(0, J̄ ; x) and η1 are constants and 0 < G̃(1, J̄ ; x) < ∞.



Now

G̃(1, J̄ ; x)

=
∑

n∈S(1,J̄)


 ∑

Ī⊆{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




·
J∏

j=1

(
ηj

µj

)nj J∏

j=2

(
ηj

µja(x)

)nja
(

ηj

µjb(x)

)njb

=
∑

n∈S(1,J̄)

n1+...+nJ=1


 ∑

Ī⊆{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




J∏

j=1

(
ηj

µj

)nj

+ 2
∑

n∈S(1,J̄)

n2a+...+nJb=1


 ∑

Ī⊆{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




J∏

j=2

(ηjadj(x))nja

=
∑

n∈S(1,J̄)

n1+...+nJ=1


 ∑

Ī⊆{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})




J∏

j=1

(
ηj

µj

)nj

+ 2
J∑

j=2



∑

n∈S(1,J̄)

nja=1


 ∑

Ī⊆{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})





 ηjadj(x).

The first summand is a constant, the second is a weighted sum of the distances dj(x)
between the central station 1 and stations j = 2, . . . , J . The weight of distance dj(x) is

2
∑

n∈S(1,J̄)

nja=1


 ∑

Ī⊆{2,3...,J}

A(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})

B(Ī , ni, i ∈
⋃

j∈Ī{ja, j, jb})


 ηja.

Thus we obtained a Weber problem which is generally not equivalent to problem (2.3),
because it depends on the structure of the demand and no-demand period rates. �

Detailed computations show that, different from Section 3, the optimal location is not
independent of the number of customers in the network.

Even more, in general, our present problem is not a convex optimization problem, as
the next example shows.

Example 5.3 Consider the problem from Section 3 with d the Euclidean distance and
J = 3. Thus, the set of service station consists of {1, 2a, 3a, 2, 3, 2b, 3b}. Take



a2 := (0, 0), a3 := (0, 4),
µ1 := 1/4, µ2 := 1/6, µ3 := 1/12,
r(1, 2a) := 2/3 and r(1, 3a) := 1/3. So we obtain
µ2a(x) = µ2b(x) = (x2

1 + x2
2)

−1/2 and µ3a(x) = µ3b(x) = (x2
1 + (x2 − 4)2)−1/2.

The solution of the traffic equation is
η1 = 1/4, η2 = η2a = η2b = 1/6 and η3 = η3a = η3b = 1/12. Furthermore

h(x) = η2d2(x) + η3d3(x) =
1

6
(x2

1 + x2
2)

1/2 +
1

12
(x2

1 + (x2 − 4)2)1/2.

The optimal solution of the problem is x∗ = arg min
x∈R2

{h(x)} = (0, 0).

From Section 2, we know that x∗ maximizes the throughput of the Gordon-Newell net-
work, independent of the number of customers cycling in the network.

Let us now consider the same network, but with time varying demand at stations 2, 3
and one respectively two customers in the system. Then the set of possible subsets of
frozen stations is {∅, {2a, 2, 2b}, {3a, 3, 3b}, {2a, 2, 2b, 3a, 3, 3b}}.
We set B(Ī , ni, i ∈

⋃
j∈Ī{ja, j, jb}) := 1 for all Ī ⊆ {2, 3 . . . , J} and all n ∈ S(N, J̄). To

simplify notation we set

A(Ī2, n2a, n2, n2b) :=A({2a, 2, 2b}, ni, i ∈ {2, 2a, 2b}),

A(Ī3, n3a, n3, n3b) :=A({3a, 3, 3b}, ni, i ∈ {3a, 3, 3b}) and

A(Ī23, n2a, n2, n2b, n3a, n3, n3b):=A({2a, 2, 2b, 3a, 3, 3b}, ni, i ∈ {2a, 2, 2b, 3a, 3, 3b}).

Further we define

A(Ī2, n2a, 0, n2b) = A(Ī3, n3a, 0, n3b):=1; A(Ī23, n2a, 0, n2b, n3a, 1, n3b) := 1

A(Ī2, n2a, 1, n2b) = A(Ī3, n3a, 1, n3b):=1; A(Ī23, n2a, 1, n2b, n3a, 1, n3b) :=20

A(Ī2, n2a, 2, n2b) = A(Ī3, n3a, 2, n3b):=20; A(Ī23, n2a, 2, n2b, n3a, 0, n3b) :=20

A(Ī23, n2a, 0, n2b, n3a, 0, n3b) :=1; A(Ī23, n2a, 0, n2b, n3a, 2, n3b) :=20

A(Ī23, n2a, 1, n2b, n3a, 0, n3b) :=1.

Then the norming constants with one respectively two customers in the system is:

G̃(1, 3̄; x) = 12 + 8h(x) and G̃(2, 3̄; x) = 79 + 24h(x) + 8h2(x).

Thus with one customer in the system we have to maximize T̃H1(1; x) = (G̃(3̄, 1, x))−1 =
(12 + 8h(x))−1 and we get by direct computation x∗ = (0, 0) as solution.
For two customers x∗ = (0, 0) is not the optimal location. In this case have to solve

max
x∈R2

{
T̃H(2; x) =

12 + 8h(x)

79 + 24h(x) + 8h2(x)

}
.

With h(0, 0) = 1/3 and h(0,−4) = 4/3 we get

T̃H(2; (0, 0)) ≈ 0, 1669 and T̃H(2; (0,−4)) ≈ 0, 1919.



because there is at least one x ∈ R2 with T̃H(2, x) > T̃H(2, x∗), x∗ ∈ (0, 0) is not the
optimal solution.

We can actually show that T̃H is generally not concave. Thus, our problem can not
be reduced to a convex optimization problem:

If T̃H would be concave, then

T̃H(2; (1 − λ)x + λy) ≥ (1 − λ)T̃H(2; x) + λT̃H(2; y), ∀ x, y ∈ R2, 0 ≤ λ ≤ 1.

With x = (0, 0), y = (0,−4) as well as λ = 1/2 we have

(1 − λ)x + λy =
1

2
(0, 0) +

1

2
(0,−4) = (0,−2).

Direct computations yield h(0,−2) = 5/6 and so T̃H(2; (0,−2)) ≈ 0, 1786. Otherwise

λT̃H(2; x) + (1 − λ)T̃H(2; y) =
1

2
T̃H(2; (0, 0)) +

1

2
T̃H(2; (0,−4))

≈
1

2
0, 1669 +

1

2
0, 1919 = 0, 1794

So we get TH(2; (1 − λ)x + λy) ≤ (1 − λ) ˜TH(2; x) + λ ˜TH(2, y).

6 Conclusion and directions of further research

We have developed a throughput optimization method by optimal location of a central
server in a star-like network. A prototype example for such models is our introductory
example, which is a location problem in the continuous plane.

Starting from an exponential version of the problem which admits a simple proof of
the solution we have shown that much more realistic models are covered by the result.

Probably, the most important result of our investigation is that we can to a certain
extent decouple the decision about location of the central service facility (production
center) and the building of the exterior stations.

Clearly, many research problems are not yet tackled in the more general area of location
of additional nodes in networks of queues. These can be easily identified by investigating
the more involved location problems, like p-median or p-center problems, in the conti-
nuous as well as in the discrete setting in networks of queues.

Parts of our ongoing research related to the present paper are
(i) location theory in the discrete queueing network setting with prescribed network
graphs, and (i) p-center location problems in the setting of this paper.



A Appendix: Proofs

Recalling the denomination of the node set J̄ = {1, 2a, 3a, . . . , Ja, 2, 3, . . . , J, 2b, 3b, . . . , Jb},
for preparing the proof of Theorem 2.1 we specify first the probability solution of the
traffic equation (3.1) by direct solution as

η1 =
1

4
and ηj = ηja = ηjb =

1

4
r(1, ja) =

1

4
ρ(j), j = 2, . . . , J, (A.1)

and notice that the stationary distribution of the network is π(nj , j ∈ J̄ ; x) =

G−1(N, J̄ ; x)
J∏

j=1

( nj∏

k=1

ηj

µj(k)

)
J∏

i=2

(
nia∏

l=1

(
ηia

lµia(x)

) nib∏

m=1

(
ηib

mµib(x)

))

= G−1(N, J̄ ; x)
J∏

j=1

( nj∏

k=1

ηj

µj(k)

)
J∏

i=2

1

nia!nib!
(ηidi(x))nia+nib .

where we utilized ηja = ηjb = ηj and µja(x) = µjb(x) = d−1
j (x) for j = 2, . . . , J . Because

we express throughput by norming constants the following representation will be of value.

Lemma A.1 The norming constant of the system is

G(N, J̄ ; x) =
N∑

n=0




 ∑

n1+...+nJ=N−n

J∏

j=1

( nj∏

k=1

ηj

µj(k)

)
 2n

n!




J∑

j=2

ηjdj(x)




n
 .

With

Cn(N, J̄) :=


 ∑

n1+...+nJ=N−n

J∏

j=1

( nj∏

k=1

ηj

µj(k)

)
 2n

n!

and

hj(x) := ηjdj(x), h(x) :=
J∑

j=2

hj(x) =
J∑

j=2

ηjdj(x)

we can write

G(N, J̄ ; x) =
N∑

n=0

Cn(N, J̄)h(x)n. (A.2)

Proof: From the definition we have G(N, J̄ ; x) =

=
∑

n1+...+nJb=N

J∏

j=1

( nj∏

k=1

ηj

µj(k)

)
J∏

i=2

(ηidi(x))nia+nib

nia!nib!

=
N∑

n=0





 ∑

n1+...+nJ=N−n

J∏

j=1

( nj∏

k=1

ηj

µj(k)

)





∑

n2a+...+nJa+
n2b+...+nJb=n

J∏

j=2

hj(x)nja+njb

nja!njb!





 .



The statement follows from

∑

n2a+...+nJa+
n2b+...+nJb=n

J∏

j=2

hj(x)nja+njb

nja!njb!
=

∑

n2a+...+nJa+
n2b+...+nJb=n

J∏

j=2

hj(x)nja

J∏

i=2

hi(x)nib
1

∏J
i=2 nia

∏J
i=2 nib

=
∑

n2a+...+nJa+
n2b+...+nJb=n

J∏

j=2

(
hj(x)

2h(x)

)nja J∏

i=2

(
hi(x)

2h(x)

)nib n!
∏J

i=2 nia
∏J

i=2 nib
︸ ︷︷ ︸

density function of a multinomial distribution

·
(2h(x))n

n!
=

2n

n!
h(x)n.

�

Proof: (of Theorem 3.8) The representation of the norming constant is the first state-
ment of Lemma A.1, the throughput (3.6) is the standard result in (3.3), and (3.7)
follows from (3.2) and (A.1). �

Before starting with the proof of Theorem 2.1 we highlight the value of the representation
(A.2) by considering the case N = 1, where we get from Lemma A.1

x∗ = arg max
x∈R2

{TH(1; x)} ⇔ x∗ = arg max
x∈R2

{
G(0, J̄ ; x)

G(1, J̄ ; x)

}

⇔ x∗ = arg max
x∈R2

{
1

C0(1, J̄) + C1(1, J̄)h(x)
}

⇔ x∗ = arg max
x∈R2

{(C0(1, J̄) + C1(1, J̄)h(x))−1}

⇔ x∗ = arg min
x∈R2

{C0(1, J̄) + C1(1, J̄)h(x)}.

C0(1, J̄) and C1(1, J̄) are constants, which leads to our minimization problem (2.3)

x∗ = arg max
x∈R2

{TH(1; x)} ⇔ x∗ = arg min
x∈R2

{h(x)}

with h(x) =

J∑

j=2

ηjdj(x) =
1

4

J∑

j=2

r(1, ja)dj(x) =
1

4

J∑

j=2

ρ(j)dj(x).

This is the classical Weber problem with J − 1 demand points and weight r(1, ja) at
demand point aj . Hence this problem can be solved for instance by using the Weiszfeld-
procedure.

The following lemma will be used.

Lemma A.2 For all k = 0, 1, . . . , N − 2, n = 0, 1, . . . , N − k − 2 holds

Cn+k+1(N, J̄)Ck(N − 1, J̄) ≥ Cn+k+1(N − 1, J̄)Ck(N, J̄).

Proof: By definition

Ck(N, J̄) =


 ∑

n1+...+nJ=N−k

J∏

j=1

( nj∏

k=1

ηj

µj(k)

)nj

 2k

k!
,



hence, with Theorem 3.2, Ck(N, J̄) is the norming constant G(N − k, J) of a standard
Gordon-Newell network with N − k customers, J service stations and not normalized
solution (η1, . . . , ηJ) of the associated traffic equation, multiplied with 2k/k!.
With

∑J
j=1 ηj = 1/2 the throughput of this standard Gordon-Newell network with N

customers IS TH(N) = (1/2)G(N − 1, J)/G(N, J), see (3.4). Therefore we get

Cn+k+1(N, J̄)Ck(N − 1, J̄) ≥ Cn+k+1(N − 1, J̄)Ck(N, J̄)

⇔ G(N − n − k − 1, J)G(N − k − 1, J) ≥ G(N − n − k − 2, J)G(N − k, J)

⇔
G(N − k − 1, J)

G(N − k, J)
≥

G(N − n − k − 2, J)

G(N − n − k − 1, J)

⇔ TH(N − k) ≥ TH(N − n − k − 1).

We know from Theorem 3.6 [WA89] that the throughput of a Gordon-Newell-network
with service rates which are nondecreasing in the number of customers at the node is a
nondecreasing function in the network’s population size. Thus the lemma is proved. �

Proof: (of Theorem 2.1) For all x ∈ R2 with h(x) > h(x∗) and N ∈ N we have to
show

TH(N ; x∗) =
G(N − 1, J̄ ; x∗)

G(N, J̄ ; x∗)
>

G(N − 1, J̄ ; x)

G(N, J̄ ; x)
= TH(N ; x)

By Lemma A.1 this is equivalent to

G(N − 1, J̄ ; x∗)G(N, J̄ ; x) − G(N − 1, J̄ ; x)G(N, J̄ ; x∗) > 0

⇔

(
N−1∑

n=0

Cn(N − 1, J̄)h(x∗)n)

)(
N∑

k=0

Ck(N, J̄)h(x)k

)

−

(
N−1∑

n=0

Cn(N − 1, J̄)h(x)n

)(
N∑

k=0

Ck(N, J̄)h(x∗)k)

)
> 0

⇔
N∑

k=0

N−1∑

n=0

Ck(N, J̄)Cn(N − 1, J̄)
(
h(x)kh(x∗)n − h(x)nh(x∗)k

)
> 0.

We consider the summand for k = N

N−1∑

n=0

CN (N, J̄)Cn(N − 1, J̄)
(
h(x)Nh(x∗)n − h(x)nh(x∗)N

)

=
N−1∑

n=0

CN (N, J̄)Cn(N − 1, J̄)h(x)nh(x∗)n
(
h(x)N−n − h(x∗)N−n

)
.

Because of h(x) > h(x∗) we have h(x)N−n − h(x∗)N−n > 0. So, the whole summand is
strictly positive and the problem is reduced to prove

N−1∑

k=0

N−1∑

n=0

Ck(N, J̄)Cn(N − 1, J̄)(h(x)kh(x∗)n − h(x)nh(x∗)k) > 0.



For k = n we get h(x)kh(x∗)n − h(x)nh(x∗)k = 0. So, the problem is reduced to

N−1∑

k=0

N−1∑

n=0
n6=k

Ck(N, J̄)Cn(N − 1, J̄)(h(x)kh(x∗)n − h(x)nh(x∗)k) > 0

⇔
N−1∑

k=0

N−1∑

n=k+1

Ck(N, J̄)Cn(N − 1, J̄)(h(x)kh(x∗)n − h(x)nh(x∗)k)+

N−1∑

k=0

k−1∑

n=0

Ck(N, J̄)Cn(N − 1, J̄)(h(x)kh(x∗)n − h(x)nh(x∗)k) > 0.

Now we consider the case k = N − 1 in the first summand. Then the second sum is
empty and therefore zero. The same argument holds in the second summand for k = 0
and we have reduce the problem further to

N−2∑

k=0

N−1∑

n=k+1

Ck(N, J̄)Cn(N − 1, J̄)(h(x)kh(x∗)n − h(x)nh(x∗)k)

+
N−1∑

k=1

k−1∑

n=0

Ck(N, J̄)Cn(N − 1, J̄)(h(x)kh(x∗)n − h(x)nh(x∗)k) > 0.

by index-shift in both summands we get

N−2∑

k=0

N−k−2∑

n=0

Ck(N, J̄)Cn+k+1(N − 1, J̄)(h(x)kh(x∗)n+k+1 − h(x)n+k+1h(x∗)k)

+

N−2∑

k=0

k∑

n=0

Ck+1(N, J̄)Cn(N − 1, J̄)(h(x)k+1h(x∗)n − h(x)nh(x∗)k+1) > 0.

In the second summand we apply twice the following summation formula:
for ak, bk ∈ R, k = 1, . . . , N ,

N∑

k=0

k∑

n=0

ak+1bn =

N∑

k=0

N−k∑

n=0

an+k+1bk,

and obtain

N−2∑

k=0

N−k−2∑

n=0

Ck(N, J̄)Cn+k+1(N − 1, J̄)(h(x)kh(x∗)n+k+1 − h(x)n+k+1h(x∗)k)

+
N−2∑

k=0

N−k−2∑

n=0

Cn+k+1(N, J̄)Ck(N − 1, J̄)(h(x)n+k+1h(x∗)k − h(x)kh(x∗)n+k+1) > 0.

Because of h(x) > h(x∗) we have h(x)n+k+1h(x∗)k − h(x)kh(x∗)n+k+1 > 0 and from
Lemma A.2 we have Cn+k+1(N, J̄)Ck(N − 1, J̄) ≥ Cn+k+1(N − 1, J̄)Ck(N, J̄). So we



have

N−2∑

k=0

N−k−2∑

n=0

Ck(N, J̄)Cn+k+1(N − 1, J̄)(h(x)kh(x∗)n+k+1 − h(x)n+k+1h(x∗)k)

+
N−2∑

k=0

N−k−2∑

n=0

Cn+k+1(N, J̄)Ck(N − 1, J̄)(h(x)n+k+1h(x∗)k − h(x)kh(x∗)n+k+1)

≥
N−2∑

k=0

N−k−2∑

n=0

Ck(N, J̄)Cn+k+1(N − 1, J̄)(h(x)kh(x∗)n+k+1 − h(x)n+k+1h(x∗)k)

+
N−2∑

k=0

N−k−2∑

n=0

Ck(N, J̄)Cn+k+1(N − 1, J̄)(h(x)n+k+1h(x∗)k − h(x)kh(x∗)n+k+1)

= 0,

and so the theorem is proved. �
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