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Abstract

In this article we present a simple procedure to test for the null hypothesis of

equality of two regression curves versus one-sided alternatives in a general nonpara-

metric and heteroscedastic setup. The test is based on the comparison of the sample

averages of the estimated residuals in each regression model under the null hypoth-

esis. The test statistic has asymptotic normal distribution. Some simulations and

an application to a data set are included.
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1 Introduction

The comparison of two populations is a common problem in statistics. In a conditional

setting, the comparison is usually established between the regression curves, which de-

scribe the dependence between the response and the associated covariates. The equality

of the regression curves means that the effect of the covariates over the response is the

same in both populations.

When the regression curves are included in a parametric family (linear, polynomial,

etc.), the problem of comparison of regression curves can be reduced to the comparison

of the corresponding parameters. However, in many practical situations no reasonable

parametric model can be assumed, and even in that situation the comparison of the

regression curves is still an appealing problem (see examples in Härdle and Marron, 1990).

In this article we consider the problem of testing for the equality of two regression

curves versus one-sided alternatives in a general nonparametric and heteroscedastic setup.

More precisely, consider two pairs of variables (X1, Y1) and (X2, Y2), such that, for j = 1, 2,

Xj represents a covariate and Yj is the response or variable of interest. The relationship

between the covariate and the response in each population is modeled via a nonparametric

regression model of the form

Yj = mj(Xj) + εj (1)

where, for j = 1, 2, mj(x) = E(Yj|Xj = x) is a smooth regression function, and the

regression error verifies E(εj|Xj = x) = 0 and V ar(εj|Xj = x) = σ2
j (x). We assume that

the covariates X1 and X2 have common support RX . The null hypothesis of our testing

problem states the equality of the regression curves

H0 : m1(x) = m2(x) for all x ∈ RX . (2)

In many practical situations, some information can be given about the alternative hy-

pothesis. In this article we focus on a one-sided alternative hypothesis, which states that

one function is always equal or greater than the other:

H1 : m1(x) ≤ m2(x) for all x ∈ RX , and m1 < m2 on a set of positive measure. (3)
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We propose a very simple testing procedure, which consists in the comparison of the

sample averages of the regression residuals estimated nonparametrically under the null

hypothesis. See Section 2 for a detailed explanation of the testing procedure.

The problem of testing for the equality of two regression curves versus one-sided al-

ternatives has been considered in the literature by several authors. For instance, the

articles by Hall, Huber and Speckman (1997) and Koul and Schick (1997, 2003) work on

covariate-matched approaches. Speckman, Chiu, Hewett and Bertelson (2003) consider

a test based on signed ranks of residuals under a restrictive version of model (1), with

homoscedastic errors and equal design densities. Finally, Neumeyer and Dette (2005)

reconsidered the test proposed by Speckman et al. (2003) and extended it to completely

nonparametric and heteroscedastic models.

A different approach consists of testing the equality of two regression curves against

the general alternative H0 : m1(x) 6= m2(x). See Neumeyer and Dette (2003) for a review

on this problem. More recently, Pardo-Fernández, Van Keilegom and González-Manteiga

(2007) studied a test based on the comparison of the error distributions estimated non-

parametrically, which is quite related to the method we will introduce here.

The rest of the paper is organized as follows. Section 2 describes the testing procedure

in detail. In Section 3, Theorem 1 states the asymptotic distribution of the test statistic

under the null hypothesis, fixed alternatives and local alternatives. Section 4 shows a

simulation study. In Section 5, we illustrate the testing procedure with an application to

a data set concerning annual expenditures of Dutch households. Finally, the appendix

contains the proof of the main result in Section 3.

2 Testing procedure and asymptotic results

Pardo-Fernández et al. (2007) proposed a test for the equality of several regression curves

versus general alternatives. Their test, which is consistent under general alternatives,

is based on the comparison of two empirical estimators of the error distribution in each

population (one constructed under the null hypothesis of equal regression curves and the

other under the general nonparametric model).
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When the alternative hypothesis is of one-sided type, as presented in (3), the test

can be simplified, as we will explain in the sequel. Let m be any function verifying

m1(x) ≤ m(x) ≤ m2(x), for all x ∈ RX . For j = 1, 2, define the random variables

εj0 = Yj −m(Xj),

which can also be expressed as

εj0 = εj + (mj(Xj)−m(Xj)).

Obviously, under the null hypothesis, m1(x) = m(x) = m2(x), and εj0 = εj. However

under the alternative hypothesis, it happens that

E(ε10) < 0 and E(ε20) > 0.

Therefore, the comparison of the expectations of the regression errors under the null

hypothesis can be used to detect the alternative hypothesis H1.

In practice, the regression errors need to be estimated based on samples. For j = 1, 2,

let

{(Xij, Yij), i = 1, ..., nj},

be an i.i.d. sample from the distribution of (Xj, Yj). Denote n = n1 + n2 for the total

sample size. Let, for j = 1, 2,

m̂j(x) =

nj∑
i=1

Wij(x, hn)Yij (4)

be the estimator of the regression function, where

Wij(x, hn) =
K((x−Xij)h

−1
n )

nhnf̂Xj
(x)

are Nadaraya-Watson type weights, and

f̂Xj
(x) =

1

nhn

nj∑
i′=1

K((x−Xi′j)h
−1
n ) (5)

denotes the kernel density estimator of the density, fXj
, of Xj, K is a known kernel

function (typically, a symmetric density), and hn is an appropriate bandwidth sequence.

Given a function p such that 0 ≤ p(x) ≤ 1 for all x ∈ RX , we consider

m̂(x) = p(x)m̂1(x) + (1− p(x))m̂2(x). (6)
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A short discussion about an optimal choice of the function p is included in Remark 4

below. Now, estimate the regression errors under the null hypothesis using the function

m̂, for j = 1, 2 and i = 1, . . . , nj,

ε̂ij0 = Yij − m̂(Xij),

and consider the corresponding weighted averages, for j = 1, 2,

ε̄j0 =
1

nj

nj∑
i=1

ε̂ij0wj(Xij),

where wj is a positive weight function. We propose the following test statistic

T =
(n1n2

n

)1/2

(ε̄20 − ε̄10),

which has asymptotic normal distribution, as stated in Theorem 1 (see Section 3). The

null hypothesis is rejected for positive large values of the test statistic.

Note that m̂(x) is a consistent estimator for m(x) = p(x)m1(x) + (1− p(x))m2(x) and

hence ε̄20 − ε̄10 estimates

∆ = E[ε20w2(X2)− ε10w1(X1)]

=

∫
(m2(x)−m(x))w2(x)fX2(x) dx−

∫
(m1(x)−m(x))w1(x)fX1(x) dx

=

∫
(m2(x)−m1(x))f(x) dx, (7)

where we have defined

f(x) = p(x)w2(x)fX2(x) + (1− p(x))w1(x)fX1(x). (8)

Furthermore, note that T corresponds to the empirical process of residuals considered

by Neumeyer and Dette (2003), evaluated in t = 1 with RX = [0, 1]. These authors

proposed Kolmogorov-Smirnov and Cramér-von Mises type statistics based on that em-

pirical process to test for the equality of two regression curves versus a general alternative

of non-equal curves. However, in the case of one-sided alternatives, the much simpler test

statistic T with asymptotic normal law can be applied. Neumeyer and Dette (2003) used

random weight functions p(x) = n1f̂X1(x)[n1f̂X1(x)+n2f̂X2(x)]−1 and wj(x) = (f̂Xj
(x))−1,
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j = 1, 2. The latter choice was motivated by a cancellation of bias terms that allowed

these authors to use bandwidth rates optimal for regression estimation. This could be

done in the definition of T as well. However, to keep the test statistic simple, we do not

follow this approach, and give the asymptotic results under more restrictive bandwidth

conditions. We further assume deterministic weight functions and discuss the applicability

of random weight functions in Remark 4.

In the following result we obtain the asymptotic distribution of the test statistic under

the alternative hypothesis H1 and local alternatives of the type

H1n : m2(x) = m1(x) + n−1/2r(x), where r(x) ≥ 0 for all x ∈ RX , (9)

which include the null hypothesis H0 when r ≡ 0. Before stating the main result, we need

to introduce the following regularity assumptions.

(A1) (i) The kernel function K is a symmetric density with compact support and twice

continuously differentiable.

(ii) nhn →∞ and nh4
n → 0 as n→∞.

(A2) (i) For j = 1, 2, nj/n→ κj > 0 as n→∞.

(ii) For j = 1, 2, the functions mj, fXj
and wj, and p are twice continuously differ-

entiable, σj is continuous and σj(x) ≥ C for some C > 0 and for all x ∈ RX . RX is

a bounded interval.

(iii) For j = 1, 2, E[ε4
j ] <∞.

Theorem 1 Assume (A1) and (A2). Under H1n, the asymptotic distribution of the test

statistic T is N((κ1κ2)
1/2d, τ 2

0 ), where

d =

∫
r(x)f(x) dx and τ 2

0 =

∫ (κ2σ
2
1(x)

fX1(x)
+
κ1σ

2
2(x)

fX2(x)

)
f 2(x) dx,

and f is defined in (8).

Under H1 the asymptotic distribution of T − (n1n2/n)1/2∆ is N(0, τ 2
1 ), where

τ 2
1 =

∫ [ κ2

fX1(x)
(σ2

1(x)+[m1(x)−m2(x)]2)+
κ1

fX2(x)
(σ2

2(x)+[m1(x)−m2(x)]2)
]
f 2(x) dx−∆2,

and ∆ is defined in (7).
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The proof of this theorem is deferred to the appendix.

Remark 1 The previous theorem gives the asymptotic distribution of the test statistic T

under both null and alternative hypotheses. The null hypothesis correspond to r(x) = 0,

which implies d = 0, and hence the asymptotic distribution of T is N(0, τ 2
0 ). Based

on this asymptotic distribution under the null hypothesis, the test that rejects the null

hypothesis H0 against the alternative H1 when the observed value of T is larger that

τ0 z1−α has asymptotic significance level α, where z1−α denotes the (1−α)-quantile of the

standard normal distribution.

On the other hand, note that d ≥ 0, which means that the test can detect local

alternatives converging to the null hypothesis at the parametric rate n−1/2. This feature

is also accomplished by other methods based on the estimation of the residuals. See

Neumeyer and Dette (2003) and Pardo-Fernández et al. (2007).

Remark 2 The asymptotic variance of the test statistic, τ 2
0 , depends on unknown func-

tions. If we take into account the definition of f(x) in equation (8), then τ 2
0 can be written

as:

τ 2
0 = κ2E

[
σ2

1(X2)

fX1(X2)
f(X2)p(X2)w2(X2)

]
+ κ1E

[
σ2

2(X1)

fX2(X1)
f(X1)(1− p(X1))w1(X1)

]
In practice, this quantity is estimated by taking the corresponding empirical averages,

where κ1 and κ2 are replaced by n1/n and n2/n and the unknown functions σ2
1, σ2

2, fX1

and fX2 are replaced by their nonparametric estimators:

τ̂ 2
0 =

1

n

n2∑
i=1

σ̂2
1(Xi2)

f̂X1(Xi2)
f̂(Xi2)p(Xi2)w2(Xi2) (10)

+
1

n

n1∑
i=1

σ̂2
2(Xi1)

f̂X2(Xi1)
f̂(Xi1)(1− p(Xi1))w1(Xi1),

where

σ̂2
j (x) =

nj∑
i=1

Wij(x, hn)Y 2
ij − m̂2

j(x), (11)

f̂(x) = p(x)w2(x)f̂X2(x) + (1− p(x))w1(x)f̂X1(x),

and m̂j and f̂Xj
are given in (4) and (5), respectively.
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The test that rejects the null hypothesis H0 in favor of the alternative H1 when the

observed value of the test statistic T exceeds τ̂0 z1−α, where τ̂0 = +
√
τ̂ 2
0 and z1−α is the

(1− α)-quantile of the standard normal distribution, has asymptotic level α.

Remark 3 Under the regularity assumptions detailed above, the deterministic weight

functions p, w1 and w2 can be replaced by kernel estimators without changing the asymp-

totic distribution of the test statistic (compare with the weight functions applied by

Neumeyer and Dette, 2003). The same applies for weight functions wj(x) = 1/σ̂j(x),

where σ̂j(x) is obtained from (11), which produce a standardization of the residuals by the

estimated standard deviation (see also Pardo-Fernández et al., 2007). Under the assump-

tions (A1) and (A2) with twice continuously differentiable σ2
j (j = 1, 2), the asymptotic

distribution of T under the null hypothesis is N(0, τ 2
0 ), where now

τ 2
0 =

∫ (κ2σ
2
1(x)

fX1(x)
+
κ1σ

2
2(x)

fX2(x)

)(p(x)fX2(x)

σ2(x)
+

(1− p(x))fX1(x)

σ1(x)

)2

dx.

Remark 4 We will now consider optimal choices of the weight functions p, w1 and w2

in terms of power against local or fixed alternatives. To this end we first consider H1n in

the special case r ≡ 1 and maximize the signal-to-noise ratio

d2

τ 2
0

=

(∫
f
)2∫

gf 2
, (12)

where the function g is defined as κ2σ
2
1/fX1 + κ1σ

2
2/fX2 for the sake of simple notation.

In the following we use the subindex ∗ for functions and values applying special weight

functions p∗, w1∗ and w2∗. The ratio (12) is only influenced by the weights through the

function f defined in (8) and is maximized by the choice f∗ = 1/g. This is shown by an

application of Cauchy-Schwarz’s inequality:

d2

τ 2
0

=

(∫ √
gf · 1√

g

)2∫
gf 2

≤
∫
gf 2

∫
1
g∫

gf 2
=

∫
f∗ =

(∫
f∗
)2∫

gf 2
∗

=
d2
∗

τ 2
0∗
.

This optimal ratio can be achieved by the following weight functions (where we replace

unknown functions by their estimators according to Remark 2):

p∗(x) =
n1f̂X1(x)σ̂−2

1 (x)

n1f̂X1(x)σ̂−2
1 (x) + n2f̂X2(x)σ̂−2

2 (x)
(13)
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w1∗(x) =
1

σ̂2
1(x)

, w2∗(x) =
1

σ̂2
2(x)

. (14)

Please note that the estimator m̂∗(x) = p∗(x)m̂1(x)+(1−p∗(x))m̂2(x) is the same regres-

sion estimator as was applied by Munk, Neumeyer and Scholz (2007) and, under H0, it is

the optimal regression estimator from the pooled sample with respect to the asymptotic

mean squared error.

Now assume the fixed alternative H1 is valid with m2−m1 ≡ 1. We will obtain optimal

weight functions with respect to power by maximizing the ratio

∆2

τ 2
1

=

(∫
f
)2∫

g̃f 2 − (
∫
f)2

,

where g̃ = g + κ2/fX1 + κ1/fX2 . We show that the optimal function is f∗ = 1/g̃. To this

end note that ∆2/τ 2
1 ≤ ∆2

∗/τ
2
1∗ is equivalent to(∫
f
)2
∫
g̃f 2
∗ ≤

(∫
f∗

)2
∫
g̃f 2,

which is shown again by Cauchy-Schwarz’s inequality:(∫
f
)2
∫
g̃f 2
∗ =

(∫ √
g̃f · 1√

g̃

)2
∫
f∗ ≤

∫
g̃f 2

∫
1

g̃

∫
f∗ =

(∫
f∗

)2
∫
g̃f 2.

Please note that we only have considered special cases of optimal weight functions, which

in general would depend on the regression functions m1 and m2.

3 Simulations

In this section we present some simulation results to show the practical behaviour of the

test proposed in Section 2. We consider the following models for the regression functions:

(i) m1(x) = 1 m2(x) = 1

(ii) m1(x) = x m2(x) = x

(iii) m1(x) = sin(2πx) m2(x) = sin(2πx)

(iv) m1(x) = x m2(x) = x+ 0.25

(v) m1(x) = 1 m2(x) = 1 + 0.5x

(vi) m1(x) = sin(2πx) m2(x) = sin(2πx) + 0.5x
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Models (i)–(iii) correspond to the null hypothesis, and models (iv)–(vi) correspond to

the alternative hypothesis. We also consider homoscedastic and heteroscedastic models:

in the case of homoscedasticity the variances are

σ2
1(x) = 0.502 and σ2

2(x) = 0.752, (15)

whereas in the heteroscedastic case the variance functions are

σ2
1(x) = (0.25 + 0.50x)2 and σ2

2(x) = (0.50 + 0.50x)2. (16)

We investigate the behaviour of the test under two types of distributions for the

regression errors ε1 and ε2: standard normal and centered exponential. In all cases the

covariates X1 and X2 have uniform distribution on [0, 1]. Tables in this section will display

the rejection proportions in 1000 trials of the test, for simple sizes (n1, n2) = (50, 50),

(50, 100) and (100, 100), and significance levels α = 0.10, 0.05 and 0.025.

The bandwidths required for the nonparametric estimation of regression, variance and

density functions are chosen by a regular cross-validation procedure (see, for instance,

Härdle, 1990). More precisely, in each population, we use cross-validation to obtain a

bandwidth hj to estimate mj, and then the same bandwidth is used to estimate fXj
and

σ2
j . For the kernel function needed in the nonparametric estimation we choose the kernel

of Epanechnikov K(u) = 0.75(1− u2)I(|u| < 1).

In Table 1 we study the impact of the choice of the function p, which is used in the

estimation of the common regression function m. In principle, any function p satisfying

0 ≤ p(x) ≤ 1 is valid. In Table we show the rejection proportions for models (ii) and

(v) with the following simple choices: p(x) = 0, p(x) = 0.25, p(x) = 0.50, p(x) = 0.75

and p(x) = 1. In this case the regression errors have standard normal distribution. The

results show a good approximation of the level in all cases. The behaviour of the power

is also very similar for the different choices of p, thus it seems that the impact of the

choice of p on the test is rather limited. In the rest of the tables we only show results for

p(x) = 0.5.

Table 2 shows the rejection probabilities for models (i) to (vi), with homoscedastic

variances. The distribution of the regression errors is N(0, 1) in the top part of the table
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Table 1: Rejection probabilities under models (ii) and (v) for different choices of the
function p(x). The models are homoscedastic, with variances given in (15), and het-
eroscedastic, with variances given in (16). The distribution of the regression errors is
N(0, 1).

(n1, n2) : (50, 50) (50, 100) (100, 100)
model p(x) α : 0.100 0.050 0.025 0.100 0.050 0.025 0.100 0.050 0.025

Homoscedastic models
(ii) 0 0.102 0.057 0.032 0.107 0.046 0.024 0.096 0.050 0.031

0.25 0.105 0.058 0.032 0.108 0.046 0.027 0.102 0.053 0.031
0.50 0.110 0.060 0.028 0.107 0.046 0.026 0.101 0.054 0.032
0.75 0.113 0.061 0.031 0.107 0.049 0.027 0.102 0.055 0.031

1 0.111 0.063 0.032 0.106 0.052 0.028 0.102 0.054 0.031
(v) 0 0.740 0.617 0.509 0.854 0.769 0.688 0.906 0.837 0.768

0.25 0.742 0.626 0.512 0.857 0.772 0.687 0.909 0.840 0.776
0.50 0.744 0.620 0.514 0.863 0.777 0.699 0.910 0.843 0.769
0.75 0.738 0.615 0.510 0.862 0.772 0.694 0.911 0.844 0.773

1 0.736 0.607 0.503 0.861 0.776 0.687 0.906 0.844 0.771
Heteroscedastic models

(ii) 0 0.107 0.057 0.029 0.102 0.053 0.032 0.099 0.055 0.029
0.25 0.108 0.059 0.026 0.107 0.051 0.028 0.099 0.058 0.028
0.50 0.111 0.060 0.025 0.109 0.050 0.028 0.098 0.060 0.030
0.75 0.113 0.061 0.024 0.107 0.050 0.028 0.097 0.061 0.031

1 0.110 0.060 0.026 0.109 0.049 0.029 0.096 0.061 0.032
(v) 0 0.732 0.610 0.491 0.838 0.753 0.659 0.902 0.825 0.748

0.25 0.735 0.611 0.499 0.837 0.757 0.664 0.903 0.825 0.752
0.50 0.737 0.614 0.493 0.842 0.759 0.667 0.904 0.830 0.756
0.75 0.736 0.608 0.493 0.846 0.753 0.667 0.901 0.829 0.762

1 0.732 0.601 0.486 0.848 0.748 0.666 0.898 0.828 0.764

and Exponential(1)− 1 in the bottom part of the table. The approximation of the level

–models (i) to (iii)– is good in most cases. As expected, the power –models (iv) to

(vi)– increases as the sample sizes increase. Table 3 shows the corresponding results for

heteroscedastic models. Similar conclusions can be stated in this case.

For the sake of comparison with other existing procedures to test for one-sided alter-

natives, we considered the test proposed by Neumeyer and Dette (2005). This test is a

signed-ranks-test of the residuals. The test statistic is

U =
√
n

{
1

n2n

n2∑
i=1

(
n1∑
k=1

I(ε̃k1 ≤ ε̃i2) +

n2∑
k=1

I(ε̃k2 ≤ ε̃i2)

)
− 0.5

}
,

where, for j = 1, 2 and i = 1, . . . , nj,

ε̃ij =
Yij − m̃(Xij)

σ̂j(Xij)
,
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Table 2: Rejection probabilities under models (i)–(vi), with p(x) = 0.5. The models are
homoscedastic with variances given in (15). The distribution of the regression errors is
N(0, 1) (top) and Exponential(1)− 1 (bottom).

(n1, n2) : (50, 50) (50, 100) (100, 100)
model α : 0.100 0.050 0.025 0.100 0.050 0.025 0.100 0.050 0.025

ε1, ε2 ∼ N(0, 1)
(i) 0.111 0.061 0.034 0.110 0.049 0.028 0.102 0.052 0.033
(ii) 0.110 0.060 0.028 0.107 0.046 0.026 0.101 0.054 0.032
(iii) 0.093 0.046 0.023 0.100 0.044 0.019 0.082 0.041 0.024
(iv) 0.735 0.610 0.489 0.858 0.769 0.674 0.908 0.836 0.759
(v) 0.744 0.620 0.514 0.863 0.777 0.699 0.910 0.843 0.769
(vi) 0.698 0.560 0.426 0.821 0.718 0.595 0.887 0.808 0.713

ε1, ε2 ∼ Exponential(1)− 1
(i) 0.092 0.045 0.018 0.097 0.059 0.022 0.095 0.046 0.024
(ii) 0.090 0.042 0.018 0.096 0.054 0.019 0.091 0.044 0.021
(iii) 0.090 0.037 0.017 0.080 0.038 0.020 0.086 0.034 0.012
(iv) 0.769 0.619 0.497 0.875 0.777 0.675 0.937 0.883 0.811
(v) 0.773 0.651 0.528 0.873 0.785 0.692 0.938 0.884 0.827
(vi) 0.708 0.559 0.428 0.832 0.716 0.605 0.915 0.840 0.743

Table 3: Rejection probabilities under models (i)–(vi), with p(x) = 0.5. The models are
heteroscedastic with variances given in (16). The distribution of the regression errors is
N(0, 1) (top) and Exponential(1)− 1 (bottom).

(n1, n2) : (50, 50) (50, 100) (100, 100)
model α : 0.100 0.050 0.025 0.100 0.050 0.025 0.100 0.050 0.025

ε1, ε2 ∼ N(0, 1)
(i) 0.110 0.061 0.028 0.108 0.052 0.030 0.108 0.061 0.032
(ii) 0.111 0.060 0.025 0.109 0.050 0.028 0.098 0.060 0.030
(iii) 0.099 0.046 0.017 0.100 0.045 0.024 0.087 0.043 0.021
(iv) 0.732 0.593 0.477 0.842 0.745 0.643 0.895 0.826 0.740
(v) 0.737 0.614 0.493 0.842 0.759 0.667 0.904 0.830 0.756
(vi) 0.678 0.541 0.408 0.808 0.704 0.567 0.878 0.793 0.691

ε1, ε2 ∼ Exponential(1)− 1
(i) 0.094 0.048 0.020 0.119 0.057 0.033 0.095 0.048 0.023
(ii) 0.090 0.045 0.020 0.103 0.053 0.030 0.092 0.045 0.023
(iii) 0.083 0.032 0.018 0.087 0.041 0.022 0.089 0.035 0.015
(iv) 0.747 0.615 0.493 0.855 0.770 0.658 0.930 0.863 0.782
(v) 0.754 0.640 0.504 0.865 0.768 0.671 0.931 0.873 0.801
(vi) 0.701 0.552 0.409 0.813 0.689 0.576 0.909 0.822 0.715
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Table 4: Rejection probabilities under models (i)–(vi) for the test proposed by Neumeyer
and Dette (2005). The models are heteroscedastic, with variances given in (16). The
distribution of the regression errors is N(0, 1) (top) and Exponential(1)− 1 (bottom).

(n1, n2) : (50, 50) (50, 100) (100, 100)
model α : 0.100 0.050 0.025 0.100 0.050 0.025 0.100 0.050 0.025

ε1, ε2 ∼ N(0, 1)
(i) 0.125 0.085 0.043 0.126 0.078 0.042 0.121 0.070 0.038
(ii) 0.130 0.077 0.051 0.139 0.070 0.037 0.123 0.076 0.041
(iii) 0.110 0.072 0.042 0.134 0.072 0.040 0.125 0.078 0.045
(iv) 0.773 0.672 0.560 0.900 0.842 0.764 0.934 0.887 0.834
(v) 0.642 0.532 0.425 0.801 0.704 0.603 0.840 0.757 0.668
(vi) 0.650 0.540 0.412 0.803 0.703 0.590 0.860 0.793 0.693

ε1, ε2 ∼ Exponential(1)− 1
(i) 0.321 0.227 0.162 0.308 0.239 0.164 0.432 0.362 0.291
(ii) 0.323 0.229 0.161 0.319 0.241 0.169 0.434 0.362 0.282
(iii) 0.174 0.110 0.072 0.211 0.148 0.093 0.284 0.210 0.145
(iv) 0.884 0.843 0.786 0.950 0.918 0.882 0.984 0.976 0.966
(v) 0.830 0.773 0.698 0.912 0.874 0.819 0.959 0.942 0.914
(vi) 0.743 0.650 0.561 0.875 0.810 0.736 0.946 0.911 0.866

m̃(x) =

∑2
j=1

∑nj

i=1K((x−Xij)h
−1)Yij∑2

j=1

∑nj

i=1K((x−Xij)h−1)
,

and σ̂j is given in (11). The distribution of this statistic is approximated by means of a

symmetric wild bootstrap procedure.

Table 4 displays the rejection probabilities when the statistic U is used. We keep

the setups proposed in Neumeyer and Dette (2005): the bandwidths are based on the

estimator of the integrated variance function, and the critical values are obtained from 100

bootstrap replications. In the case of normal errors, the test seems to slightly overestimate

the level. The power behaves correctly. If we compare with Table 3, we see that the test

proposed in Section 2 has better power than the test based on U in models (v) and

(vi), but it has worse power in model (iv). In the bottom part of Table 4, we can see

that the level is not at all respected when the distribution of the errors is exponential. As

explained in Neumeyer and Dette (2005), this test is only valid when the error distribution

is symmetric. Nevertheless, this drawback could be avoided if a smooth bootstrap of

residuals is used, as shown in Neumeyer (2008).

In Remark 4 we discussed the possibility of choosing the functions p, w1 and w2 in an

optimal way in order to maximize the power of the test against alternatives of the form
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Table 5: Rejection probabilities under models (i)–(iii) and (vii)–(ix). The models are
heteroscedastic, with variances given in (16). The distribution of the regression errors is
N(0, 1) (top) and Exponential(1)− 1 (bottom).

(n1, n2) : (50, 50) (50, 100) (100, 100)
model α : 0.100 0.050 0.025 0.100 0.050 0.025 0.100 0.050 0.025

ε1, ε2 ∼ N(0, 1)
(i) Optimal 0.106 0.064 0.039 0.104 0.047 0.026 0.111 0.053 0.030
(ii) Optimal 0.144 0.090 0.049 0.144 0.072 0.046 0.152 0.078 0.048
(iii) Optimal 0.107 0.059 0.031 0.100 0.055 0.026 0.114 0.052 0.029
(vii) Optimal 0.778 0.654 0.536 0.911 0.830 0.733 0.937 0.875 0.810
(vii) Naive 0.740 0.601 0.498 0.854 0.758 0.657 0.900 0.834 0.754
(viii) Optimal 0.817 0.709 0.598 0.928 0.863 0.779 0.959 0.921 0.854
(viii) Naive 0.732 0.593 0.477 0.842 0.745 0.643 0.895 0.826 0.740
(ix) Optimal 0.730 0.604 0.480 0.857 0.770 0.644 0.905 0.830 0.743
(ix) Naive 0.683 0.539 0.406 0.800 0.701 0.568 0.879 0.790 0.691

ε1, ε2 ∼ Exponential(1)− 1
(i) Optimal 0.089 0.040 0.022 0.113 0.062 0.032 0.088 0.036 0.020
(ii) Optimal 0.143 0.086 0.049 0.184 0.112 0.074 0.157 0.092 0.049
(iii) Optimal 0.085 0.043 0.019 0.101 0.049 0.025 0.090 0.042 0.015
(vii) Optimal 0.786 0.664 0.542 0.918 0.851 0.781 0.958 0.903 0.850
(vii) Naive 0.756 0.632 0.517 0.862 0.776 0.681 0.934 0.872 0.797
(viii) Optimal 0.813 0.716 0.602 0.923 0.873 0.801 0.962 0.929 0.881
(viii) Naive 0.747 0.615 0.493 0.855 0.770 0.658 0.930 0.863 0.782
(ix) Optimal 0.697 0.557 0.414 0.876 0.790 0.685 0.915 0.856 0.742
(ix) Naive 0.695 0.551 0.404 0.813 0.699 0.574 0.911 0.820 0.706

m2(x) = m1(x) + c, where c is a positive constant. To end our simulation study, we will

show the results obtained with the choices proposed in (13) and (14) for p and w1, w2. We

reconsider model (i)–(iii) to check the level approximation, and introduce the following

scenarios to simulate the power behaviour:

(vii) m1(x) = 1 m2(x) = 1.25

(viii) m1(x) = x m2(x) = x+ 0.25

(ix) m1(x) = sin(2πx) m2(x) = sin(2πx) + 0.25

Table 5 displays the simulated rejection probabilities based on heteroscedastic models,

with variances given in (16). Rows with ‘Optimal’ contain the results with the choices

for p, w1 and w2 proposed in (13) and (14), which we call “optimal choices”; rows with

‘Naive’ contain the results with the “naive choices” p(x) = 0.5 and w1(x) = w2(x) = 1.

The level is well approximated with the “optimal choices” in models (i) and (iii), but it

is overestimated in model (ii) (compare with Table 3). In power, the “optimal choices”
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produce a general improvement of about 10% with respect to the “naive choices”, which

is a clear advantage. On the other hand, we should also point out two drawbacks of the

“optimal choices”: first, they involve the estimation of more functions to perform the

test, and, second, they are “optimal” only for detecting parallel deviations from the null

hypothesis.

4 An illustration to a data set

We illustrate our testing procedure by means of an application to a data set from the

Data Archive of the Journal of Applied Econometrics. The observations consist of annual

expenditures (from October 1986 to September 1987) of Dutch households. The data are

registered in Dutch guilders (former currency of the Netherlands, before the introduction

of the Euro). We will study the relation between the total annual expenditure and the

expenditure on food of a household. Einmahl and Van Keilegom (2008) verified that

model (1) holds when X=‘log of the total expenditure’ is considered as a covariate and

Y=‘log of the expenditure on food’ is the response variable (even a homoscedastic model

is verified).

We consider the following populations: households consisting of two persons (159 ob-

servations), households consisting of three persons (45 observations) and households con-

sisting of four persons (73 observations). Figure 1 shows the scatter plots and estimated

regression curves based on the cross-validation bandwidths.

Pardo-Fernández et al. (2007) tested for the equality of the three regression curves and

by groups of two regression curves versus general alternatives. However, in this example,

we think that it makes perfect sense to focus on one-sided alternatives. Take, for instance,

the populations consisting of households of 2 and 3 persons. We would expect that the

average of the food expenditure in the first population (households of 2 persons) is less (or

at least not greater) than the food expenditure of the second population (households of 3

persons). In other words, intuitively, the food expenditure is expected to increase as the
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Figure 1: Scatter plot of Y=‘log(expenditure on food)’ versus X=‘log(total expenditure)’

of households of 2 members (in blue, 159 observations), 3 members (in red, 45 observa-

tions) and 4 members (in green, 73 observations).

Table 6: Data analysis (observed test statistics and p-values).

observed test statistic p-value

Population 1: households of 2 persons
Population 2: households of 3 persons t = 0.761 0.002

Population 1: households of 2 persons
Population 2: households of 4 persons t = 1.360 0.000

Population 1: households of 3 persons
Population 2: households of 4 persons t = 0.323 0.092

number of persons in the household increase, and this information should be incorporated

to the test by means of one-sided alternatives.

We have then performed the test proposed in Section 2. The results are summarized

in Table 6. The observed p-values show that the equality of the regression curves is

clearly rejected in the cases of households of 2 and 3 persons, and 2 and 4 persons. When

comparing households of 3 and 4 persons, the p-value is 0.092, so the equality of the

corresponding regression curves could be accepted. This results are in agreement with

the findings in Pardo-Fernández et al. (2007).

16



Appendix: Proof of Theorem 1

Proof. To ease notation define p1(x) = p(x), p2(x) = 1 − p(x) and let j′ = 3 − j for

j ∈ {1, 2}. Then we have the expansion

ε̄j0 =
1

nj

nj∑
i=1

(Yij − m̂(Xij))wj(Xij)

=
1

nj

nj∑
i=1

(
σj(Xij)εij +

2∑
l=1

pl(Xij)[mj(Xij)− m̂l(Xij)]
)
wj(Xij)

=
1

nj

nj∑
i=1

σj(Xij)εijwj(Xij)

+
2∑
l=1

1

nl

nl∑
k=1

1

nj

nj∑
i=1

1
hn
K(

Xij−Xkl

hn
)

f̂Xl
(Xij)

pl(Xij)[mj(Xij)− Ykl]wj(Xij)

Under the assumptions of the theorem the kernel density estimators in the denominators

can be replaced by the true densities and some means can be replaced by their expectations

with negligible remainder terms. We obtain ε̄j0 = Ej,n + ∆j,n + op(n
−1/2
j ), where

Ej,n =
1

nj

nj∑
i=1

σj(Xij)εijwj(Xij)

−
2∑
l=1

1

nl

nl∑
k=1

σl(Xkl)εkl
1

nj

nj∑
i=1

1
hn
K(

Xij−Xkl

hn
)

fXl
(Xij)

pl(Xij)wj(Xij) + op(n
−1/2
j )

=
1

nj

nj∑
i=1

σj(Xij)εijwj(Xij)

−
2∑
l=1

1

nl

nl∑
k=1

σl(Xkl)εkl

∫
1

hn
K
(x−Xkl

hn

)
pl(x)wj(x)

fXj
(x)

fXl
(x)

dx+ op(n
−1/2
j )

=
1

nj

nj∑
i=1

σj(Xij)εijwj(Xij)−
2∑
l=1

1

nl

nl∑
k=1

σl(Xkl)εklpl(Xkl)wj(Xkl)
fXj

(Xkl)

fX1(Xkl)

+ op(n
−1/2
j )

and

∆j,n =
1

nj′

nj′∑
k=1

1

nj

nj∑
i=1

1
hn
K(

Xij−Xkj′

hn
)

fXj′ (Xij)
pj′(Xij)wj(Xij)[mj(Xij)−mj′(Xkj′)].
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Under the local alternatives H1n, one obtains with standard argumentations for kernel

estimation

∆j,n = n−1/2

∫
fXj

(x)pj′(x)wj(x)(−1)jr(x) dx+ op(n
−1/2). (17)

This gives for the test statistic under H1n

T =
(n1n2

n

)1/2

(E2,n − E1,n) + (κ1κ2)
1/2d+ op(1),

where

E2,n − E1,n =
1

n2

n2∑
k=1

σ2(Xk2)εk2

[
p1(Xk2)w2(Xk2) + p2(Xk2)w1(Xk2)

fX1(Xk2)

fX2(Xk2)

]
− 1

n1

n1∑
k=1

σ1(Xk1)εk1

[
p1(Xk1)w2(Xk1)

fX2(Xk1)

fX1(Xk1)
+ p2(Xk1)w1(Xk1)

]
+ op(n

−1/2)

=
2∑
j=1

(−1)j
1

nj

nj∑
k=1

σj(Xkj)εkj
f(Xkj)

fXj
(Xkj)

+ op(n
−1/2) (18)

and the assertion under H1n follows from the Central Limit Theorem for triangular arrays

applying Lyapunov’s condition.

Under H1 we further consider

T −
(n1n2

n

)1/2

∆ =
(n1n2

n

)1/2

(E2,n − E1,n) +
(n1n2

n

)1/2

(∆2,n −∆1,n −∆) + op(1), (19)

where for E2,n − E1,n the expansion (18) is valid also under H1 and from (17) it follows

that

∆2,n −∆1,n −∆ =
1

n1n2

n1∑
k=1

n2∑
i=1

1

hn
K
(Xi2 −Xk1

hn

)
[m2(Xi2)−m1(Xk1)]

×
(p1(Xi2)w2(Xi2)

fX1(Xi2)
+
p2(Xk1)w1(Xk1)

fX2(Xk1)

)
−∆

is a centered two-sample U-statistic with n-dependent kernel. Applying Hoeffding’s de-

composition and calculating the variances one can see that the degenerate U-statistic in
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the decomposition is negligible. Hence, one obtains

∆2,n −∆1,n −∆ =
1

n1

n1∑
k=1

∫
1

hn
K
(x−Xk1

hn

)
[m2(x)−m1(Xk1)]

×
(p1(x)w2(x)

fX1(x)
+
p2(Xk1)w1(Xk1)

fX2(Xk1)

)
fX2(x) dx

+
1

n2

n2∑
i=1

∫
1

hn
K
(Xi2 − x

hn

)
[m2(Xi2)−m1(x)]

×
(p1(Xi2)w2(Xi2)

fX1(Xi2)
+
p2(x)w1(x)

fX2(x)

)
fX1(x) dx−∆ + op(n

−1/2),

which by standard arguments gives

∆2,n −∆1,n −∆ =
2∑
j=1

1

nj

nj∑
k=1

[m2(Xkj)−m1(Xkj)]
f(Xkj)

fXj
(Xkj)

−∆ + op(n
−1/2). (20)

Please note that here the dominating term is centered with respect to expectation. Now

from (19) with (18) and (20) the assertion under H1 follows applying the Central Limit

Theorem. 2
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