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Abstract

The structure of dependence between random variables can be modelled by their
copula which has uniform marginal distributions. We suggest a new nonparametric es-
timator for a bivariate copula density, which is based on an orthogonal series expansion
and has itself uniform marginals. As application we consider a new consistent asymp-
totically distribution-free test for independence of the components of bivariate random
variables, which applies methods of order-selection tests. We deduce the asymptotic
distribution and investigate the small sample performance by means of a simulation
study. As further applications of the copula density estimator we discuss the estima-
tion of bivariate densities in situations where informations about the marginals are
available. All results can be generalized to the multivariate case.
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1 Introduction

The concept of modelling dependencies by means of copula functions as introduced by Sklar

(1959) has gained much popularity over the last years; see Nelsen (2006) for an overview.

∗corresponding author, e-mail: neumeyer@math.uni-hamburg.de
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Nonparametric estimators for copula (distribution) functions have been considered by De-

heuvels (1979), Fermanian, Radulovic and Wegkamp (2004), and Chen and Huang (2007),

among others. In this paper we will propose a new nonparametric estimator γ̂ for the copula

density γ of bivariate random variables (X, Y ). The estimator is based on an orthogonal-

series and is an alternative for nonparametric copula density estimators as have been pro-

posed by Gijbels and Mielniczuk (1990) and Sancetta and Satchel (2004). The advantage

of our new method is that the estimator joins the property of copula densities that the

marginals are densities of the uniform distribution on [0, 1]. To the authors’ best knowledge

no nonparametric copula density estimator considered in literature before owns this prop-

erty. For orthogonal series based density estimators see Schwartz (1967), Watson (1969) and

Hall (1981, 1986), for instance.

We give two main applications for the new estimator. Firstly note that the independence

of X and Y is equivalent to γ = I[0,1]2 a. e., where IA denotes the indicator function of set

A. Based on this we suggest a new nonparametric test for the hypothesis

H0 : X, Y are independent, (1.1)

which is asymptotically distribution free and consistent. The test does not involve the choice

of any smoothing parameter and is similar in spirit to lack-of-fit tests in regression models

based on orthogonal series as the order selection test by Eubank and Hart (1992) [see Ledwina

(1994), Dette and Munk (1998), Aerts, Claeskens and Hart (1999, 2000) and Eubank (2000)

on related topics]. Tests for independence based on copula estimation have been suggested

by Deheuvels (1981a, 1981b) and Genest and Rémillard (2004). In a simulation study

comparison the new test is shown to have better power properties. Other nonparametric

tests for independence were developed by Hoeffding (1948), Blum, Kiefer and Rosenblatt

(1961), Rosenblatt (1975), Zheng (1997), and Gretton and Györfi (2008), among others,

whereas Fermanian (2005), Genest, Quessy and Rémillard (2006) and Scaillet (2007) propose

goodness-of-fit tests for copulas.

The second application we consider is the estimation of the joint density of (X, Y ). Our

new copula density estimator gives alternative versions of the estimators by Spiegelman

and Park (2003) for known parametric models for the marginal distributions, and Hall and

Neumeyer (2006) for additional data on the marginal distributions of X or Y .

The paper is organized as follows. In section 2 we describe the orthogonal series estima-

tor for the copula density γ̂. In section 3 we develop the hypothesis test for independence

based on γ̂ and give its asymptotic distribution. Section 5 demonstrates small sample per-

formance of the suggested test for independence, whereas section 4 describes applications of

γ̂ for estimation of bivariate distributions under additional information and briefly discusses

multivariate extensions. All proofs are presented in the appendix.
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2 An orthogonal series estimator for the copula density

Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed with joint distribution

FX,Y and continuous marginal distributions FX and FY , respectively. Denote by γ the

copula density (vanishing outside [0, 1]2), i. e. the density of (Ui, Vi) = (FX(Xi), FY (Yi))

(i = 1, . . . , n). As the distributions of Ui and Vi are uniform in [0, 1], an estimator γ̂ for γ

with uniform marginals would be desirable. We assume that γ can be described as orthogonal

series

γ(u, v) =
∑

(`,k)∈IN2
0

a`kΦ`k(u, v), (u, v) ∈ [0, 1]2,

with the cosine basis functions ((`, k) ∈ IN2
0 )

Φ00(u, v) = 1, Φ`0(u, v) =
√

2 cos(π`u),

Φ0k(u, v) =
√

2 cos(πkv), Φ`k(u, v) = 2 cos(π`u) cos(πkv)

and coefficients

a`k = E[Φ`k(Ui, Vi)] =

∫
[0,1]2

Φ`k(u, v)γ(u, v) d(u, v),

such that
∑

(`,k)∈IN2
0
a2
`k <∞. The known marginal densities∫

γ(u, v) du = I[0,1](v),

∫
γ(u, v) dv = I[0,1](u)

give the constraints a00 = 1, a`0 = 0 and a0k = 0 for all `, k ∈ IN , and hence

γ(u, v) = 1 +
∑

(`,k)∈IN2

a`kΦ`k(u, v), (u, v) ∈ [0, 1]2.

As estimator for γ we propose

γ̂(u, v) = 1 +
∑

(`,k)∈IN2

g(`,k)≤m

â`kΦ`k(u, v), (u, v) ∈ [0, 1]2,

with estimated coefficients

â`k =
1

n

n∑
i=1

Φ`k(Ûi, V̂i), where Ûi = FX,n(Xi), V̂i = FY,n(Yi),

and FX,n, FY,n denote the empirical distribution functions of X1, . . . , Xn and Y1, . . . , Yn,

respectively.
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Now the estimator γ̂ has the desired uniform marginals∫
γ̂(u, v) du = I[0,1](v),

∫
γ̂(u, v) dv = I[0,1](u).

In this paper for the function g(`, k) we will only consider the following choices: g(`, k) =

`k or g(`, k) = `+ k − 1 or g(`, k) = max(`, k). The truncation point m plays a crucial role

in our testing procedure, which is discussed in the next section.

In simulations a threshold approach

˜̂γ(u, v) = 1 +
∑

(`,k)∈IN2

g(`,k)≤m

â`kΦ`k(u, v)I{|â`k| > βn}

lead to very good approximations of γ, cf. literature on wavelets, for instance Donoho,

Johnstone, Kerkyacharian and Picard (1995).

3 A nonparametric test for independence

In the setting of section 2 where we observe independent copies of a bivariate random variable

(X, Y ), we would like to test the null hypothesis H0 of independent compontents X and Y

[see (1.1)] which is equivalent to γ ≡ 1 a. e. inside [0, 1]2, i. e.

H0 : γ = I[0,1]2 a. e.

To derive a suitable testing procedure assume for the moment that (Ui, Vi) (i = 1, . . . , n)

were observable and define

γ̃(u, v) = 1 +
∑

(`,k)∈IN2

g(`,k)≤m

ã`kΦ`k(u, v)

with ã`k = 1
n

∑n
i=1 Φ`k(Ui, Vi). Our idea is applying the two-dimensional density estimator

to develop a test similar to the null-effect test by Eubank and Hart (1992) for regression

functions [for the method compare also Hart (1997, chapter 7)]. Due to the orthonormal

properties of the basis functions we have for the integrated squared error

ISE =

∫
(γ̃ − γ)2 =

∑
(`,k)∈IN2

g(`,k)>m

a2
`k +

∑
(`,k)∈IN2

g(`,k)≤m

(ã`k − a`k)2

and for the mean integrated squared error

MISE =

∫
E[(γ̃ − γ)2] =

∑
(`,k)∈IN2

g(`,k)>m

a2
`k +

1

n

∑
(`,k)∈IN2

g(`,k)≤m

(τ 2
`k − a2

`k)
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where τ 2
`k = E[Φ2

`k(Ui, Vi)] and E[Φ`k(Ui, Vi)Φ`′k′(Ui, Vi)] = 0 for (`, k) 6= (`′, k′). Please note

that under H0 we have τ 2
`k = 1 for all `, k ∈ IN . It would be desirable to choose m to

minimize the MISE. To this end, we replace the coefficients a`k by their estimators â`k and

replace τ`k by their value 1 under H0. Hence, we seek to minimize∑
(`,k)∈IN2

g(`,k)>m

(
√
nâ`k)

2 + k(m)− 1

n

∑
(`,k)∈IN2

g(`,k)≤m

(
√
nâ`k)

2, (3.1)

where the number of estimated coefficients is

k(m) = |{(`, k) ∈ IN2 | g(`, k) ≤ m}|,

and the last term in (3.1) is of smaller order than the first two terms and will be neglected

in the following. Because the total sum
∑

g(`,k)>m +
∑

g(`,k)≤m =
∑

(`,k) does not depend on

m we can solve the following maximization problem instead of the minimization. We further

include a “smoothing parameter” λ > 1 and finally define as “optimal” truncation point

m̂n(λ) = arg sup
{ ∑

(`,k)∈IN2

g(`,k)≤m

(
√
nâ`k)

2 − λk(m)
∣∣∣ m ∈ IN0 : k(m) ≤ κn

}

(note that the function g satisfies min{g(`, k) | `, k ∈ IN} = 1). We do restrict the number of

estimated coefficients from n observations to be less or equal to κn →∞, where we assume

that κn = o(n2/3) for the choices g(`, k) = max(`, k), g(`, k) = `+ k− 1 and κn = o(n1/2) for

g(`, k) = `k.

Remark 3.1 Note that the assumption on the rate of κn is sufficient for the validity of

Theorem 3.3 below, but not neccessary. Higher order Taylor expansions in the proof would

lead to less restrictive conditions at the expense of a more technical, less readable proof. In

the simulation results in the next section we ignored the technical condition and set κn = n,

which worked very well.

The asymptotic distribution of the coefficient estimators is given in the next lemma.

Lemma 3.2 Under H0,
√
nâ`k converges for n → ∞ in distribution to a random variable

Z`k with standard normal distribution.

The truncation point m̂n(λ) converges in distribution to m(λ) defined as

m(λ) = arg sup
{ ∑

(`,k)∈IN2

g(`,k)≤m

Z2
`k − λk(m)

∣∣∣ m ∈ IN0

}
,

where Z`k (`, k ∈ IN) denote iid standard normally distributed random variables.
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Theorem 3.3 Under H0, P (m̂n(λ) = 0) converges for n→∞ to P (m(λ) = 0).

The asymptotic distribution is completely known and can be evaluated from the next

theorem.

Theorem 3.4 Let z2
l be χ2-distributed with l degrees of freedom (l ∈ IN). Then

P (m(λ) = 0) = exp
(
−
∞∑
m=1

P (z2
k(m) > λk(m))

m

)
.

For testing hypothesis H0 with asymptotic level α apply Theorem 3.4 to obtain λα such

that P (m(λα) = 0) = 1 − α and reject H0 whenever m̂n(λα) > 0. In more typical notation

of hypotheses tests we have that P (m̂n(λα) > 0) = P (Tn > λα), P (m(λα) > 0) = P (T >

λα) = α, where the test statistic

Tn = max
m∈IN

k(m)≤κn

1

k(m)

∑
(`,k)∈IN2

g(`,k)≤m

(
√
nâ`k)

2 (3.2)

under H0 converges in distribution to T = maxm∈IN
1

k(m)

∑
(`,k)∈IN2

g(`,k)≤m
Z2
`k. Table 1 displays some

values for λα for different functions g and typical levels α.

α g(`, k) = `k g(`, k) = `+ k − 1 g(`, k) = max(`, k)

0.01 λα = 6.64181 λα = 6.64164 λα = 6.62816

0.05 λα = 3.95092 λα = 3.94231 λα = 3.86348

0.10 λα = 2.96099 λα = 2.93550 λα = 2.82524

Table 1: The critical value λα for different α and different g.

We finish the section by stating a consistency result.

Lemma 3.5 The test is consistent, i. e. limn→∞ P (m̂n(λ) = 0) = 0 if X and Y are depen-

dent.

Remark 3.6 Each choice of g results in a consistent asymptotically distribution-free test

that does not involve the choice of any smoothing parameter because λα is completely deter-

mined by the asymptotic level α. For other symmetric, surjective functions g : IN2 → IN

that are strictly increasing in each component similar asymptotic theory can be developed

analogously. As can be seen from the proof in the appendix assumptions on κn depend then

on the rates of convergence of

k(m|a, b) =
∑

(`,k)∈IN2

g(`,k)≤m

`akb and
∑
m∈IN

k(m)≤κn

mc

k(m)
,
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where k(m) = k(m|0, 0). For example for g(`, k) = max(`, k) we have k(m|a, b) = ma+b+2

(a, b ∈ IN) and
∑

m∈IN
k(m)≤κn

mc

k(m)
= O(κ

(c−1)/2
n ) (c ∈ IN , c ≥ 2).

4 Small sample performance

In this section we present a simulation study for the test for independence based on the

test statistic Tn with κn = n and different choices of the function g as described in section

3. In the simulations we also give the results for the copula-based test for independence as

proposed by Deheuvels (1981a, 1981b) [see also Genest and Rémillard (2004)]. To be more

specific we simulated the Cramér-von Mises test statistic

Dn =

∫
[0,1]2

( 1√
n

n∑
i=1

[
I{Ûi ≤ u} − Un(u)

][
I{V̂i ≤ v} − Un(v)

])2

d(u, v),

where Un is the distribution function of the uniform distribution on { 1
n+1

, 2
n+1

, . . . , n
n+1
}. We

further note the rejection probabilities of tests based on Kendall’s tau and Pearson’s rho.

In Table 2 a simple example with bivariate normal distributions with standard normal

marginals and varying correlation ρ is considered. Here all tests behave very similar. The

data for Table 3 were generated with the Gaussian copula combined with Cauchy-distributed

marginals. The data for Tables 4 and 5 were generated as follows: Let X be generated by

the uniform distribution on [0, 1], and let Z = 2X if X is below 0.5, and Z = −2 · X + 2

otherwise. Then, although dependent, the correlation between X and Z as well as Kendall’s

tau are zero. Finally adding standard Normal- or Cauchy-distributed noise to the second

component yieldsthe observations (X, Y ). Example data sets are shown below with and

without the added noise.
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The rejection probabilities in Tables 2–5 for tests with nominal level α = 0.05 are based

on 5000 simulation runs. The sample sizes vary from n = 50 to n = 250.

As expected tests based on Kendall’s tau and Pearson’s rho cannot detect the alternatives

in Tables 4 and 5. In these examples we further see that the new test’s power for the choice
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Tables: Rejection probabilities of the different tests for nominal level α = 0.05.

ρ | g(`, k) `k `+ k − 1 max(`, k) Pearson Kendall Dn

0 0.0588 0.0598 0.0596 0.0556 0.0560 0.0556

0.1 0.0948 0.0948 0.0962 0.1052 0.1034 0.0922

0.25 0.3576 0.3580 0.3640 0.4252 0.3932 0.3512

0.5 0.9196 0.9196 0.9218 0.9664 0.9480 0.9240

Table 2: The (X, Y ) are bivariate normal with standard normal marginals and varying

correlation ρ, the sample size is n = 50.

ρ | g(`, k) `k `+ k − 1 max(`, k) Pearson Kendall Dn

0 0.0590 0.0594 0.0582 0.0548 0.0542 0.0554

0.1 0.0966 0.0974 0.0998 0.0724 0.0992 0.0974

0.25 0.3470 0.3472 0.3512 0.1434 0.3758 0.3408

0.5 0.9216 0.9220 0.9240 0.4122 0.9494 0.9206

Table 3: The (X, Y ) are bivariate normal with Cauchy marginals and varying correlation ρ,

the sample size is n = 50.

n | g(`, k) `k `+ k − 1 max(`, k) Pearson Kendall Dn

50 0.1190 0.1202 0.0878 0.0518 0.0542 0.1052

100 0.3068 0.3064 0.2104 0.0480 0.0516 0.2064

250 0.3170 0.3172 0.2196 0.0350 0.0502 0.2156

Table 4: The (X, Y ) are generated by adding standard normal noise to one component of

random variables generated from a distribution with Kendall’s τ=0 and correlation ρ = 0,

the sample sizes are n = 50, 100 and 250.

n | g(`, k) `k `+ k − 1 max(`, k) Pearson Kendall Dn

50 0.0682 0.0678 0.0616 0.0346 0.0498 0.0644

100 0.1064 0.1064 0.0792 0.0302 0.0480 0.0858

250 0.8380 0.8392 0.7296 0.0464 0.0544 0.6738

Table 5: The (X, Y ) are generated by adding Cauchy noise to one component of random

variables generated from a distribution with Kendall’s τ=0 and correlation ρ = 0, the sample

sizes are n = 50, 100 and 250.
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g(`, k) = max(`, k) is much less than for the other choices of g [power here is also less for

Deheuvels’ test]. Our observation that the choice of g(`, k) = max(`, k) in some cases leads

to less power is in accordance to the observations by Claeskens (1999, p. 178–180), where for

orthogonal series based bivariate regression estimation it is explained that with this choice

of g the number of model parameters grows too quickly at each step, which in general leads

to poor power properties.

5 More applications

Multivariate case and goodness-of fit. All the presented results can be generalized

to the multivariate context, where the copula density of a random vector (X(1), . . . , X(k))

(k ≥ 3) shall be estimated and the hypothesis

H0 : X(1), . . . , X(k) are independent

is to be tested.

The parametric form of γ could be tested if this was given in form of the orthogonal

series expansion.

Serial dependence. It is a future research project to generalize the results to test for serial

dependence in the context of stationary time series in the same way as Genest and Rémillard

(2004) considered for Deheuvel’s (1981a, 1981b) test.

Density estimation under information on the marginals. In the remainder of the

section we consider a different application of the new copula density estimator in more

detail. Let again (X1, Y1), . . . , (Xn, Yn) be iid paired data with distribution function FX,Y ,

density fX,Y and continuous marginal distributions FX , FY . We consider semi- resp. non-

parametric estimators f̂X,Y for fX,Y that can incorporate additional marginal information in

two cases.

In the first case, (i), parametric models for the marginal distributions are assumed: FX ∈
{FX,ϑ | ϑ ∈ Θ}, FY ∈ {FY,ψ | ψ ∈ Ψ}.

In the second case, (ii), there are additional (not paired) observations on the marginals

available: Xn+1, . . . , Xn+m1 iid ∼ FX , Yn+1, . . . , Yn+m2 iid ∼ FY .

Now let Γ denote the copula of (Xi, Yi) and γ its density. Then

FX,Y (x, y) = Γ(FX(x), FY (y))

fX,Y (x, y) = fX(x)fY (y) γ(FX(x), FY (y))

9



and a suitable estimator is

f̂X,Y (x, y) = f̂X(x)f̂Y (y) γ̂(F̂X(x), F̂Y (y)),

[compare Liebscher (2005) and Faugeras (2008)] where we apply the orthogonal series estima-

tor γ̂ suggested in section 2 and estimators F̂X , F̂Y for the marginals that are parametric in

the first case, (i) F̂X = FX,ϑ̂, F̂Y = FY,ψ̂ (with densities fX,ϑ̂, fY,ψ̂) and nonparametric in the

second case (ii), but based on all marginal data. In the latter case for example kernel density

estimators f̂X,n+m1 , f̂Y,n+m2 based on X1, . . . , Xn+m1 and Y1, . . . , Yn+m2 , respectively, could

be applied with F̂X = F̂X,n+m1 , F̂Y = F̂Y,n+m2 their corresponding distribution function.

As γ̂ has uniform marginals we obtain that f̂X,Y has exactly the desired marginals, namely

the estimators of the marginals under the additional information, which are considered to be

very accurate (as they are based on parametric models or on a larger number of observations,

respectively).

Our model (i) is the situation considered by Spiegelman and Park (2003), who estimated

the marginal quantiles parametrically and forced the bivariate density estimator to have sim-

ilar marginal quantiles. As a real data example they consider air pollution measurements on

two air pollutants, obtained from Clinton drive in Houston, TX. The assumed marginals are

lognormal distributions. With the new estimator we achieve Spiegelman and Park’s (2003)

aim to develop a bivariate density estimator, which marginals coincide with parametrically

pre-estimated marginals.

Our estimator in model (ii) is the same as was considered by Hall and Neumeyer (2006),

when their wavelet-based copula density estimator is replaced by the orthogonal series esti-

mator considered here. Their theoretical result can be shown to hold under similar regularity

conditions for the new estimator, i. e. that for very smooth copula densities γ one can achieve

univariate convergence rates for the bivariate density estimator, cf. Kiwitt (2007). Hall and

Neumeyer (2006) consider a real data example of arrival times of two air planes each day on

the same route where the extra data correspond to dates where only one flight took place.

A Proofs

A.1 Proof of Lemma 3.2

For this and the following proof we define ϕ`(u) =
√

2 cos(π`u), such that Φ`k(u, v) =

ϕ`(u)ϕk(v). We apply Taylor’s expansion for ϕ`(Ûi),

ϕ`(Ûi) = ϕ`(Ui) + (Ûi − Ui)ϕ′`(Ui) +Ru
` (Ui), (A.1)

where for the remainder there exists some constant c (not depending on n or `), such that

|Ru
` (Ui)| ≤ (Ûi − Ui)2 sup

t∈[0,1]

|ϕ′′` (t)| (A.2)
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≤ c`2Z2
u (A.3)

with a random variable Zu = supx∈IR |F̂X(x) − FX(x)| = Op(n
−1/2). With the analogous

representation for ϕk(V̂i) we obtain

â`k =
1

n

n∑
i=1

(
ϕ`(Ui) + (Ûi − Ui)ϕ′`(Ui) +Ru

` (Ui)
)(
ϕk(Vi) + (V̂i − Vi)ϕ′k(Vi) +Rv

k(Vi)
)

= ã`k +Rn,

where
√
nã`k = n−1/2

n∑
i=1

ϕ`(Ui)ϕk(Vi)

converges to a standard normal distribution by the central limit theorem. To show that the

remainder Rn is of order op(n
−1/2) one applies the independence of Ui and Vi (under H0)

and the fact that E[ϕ`(Ui)] = E[ϕk(Vi)] = 0. Consider, for instance, the term

b`k =
1

n

n∑
i=1

(Ûi − Ui)ϕ′`(Ui)ϕk(Vi) = Υn + Λn, (A.4)

where

Υn =
1

n2

n∑
i=1

n∑
j=1
i 6=j

(I{Uj ≤ Ui} − Ui)ϕ′`(Ui)ϕk(Vi)

is a degenerate, mean zero U-statistic of order Op(n
−1), and the diagonal terms

Λn =
1

n2

n∑
i=1

(1− Ui)ϕ′`(Ui)ϕk(Vi)

form a sequence of mean zero random variables of order Op(n
−3/2) by the central limit

theorem. 2

A.2 Proof of Theorem 3.3

The proof is similar to the proof by Eubank and Hart (1992). Our situation is different

because we consider a two-dimensional density estimator instead of an one-dimensional re-

gression estimator, and moreover, our estimator depends not on iid-data, but on “estimated

data” (Ûi, V̂i) (i = 1, . . . , n).

For the test statistic Tn defined in (3.2) we have the expansion Tn = T̃n + R̃n for

T̃n = max
m∈IN

k(m)≤κn

1

k(m)

∑
(`,k)∈IN2

g(`,k)≤m

(
√
nã`k)

2 (A.5)

11



based on the true unknown data (Ui, Vi) (i = 1, . . . , n), and

R̃n ≤ max
m∈IN

k(m)≤κn

1

k(m)

∣∣∣ ∑
(`,k)∈IN2

g(`,k)≤m

(
(
√
nã`k)

2 − (
√
nã`k)

2
)∣∣∣. (A.6)

We will first prove the result for T̃n and then show that R̃n = op(1).

I. In the following let En = {T̃n ≤ λ}. Then we have

En = {m̂n(λ) = 0} =
{

max
m>0

k(m)≤κn

∑
(`,k)∈IN2

0<g(`,k)≤m

(
√
nã`k)

2 ≤ λk(m)
}

= An ∩Bn,

where

An := { max
0<m≤Mn

Vn,m ≤ λ}, Bn := { max
m>Mn
k(m)≤κn

Vn,m ≤ λ}

for

Vn,m =
1

k(m)

∑
(`,k)∈IN2

0<g(`,k)≤m

(
√
nã`k)

2.

The sequence Mn in the definitions of An and Bn converges to infinity for n→∞ at a rate

which will be specified later. Further define Vm analogous to Vn,m, but with
√
nã`k replaced

by their limits Z`k, and let

Ãn := { max
0<m≤Mn

Vm ≤ λ}.

We will show in the following

(i) lim
n→∞

P (Bn) = 1

(ii) lim
n→∞

P (An)− P (Ãn) = 0

(iii) lim
n→∞

P (Ãn) = P (m(λ) = 0)

from which the assertion follows.

Proof of (i). For the complement we will show that P (Bc
n)→ 0. We have

P (Bc
n) ≤ P

( ⋃
m≥Mn+1
k(m)≤κn

{∣∣∣ ∑
(`,k)∈IN2

0<g(`,k)≤m

(
(
√
nã`k)

2 − 1
) ∣∣∣ 1

k(m)
> λ− 1

})
. (A.7)

We follow Eubank and Hart (1992) to show that (A.7) converges to zero. To this let end

nj = j2, and define j(1) as the largest integer j such that nj ≤ Mn and j(2) the largest

12



integer j such that k(nj) ≤ κn. The assertion follows when (A.8) and (A.9) below can be

proven for n→∞,

P

( j(2)⋂
j=j(1)

{∣∣∣ ∑
(`,k)∈IN2

0<g(`,k)≤nj

((
√
nã`k)

2 − 1)

k(nj)

∣∣∣ ≤ λ− 1
})
→ 1 (A.8)

P

( j(2)⋂
j=j(1)

{
max

1<r≤nj+1−nj

∣∣∣ ∑
(`,k)∈IN2

nj+1<g(`,k)≤nj+r

((
√
nã`k)

2 − 1)

k(nj)

∣∣∣ ≤ λ− 1
})
→ 1. (A.9)

The proofs of (A.8) and (A.9) are similar to the proofs in Hart (1997, p. 170/171) and we

will only discuss the first one in more detail. We have

P

( j(2)⋂
j=j(1)

{∣∣∣ ∑
(`,k)∈IN2

0<g(`,k)≤nj

((
√
nã`k)

2 − 1)

k(nj)

∣∣∣ ≤ λ− 1
})

≥ 1−
j(2)∑
j=j(1)

1

(λ− 1)2k(nj)2
Var
( ∑

(`,k)∈IN2

0<g(`,k)≤nj

(
√
nã`k)

2 − 1
)

and applying properties of the basis functions and independence of X and Y one obtains for

example E[ϕ`(Ui)ϕ`(Uν)ϕk(Vi)ϕk(Vν)] = δi,ν , and similarly

Var
( ∑

(`,k)∈IN2

0<g(`,k)≤nj

(
√
nã`k)

2 − 1
)

=
∑

(`,k)∈IN2

0<g(`,k)≤nj

∑
(`′,k′)∈IN2

0<g(`′,k′)≤nj

1

n2

n∑
i=1

n∑
ν=1

n∑
i′=1

n∑
ν′=1

{
E[ϕ`(Ui)ϕ`(Uν)ϕ`′(Ui′)ϕ`′(Uν′)]

×E[ϕk(Vi)ϕk(Vν)ϕk′(Vi′)ϕk′(Vν′)]

− 1

n
E[ϕ`(Ui)ϕ`(Uν)]E[ϕk(Vi)ϕk(Vν)]−

1

n
E[ϕ`′(Ui′)ϕ`′(Uν′)]E[ϕk′(Vi′)ϕk′(Vν′)] +

1

n2

}
= O(

1

n
)(k(nj))

2 +O(1)k(nj).

Hence for some c, c′ > 0 the probability in (A.8) is larger than

1− c
j(2)∑
j=j(1)

1

(λ− 1)2k(nj)
(1 +

k(nj)

n
) ≥ 1− c′

(λ− 1)2

j(2)∑
j=j(1)

1

j2
(A.10)

(note that for j ≤ j(2) one has k(nj) ≤ κn = o(n), and k(nj) ≥ nj = j2 for all our choices

of g). Now (A.10) converges to 1 because with Mn →∞ we have that j(1)→∞.

Proof of (ii). Applying the multivariate central limit theorem for k(Mn)-dimensional

vectors with components
√
nã`k one can use the Berry-Esseen theorem by Bhattacharya and

13



Rao (1976, p. 118) to obtain that |P (An) − P (Ãn)| can be bounded by a(Mn)k(Mn)2/n1/2

for some increasing sequence a(Mn). Mn is chosen increasing to infinity so slowly that

a(Mn)k(Mn)2/n1/2 converges to zero and Mn ≤ κn.

Proof of (iii). This follows from the definition of the decreasing sequence Ãn.

II. We finish the proof by showing that R̃n = op(1) [see (A.6)]. To this end, we apply

the definitions and arguments given in the proof of Lemma 3.2. With (A.1) we obtain

â2
`k − ã2

`k =
1

n2

n∑
i=1

n∑
j=1

[(
ϕ`(Ui) + (Ûi − Ui)ϕ′`(Ui) +Ru

` (Ui)
)

(A.11)

×
(
ϕ`(Uj) + (Ûj − Uj)ϕ′`(Uj) +Ru

` (Uj)
)(
ϕk(Vi) + (V̂i − Vi)ϕ′k(Vi) +Rv

k(Vi)
)

×
(
ϕk(Vj) + (V̂j − Vj)ϕ′k(Vj) +Rv

k(Vj)
)
− ϕ`(Ui)ϕ`(Uj)ϕk(Vi)ϕk(Vj)

]
.

Two of the resulting terms we will consider in detail in the following. The first one is

1

n2

n∑
i=1

n∑
j=1

(Ûi − Ui)ϕ′`(Ui)ϕ`(Uj)ϕk(Vi)ϕk(Vj) = ã`kb`k,

where b`k is defined in (A.4). We apply Cauchy-Schwarz’ inequality to the sum
∑

(`,k) nã`kb`k

to see that

max
m∈IN

k(m)≤κn

1

k(m)

∣∣∣ ∑
(`,k)∈IN2

g(`,k)≤m

nã`kb`k

∣∣∣ ≤ (T̃n)1/2
(

max
m∈IN

k(m)≤κn

1

k(m)

∣∣∣ ∑
(`,k)∈IN2

g(`,k)≤m

(
√
nb`k)

2
∣∣∣)1/2

.

From the above proof it follows that T̃n = Op(1) for T̃n from (A.5) and it remains to show

that

lim
n→∞

P

( ⋃
m∈IN

k(m)≤κn

{ ∑
(`,k)∈IN2

0<g(`,k)≤m

(
√
nb`k)

2 1

k(m)
> ε
})

= 0 (A.12)

for all ε > 0. Set g(`, k) = max(`, k) and, hence, k(m) = m2 (the proof is similar for the two

other choices of g). By Markov’s inequality we bound (A.12) by

lim
n→∞

∑
m∈IN

k(m)≤κn

∑
(`,k)∈IN2

0<g(`,k)≤m

∑
(`′,k′)∈IN2

0<g(`′,k′)≤m

n2E[b2`kb
2
`′k′ ]

k(m)2ε2
≤ c

ε2
lim
n→∞

∑
m∈IN
m2≤κn

∑
`,k,`′,k′∈
{1,...,m}

`2`′2

m4n2

which is obtained by a simple calculation of expectations, and where the constant c does not

depend on `, k or n. We hence obtain the limit

c

ε2
lim
n→∞

∑
m∈IN
m2≤κn

m4

n2
=

c

ε2
lim
n→∞

κ
5/2
n

n2
= 0

14



because κn = o(n2/3) by assumption.

The other terms resulting from the expansion (A.11) are treated similarly as they are

two–factor products of terms ã`,k, b`,k, c`,k, d`,k, e`,k, f`,k (and similar terms reversing the

roles of U and V ) with definitions

c`,k =
1

n

n∑
i=1

Ru
` (Ui)R

v
k(Vi)

d`,k =
1

n

n∑
i=1

ϕ`(Ui)R
v
k(Vi)

e`,k =
1

n

n∑
i=1

(Ûi − Ui)ϕ′`(Ui)(V̂i − Vi)ϕ′k(Vi)

f`,k =
1

n

n∑
i=1

(Ûi − Ui)ϕ′`(Ui)Rv
k(Vi).

For some terms the calculation of higher order moments is necessary, but this does not

constitute any problem as there exist arbitrary many moments because the random variables

U, V as well as the trigonometric functions are bounded. We also apply the bound given by

(A.2) for the remainder terms.

The second term we would like to consider in detail is f`,k, which leads to the slowest

convergence rate. It is bounded by

sup
x∈IR
|F̂X(x)− FX(x)| sup

u∈[0,1]

|ϕ′`(u)| ( sup
y∈IR
|F̂Y (y)− FY (y)| )2 sup

v∈[0,1]

|ϕ′′k(v)|

≤ c · `k2ZuZ
2
v

for some constant c, see (A.3), where Zu and Zv are of order Op(n
−1/2). As before for some

ε > 0 we have to consider the probability

P

( ⋃
m∈IN

k(m)≤κn

{ ∑
(`,k)∈IN2

0<g(`,k)≤m

(
√
nf`k)

2 1

k(m)
> ε
})

≤ P

( ⋃
m∈IN

k(m)≤κn

{ ∑
(`,k)∈IN2

0<g(`,k)≤m

nc2`2k4Z2
uZ

4
v

1

k(m)
> ε
})

.

We first consider the case g(`, k) = max(`, k). Then k(m) = m2 and
∑

(`,k)∈IN2

0<g(`,k)≤m
`2k4 is of

order m8. This yields a probability of the form

P

( ⋃
m∈IN
m2≤κn

{
nZ2

uZ
4
vm

6 > η
})

= P
(
nZ2

uZ
4
vκ

3
n > η

)
,

15



which converges to zero because Z2
uZ

4
v = Op(n

−3) and κn = o(n2/3) by assumption. The

case g(`, k) = ` + k − 1 is treated similarly. For the choice g(`, k) = `k one obtains k(m) =

O(m · log(m)) and
∑

(`,k)∈IN2

0<g(`,k)≤m
`2k4 is of order m5. This yields a probability of the form

P

( ⋃
m∈IN

k(m)≤κn

{
nZ2

uZ
4
v

m4

log(m)
> η
})
≤ P

( ⋃
m∈IN
m≤κn

{
nZ2

uZ
4
v

m4

log(m)
> η
})
≤ P

(
nZ2

uZ
4
vκ

4
n > η

)
,

which converges to zero because Z2
uZ

4
v = Op(n

−3) and κn = o(n1/2) by assumption.

2

A.3 Proof of Theorem 3.4

Similarly to Eubank and Hart (1992) we apply the theory by Spitzer (1956) to prove the

asserted representation of the asymptotic distribution. To this end let Z1, Z2, . . . be iid

standard normally distributed random variables and ξ` = Z2
` −λ. Then ξ1, ξ2, . . . are iid and

P
(
m(λ) = 0

)
= P

(
max
m∈IN0

k(m)∑
`=1

ξ` = 0
)

= P
(

max
m∈IN

Sm ≤ 0
)

= P
(

max
m∈IN

S+
m = 0

)
,

where Sm =
∑k(m)

`=1 ξ` and S+
m = max(0, Sm). The sets {maxm∈{1,...,n} S

+
m = 0}, n ∈ IN , are

descending, and hence with continuity from above we have

P
(

max
m∈IN

S+
m = 0

)
= lim

n→∞
P
(

max
m∈{1,...,n}

S+
m = 0

)
= lim

n→∞
qn

in Spitzer’s (1956) notation (p. 331) with qn = P (maxm∈{1,...,n} Sm ≤ 0).

For the function f defined by

f(ξ1, . . . , ξk(n)) = exp
(
iλ max

m∈{1,...,n}
S+
m

)
assumption (1.1) by Spitzer (1956) is valid, namely E[f(ξ1, . . . , ξk(n))] is invariant under

permutation of the iid components of (ξ1, . . . , ξk(n)) [compare also (3.1) in that reference].

Hence, Theorem 3.1 by Spitzer (1956) is applicable and with the same argumentation as on

p. 331 in that reference we obtain

lim
n→∞

qn = exp
(
−
∞∑
m=1

P (Sm > 0)

m

)
,

where

P (Sm > 0) = P
( k(m)∑

`=1

ξ` > 0
)

= P
( k(m)∑

`=1

Z2
` > λk(m)

)
and z2

k(m) :=
∑k(m)

`=1 Z2
` is χ2-distributed with k(m) degrees of freedom. 2
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A.4 Proof of Lemma 3.5

Under dependence of X and Y at least one coefficient a`k is not zero. Because â`k consistently

estimates a`k, (
√
nâ`k)

2 − λ will converge to infinity in probability, and the supremum of∑
(`,k)∈IN2

g(`,k)≤m

(
(
√
nâ`k)

2 − λ
)

will (for large n) not be assumed for m = 0, for which the sum vanishes. 2
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