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Abstract

We consider sequences of closed cycles of exponential single server nodes with a single bottleneck.
We study the cycle time and the successive sojourn times of a customer when the population sizes
go to infinity. Starting from old results on the mean cycle times under heavy traffic conditions we
prove a central limit theorem for the cycle time distribution. This result is then utilized to prove
a weak convergence characteristic of the vector of a customer’s successive sojourn times during a
cycle for a sequence of networks with population sizes going to infinity. The limiting picture is a
composition of a central limit theorem for the bottleneck node and an exponential limit for the
unscaled sequences of sojourn times for the non-bottleneck nodes.
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1 Introduction

We study the behaviour of cyclic networks of exponential single server queues when a fixed number
of nodes is filled with an ever increasing population. Such studies date back to the general model
construction of Gordon and Newell [GN67]. There are two essentially different pictures.
(i) All servers have the same load: Then the total population in system is shared equally by all nodes
up to random fluctuations.
(ii) Differently loaded servers exist: Then bottlenecks occur, which in the simplest case with exactly
one slowest server means that almost the whole population is queued up at this slowest server.

∗Work supported by Deutscher Akademischer Austauschdienst and Deutsche Forschungsgemeinschaft
†Work supported by Deutscher Akademischer Austauschdienst and Deutsche Forschungsgemeinschaft
‡Work supported by the by KBN Grant 2P03A02023
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In the cyclic case the load carried by the different nodes is proportional to their mean service times.
This means that in (i) (the case of balanced machines) all servers have the same service rate, and (ii)
if there is exactly one server with smallest service rate then this node evolves as a unique bottleneck.

Our main interest is in the detailed travel time behaviour of individual customers in case (ii): The
starting point is the steady state distribution of a customer’s vector of successive sojourn times at
the different nodes during a cycle. We further are interested in the customer’s cycle time distribution.
These distributions are known, given in the transform domain by their respective Laplace-Stieltjes-
transforms ( [BKK84], [SD83a]). We transform these formulae in a way that allows to prove weak
convergence results for the customer’s travel time behaviour when the bottleneck dominates the travel
times. This was studied as the influence of the slowest server by Boxma [Box88].
The usual interpretation of the results obtained by Gordon and Newell [GN67] is that with increasing
number of customers the bottleneck node approaches asymptotically a Poissonian source for the net-
work, while all the other nodes eventually form an open ergodic tandem system, the behaviour of which
is well understood: Local geometrical queue length distribution and independence over the nodes in
steady state. While this is generally understood as a statement about the queue length description of
the cycle, it seems to be rather obvious that a similar property should hold for cycle times and their
asymptotic behaviour, respectively for the joint sojourn times of a customer during a cycle.

The influence of the slowest server [Box88] and Chow’s [Cho80] observation about the asymptotic
distributional behaviour of cycle times in a two-stage cycle suggest that there should be a standard
normal limit of the scaled cycle times; this is proved in Theorem 4.1. On the other hand the usual
interpretation suggests that even the unscaled sojourn times at the non-bottleneck nodes should con-
verge in some sense to exponential distributions. This will come out from our main Theorem 5.1 as
an immediate corollary and supports anew the usual interpretation.
Theorem 5.1 aggregates all sojourn times of a customer during a cycle, in the bottleck and the non-
bottleneck nodes. Due to what is said before the limiting procedure should not be performed using
a general scaling over all nodes. It turns out that for the bottleneck node a central limit scaling is
appropriate, while for the non-bottleneck nodes no scaling is necessary.
This is different to the case of balanced machines ((i) above), where Kelly [Kel84] proved that an
overall law of large numbers scaling is the appropriate one to obtain distributional limits for sojourn
times, which nevertheless are not normal.

The paper is organized as follows: In Section 2 we describe the model and collect the necessary results
on sojourn time distributions. In Section 3 we recall Boxma’s result on the influence of the slowest
server on the total cycle time and add on a somewhat curious observation about the behaviour of
the joint vector of a customers sojourn times given his total cycle is known. This and the asymptotic
moments of the cycle times and the local sojourn times (presented here) will be utilized in the proof of
the main Theorem 5.1. In Section 4 we prove the central limit theorem for the overall cycle time when
the population size grows unboundedly. The main problem in performing the proof is to suppress the
strong dependencies in the summands which constitute the cycle times. The asymptotic behaviour of
the joint vector of sojourn times is derived in Section 5.
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2 Closed cycle with M stations

We consider a closed cyclic queueing network with M nodes (stations), where station Q[i] is a single-
server with infinite waiting room under first-come-first-serve (FCFS) queueing discipline, i = 1, . . . ,M .
A fixed number N ≥ 1 of identical customers circulate in the network: If the service of a customer
at node Q[i] terminates, he moves instantaneously to node Q[i + 1] (resp. to Q[1] if a service ends
at node Q[M ]). The customers at station Q[i] (if there are any) move one position forward and the
service of the customer at the head of the queue begins immediately. If there are further customers
present at queue Q[i] at the arrival instant of the moving customer, he joins the tail of the queue; if
there aren’t any further customers his service begins immediately. Jumps and reorganisation of the
queues take zero time. Service times of all customers at station Q[i] are exp(µi)-distributed and are
an independent family and independent of anything else. The joint queue length process of the cycle
is a strong Markov process, which is irreducible and positive recurrent with steady-state distribution
([GN67])

π(M,N)(n1, . . . , nM ) =
1

G(M,N)

M
∏

i=1

(

1

µi

)ni

, (1)

with (n1, . . . , nM) ∈ Z(M,N) = {(n1, . . . , nM ) ∈ N : n1 + · · · + nM = N} and normalising constant

G(M,N) :=
∑

n∈Z(M,N)

M
∏

i=1

(

1

µi

)ni

. (2)

We fix some test customer TC and evaluate the asymptotic and stationary characteristics of TC’s
sojourn times and cycle times. The starting instants of TC’s cycles are his successive entrance times
into station Q[1]. The limiting distribution of the vector of TC’s successive sojourn times during his
cycles is [BKK84] (Theorem 1, p. 130) determined by the Laplace-Stieltjes transform (LST)

φ(M,N)(θ1, . . . , θM ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)

M
∏

j=1

(

µj

µj + θj

)nj+1

, 0 ≤ θj < 1 . (3)

Here π(M,N−1)(n1, . . . , nM ) (prescribed by (1))is the steady-state distribution, that in arrival-instants
of TC at Q[1] there are n1 further customers present at node Q[1] (without counting TC himself),
and nj customers at the nodes Q[j] for j ∈ {2, . . . ,M} respectively.
The LST of the limiting distribution of TC’s cycle time is (see [SD83b])

ψ(M,N)(θ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)

M
∏

j=1

(

µj

µj + θ

)nj+1

. (4)

The sojourn and cycle time distributions (3) and (4) are by definition limiting distributions. They
can be considered as stationary distributions as well under a customer stationary regime [DS02]. Our
results can be interpreted in both situations. We fix henceforth the following notation for a cycle with
M nodes and N customers, including TC:
An M -dimensional vector with non negative real coordinates

(S
(N)
1 , S

(N)
2 , . . . , S

(N)
M ) ∼ φ(M,N)(θ1, . . . , θM ),
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i.e., having distribution with LST φ(M,N)(θ1, . . . , θM ) is considered as TC’s successive sojourn times
during a cycle under customer stationary conditions, and a non negative real variable

S(N) ∼ ψ(M,N)(θ),

i.e., having distribution with LST ψ(M,N)(θ) is considered as TC’s cycle time under customer station-
ary conditions.

It is well known that in case that not all service rates µj are the same in networks with many customers
cycling there will occur bottlenecks, i.e., nodes where almost all customers will queue up in the long
run. The bottleneck nodes are the stations Q[i] with µi = min{µj : j = 1, . . . ,M}.
We shall assume throughout (unless otherwise stated) that Q[1] is the only bottleneck station, and,
for technical reasons, that all service rates are distinct: µ1 < µ2 < · · · < µM . From the product form
steady state and sojourn time distributions this ordering assumption does not reduce generality.

3 The Influence of the slowest server

If station Q[1] is the only bottleneck of the cycle it is not surprising to TC that in case of large
population almost all other customers are waiting before him at Q[1] when his cycle commences. Then
in particular it follows ([Box88]) that even for µ1 < µ2 ≤ · · · ≤ µM

E
(

S(N)
)

= Nµ−1
1

{

1 +O
(

[
µ1

µ2
]N
)}

, Var
(

S(N)
)

= Nµ−2
1

{

1 +O
(

[
µ1

µ2
]N
)}

, N → ∞ . (5)

From (5) obviously in heavy traffic the slowest queue generates the main fraction of the cycle time
of TC. This clearly reflects the bottleneck behaviour with respect to the number of customers. So it
is reasonable to approximate the distribution of the cycle time for great values of N by the sum of
N consecutive service times at the slowest queue. This tempting conjecture is supported by Chow’s
observation that in a two-stage cycle a result in parallel to (5) holds for the LST of the cycle times as
well [Cho80]. Moreover this suggests that there should hold some form of a central limit theorem for
the rescaled cycle time, when the number of customers tends to infinity, while the number of stations
remains fixed. This will indeed be proved in Section 4 below.
Although the quantitative results in (5) are completely in line with intuition, there is still something
behind the first and second order picture expressed there. This can be expressed as a conditional
invariance property of the sojourn times, for a discussion see [MD05]. We state the result here without
further comments because we shall need it for the derivations later on.

Theorem 3.1 (An invariance property for the conditional sojourn time distribution). For cycles
with general service rates (with or without bottlenecks) the conditional distribution of TC’s successive
sojourn times, given his cycle time, is independent of the number N of customers.

4



For measurable and bounded h : RM
+ → R we have the conditional expectation

E
(

h ◦
(

S
(N)
1 , . . . , S

(N)
M

)

| S(N)
1 + · · · + S

(N)
M = t

)

=

∫

∆t
M−1

h(t−
M
∑

j=2

xj, x2, .., xM )µ1e
−µ1t

M
∏

j=2

µje
−xj(µj−µ1) d(x2, .., xM )

∫

∆t
M−1

µ1e
−µ1t

M
∏

j=2

µje
−xj(µj−µ1) d(x2, . . . , xM )

,

where for M ∈ N+, t ≥ 0, we define ∆t
M = {(x1, . . . , xM ) ∈ RM

+ : x1 + · · · + xM ≤ t}.
As preparation (which is of independent interest) for to perform the analysis we state the asymptotics
of moments’ behaviour for cycle times (which follows directly from Boxma’s results) and for local
sojourn times (which is done by direct but tedious computations from (3)).

Lemma 3.1. For pairwise distinct service rates we have the following local asymptotics of moments:

(i) Mean cycle time and cycle time variance.

lim
N→∞

1

N
E(S(N)) =

1

µ1
, lim

N→∞
1

N
Var (S(N)) =

1

µ2
1

.

(ii) Bottleneck mean and variance of sojourn time.

lim
N→∞

1

N
E(S

(N)
1 ) =

1

µ1
, lim

N→∞
1

N
Var(S

(N)
1 ) =

1

µ2
1

.

(iii) Non-bottleneck mean and variance of sojourn time.

lim
N→∞

E(S
(N)
k ) =

1

µk − µ1
, lim

N→∞
Var(S

(N)
k ) =

1

(µ1 − µk)2
.

(iv) Covariance of sojourn times at bottleneck and some other station.

lim
N→∞

Cov
(

S
(N)
1 , S

(N)
l

)

= − 1

(µ1 − µl)2
.

(v) Covariance of sojourn times at two non-bottleneck stations.

lim
N→∞

Cov
(

S
(N)
k , S

(N)
l

)

= 0 , k, l 6= 1 .

A short comment may be in order here: From (iv) in Lemma 3.1 we see that the covariances between
a customer’s sojourn times at the bottleneck and the other non-bottleneck nodes do not vanish in the
limit. In contrast to this the usual interpretation as described on page 2 states that in the limiting
open tandem system the Poissonian source is independent from the service mechanism at the stations.
By direct computations it can be shown that results similar to (iv) and (v) in Lemma 3.1 hold for the
joint queue length vector as well.
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4 A central limit theorem for the cycle time

As suggested by the influence of the slowest server we shall prove in this section a central limit theorem
for TC’s cycle time. The running index which tends to infinity in this statement will be the number
of customers in the cycle.
The main problem which we have to overcome are the strong dependencies of TC’s successive sojourn
times during his cycle. Although the result of Boxma suggests that cycle times can be approximated
by sums of independent exp(µ1) variables, the dependent sojourn times at the non-bottleneck nodes
will come into the play. To suppress these dependencies eventually needs lengthy computations.

Theorem 4.1. The sequence (T (N))N∈N of the normalized and centered sojourn times

T (N) :=
S(N) −E(S(N))
√

Var(S(N))
(6)

converges with increasing number of customers weakly to the Standard Normal Distribution N(0, 1).

Before proving the theorem we prepare some preliminary steps. For pairwise distinct service rates
µi 6= µj for i, j ∈M , i 6= j, we can write the normalizing constant in a closed form ([Har85]):

G(M,N) =

M
∑

i=1

(

1

µi

)N M
∏

j=1
j 6=i

(
µj

µj − µi
), (7)

We define coefficients Ci,N+1, i ∈M , N ∈ N0 related to G(M,N) by

Ci,N+1 :=

(

1

µi

)N M
∏

j=1
j 6=i

µj

µj − µi

M
∑

i=1

(

1

µi

)N M
∏

j=1
j 6=i

µj

µj − µi

. (8)

Lemma 4.1. For µ1 < µ2 < · · · < µM the coefficients Ci,N have the following properties:

(i)

M
∑

i=1

Ci,N = 1 , (ii) lim
N→∞

C1,N = 1 , (iii) lim
N→∞

N rCk,N+1 = 0, k 6= 1, r ∈ R+

(iv) Ck,N > 0 for k odd and Ck,N < 0 for k even .

For the proof of the lemma, see the Appendix. From Harrison’s formla ([Har85]) we obtain

Theorem 4.2. The Laplace-transform ψ(M,N) of the cycle time S(N) under steady-state conditions
can in case of pairwise distinct service rates be written as

ψ(M,N)(θ) =

M
∑

i=1

Ci,N

(

µi

µi + θ

)N

. (9)
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Proof. To apply Harrison’s formula we have to ensure µk+θ 6= µl+θ for k 6= l and θ ∈ [0, 1). Therefore

ψ(M,N)(θ) =
1

G(M,N − 1)

M
∑

i=1







M
∏

j=1
j 6=i

µj

µj − µi







(

1

µi

)N−1 ( µi

µi + θ

)N

=
M
∑

i=1

Ci,N

(

µi

µi + θ

)N

.

ψ(M,N) in (9) is not a mixture distribution because some coefficients are negative but nevertheless the
n-th moment of the cycletime can be expressed as

E (S(N)n) =





n
∏

j=1

(N + j − 1)





M
∑

i=1

Ci,N

(

1

µi

)n

.

Hence the cycle time for N customers circulating fulfills

E (S(N)) =

M
∑

i=1

Ci,NN

(

1

µi

)

, and (10)

Var (S(N)) = N
M
∑

i=1

Ci,N

(

1

µi

)2

+N2
∑

(k<l)

Ck,NCl,N

(

1

µk
− 1

µl

)2

. (11)

We have now prepared the ground for the

Proof. (Theorem 4.1). The Fourier Transform (FT) FS(N) of S(N) is

FS(N)(x) :=

∫

R

eixy dP S(N) =

M
∑

j=1

Cj,N

(

µj

µj − ix

)N

, x ∈ R.

Therefore the FT FT (N) of the normalized and centered sojourn time T (N) is

FT (N)(x) = exp

[

− ixE(S(N))
√

Var(S(N))

]

· FS(N)

(

x
√

Var(S(N))

)

= exp

[

− ixE(S(N))
√

Var(S(N))

]

·
M
∑

j=1

Cj,N





µj

µj − ix√
Var(S(N))





N

, x ∈ R.

Inserting E(S(N)) and Var(S(N)) from (10) and (11) we obtain

exp

[

− ixE(S(N))
√

Var(S(N))

]

=













exp













− ix√
N

C1,N +
M
∑

j=2
Cj,N

(

µ1

µj

)

√

C1,N +
M
∑

j=2
Cj,N

(

µ1

µj

)2
+N

∑

(k<l)

Ck,NCl,Nµ
2
1

(

1
µk

− 1
µl

)2

























N
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and

µ1

µ1 − ix√
Var(S(N))

=
1

1 − ix√
N

1
√

C1,N +
M
∑

j=2
Cj,N

(

µ1

µj

)2
+N

∑

(k<l)

Ck,NCl,Nµ
2
1

(

1
µk

− 1
µl

)2

.

We show (i)

lim
N→∞

C1,N





























exp











− ix√
N

C1,N +
M
P

j=2
Cj,N

„

µ1
µj

«

v

u

u

tC1,N +
M
P

j=2
Cj,N

„

µ1
µj

«2

+N
P

(k<l)

Ck,N Cl,N µ2
1

“

1
µk

− 1
µl

”2











1 − ix√
N

1
√

C1,N +
M
∑

j=2
Cj,N

(

µ1

µj

)2
+N

∑

(k<l)

Ck,NCl,Nµ
2
1

(

1
µk

− 1
µl

)2





























N

= e−
x2

2

and (ii)

lim
N→∞

exp



− ixE(S(N))
√

Var(S(N))



 ·
M
∑

j=2

Cj,N





µj

µj − ix√
Var(S(N))





N

= 0 .

We denote

f(N) := C1,N +

M
∑

j=2

Cj,N

(

µ1

µj

)2

+
∑

(k<l)

NCk,NCl,Nµ
2
1

(

1

µk
− 1

µl

)2

.

To prove (i), it suffices to show
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













exp

[

− ix√
N

C1,N
√

f(N)

]

1 − ix√
N

1
√

f(N)













N

−
(

1 − x2

2N

)N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→
N→∞

0 .

Recall (Lemma 4.1) that lim
N→∞

C1,N = 1, and lim
N→∞

N rCj,N = 0, j = 2, . . . ,M, r ≥ 0, hence

lim
N→∞

f(N) = 1, lim
N→∞

N r · f(N) = ∞, r > 0.

Note that for every x ∈ R and N sufficiently large
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

[

− ix√
N

C1,N
√

f(N)

]

1 − ix√
N

1
√

f(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

√

1 +
x2

N

1

f(N)

≤ 1, and

∣

∣

∣

∣

1 − x2

2N

∣

∣

∣

∣

≤ 1.
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From |un − vn| ≤ n |u− v| for every u, v ∈ C with |u| ≤ 1, v ≤ 1 and n ∈ N we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













exp

[

− ix√
N

C1,N
√

f(N)

]

1 − ix√
N

1
√

f(N)













N

−
(

1 − x2

2N

)N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













exp

[

− ix√
N

C1,N
√

f(N)

]

1 − ix√
N

1
√

f(N)













−
(

1 − x2

2N

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















1 − ix√
N

C1,N
√

f(N)
−

x2C2
1,N

2Nf(N)
+

∞
∑

k=3

(

−ix√
N

C1,N
√

f(N)

)k
1

k!

1 − ix√
N

1
√

f(N)















−
(

1 − x2

2N

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− ixN(1 − C1,N )

ix−
√

Nf(N)
−

x2C2
1,N

2f(N)

1 − ix
√

Nf(N)

+
x2

2
+

∞
∑

k=3





−ixC1,N
√

N1− 2
k f(N)





k

1

k!

1 − ix
√

Nf(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→
N→∞

0.

To prove (ii), note that
∣

∣

∣

∣

∣

∣

∣

exp



− ixE(S(N))
√

Var(S(N))



 ·
M
∑

j=2

Cj,N





µj

µj − ix√
Var(S(N))





N
∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

M
∑

j=2

Cj,N





µj

µj − ix√
Var(S(N))





N
∣

∣

∣

∣

∣

∣

∣

≤
M
∑

j=2

|Cj,N |

∣

∣

∣

∣

∣

∣

µj

µj − ix√
Var(S(N))

∣

∣

∣

∣

∣

∣

N

=

M
∑

j=2

|Cj,N |

∣

∣

∣

∣

∣

∣

∣

∣

1
√

1 + x2

µ2
j Var(S(N))

∣

∣

∣

∣

∣

∣

∣

∣

N

≤
M
∑

j=2

|Cj,N | −→
N→∞

0 .

5 Weak convergence limits for sojourn times

Theorem 5.1. Consider a cycle of M nodes with N customers and with rates µ1 < · · · < µM .

For TC’s sojourn times (S
(N)
1 , S

(N)
2 , . . . , S

(N)
M ), consider the partly rescaled sequence

S̃(N) = (
S

(N)
1 −ES

(N)
1

√

VarS
(N)
1

, S
(N)
2 , . . . , S

(N)
M ), N → ∞ . (12)

The sequence S̃(N) converges for N → ∞ to a random vector which is distributed

N (0, 1) ⊗ exp(µ2 − µ1) ⊗ · · · ⊗ exp(µM − µ1) . (13)
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Proof. For the cycle with M nodes fixed and N customers we abbreviate for the cycle time the
expectation and square root of the variance by

νN := E(S(N)) and σN :=
√

VarS(N) . (14)

We shall compute for θj ∈ C, j = 1, . . . ,M

lim
N→∞

E



exp(iθ1
S

(N)
1 −ES

(N)
1

√

VarS
(N)
1

) ·
M
∏

j=2

exp (iθjS
(N)
j )



 = e−θ2
1/2 ·

J
∏

j=2

µj − µ1

µj − µ1 − iθj
. (15)

Applying Theorem 3.1 we obtain (recall ∆t
k := {(x1, . . . , xk) ∈ Rk

+ | x1 + · · · + xk ≤ t})

E



exp



iθ1
S

(N)
1 −ES

(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjS
(N)
j )





=

∫

R

P T (N)(dt)E



exp



iθ1
S

(N)
1 −ES

(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjS
(N)
j )|T (N) = t





=

∫

R

P T (N)(dt)E



exp



iθ1
S

(N)
1 −ES

(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjS
(N)
j )|S(N) = tσN + νN





=

∫

R

P T (N)(dt)

∫

∆
tσN+νN
M−1

exp



iθ1
tσN + νN −∑M

j=2 xj −ES
(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjxj)

·µ1e
−µ1(tσN +νN ) ·

M
∏

j=2

µje
(−xj(µj−µ1))(dx2, . . . , xM )

·





∫

∆
tσN+νN
M−1

µ1e
−µ1(tσN +νN ) ·

M
∏

j=2

µje
(−xj(µj−µ1))(dx2, . . . , xM )





−1

=

∫

R

P T (N)(dt)

∫

∆
tσN+νN
M−1

exp



iθ1
tσN + νN −∑M

j=2 xj −ES
(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjxj)

·
M
∏

j=2

(µj − µ1)e
(−xj(µj−µ1))(dx2, . . . , xM )

·





∫

∆
tσN+νN
M−1

M
∏

j=2

(µj − µ1)e
(−xj(µj−µ1))(dx2, . . . , xM )





−1
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Let (Y2, . . . , YM ) denote a vector with non negative coordinates which are independent with Yj ∼
exp(µj − µ1) distributed. Then the last expression can be written as

∫

R

P T (N)(dt)

∫

R
M−1
+

P (Y2,...,YM)(dx2, . . . , xM )1
∆

tσN +νN
M−1

(x2, . . . , xM ) ·
(

P ((Y2, . . . , YM ) ∈ ∆tσN +νN

M−1 )
)−1

· exp



iθ1
tσN + νN −∑M

j=2 xj −ES
(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjxj).

For fixed θj ∈ C, j = 1, . . . ,M we define random variables

H(N) = H(N)(θj : j = 1, . . . ,M) : R → C,

by

H(N)(t) = exp





iθ1tσN
√

VarS
(N)
1



 exp





iθ1(νN −ES
(N)
1

√

VarS
(N)
1





·
∫

R
M−1
+

P (Y2,...,YM )(dx2, . . . , xM )1
∆

tσN+νN
M−1

(x2, . . . , xM )

·
(

P ((Y2, . . . , YM ) ∈ ∆tσN +νN

M−1 )
)−1

· exp





iθ1
∑M

j=2 xj
√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjxj),

and
H = H(θj : j = 1, . . . ,M) : R → C,

by

H(t) = exp(iθ1t) ·
∫

R
M−1
+

P (Y2,...,YM )(dx2, . . . , xM ) ·
M
∏

j=2

exp (iθjxj) .

By direct inspection we see that the set of points t ∈ R such that there exists a sequence (tN ∈ R :
N ∈ N) with (tN → t) but ¬(H(N)(tN ) → H(t)), has under N(0, 1) probability 0.

Here we used νN −ES
(N)
1 → 0 and VarS

(N)
1 → ∞ according to the influence of the slowest server.

Applying Theorem 5.5 in [Bil68] we conclude from weak convergence of the cycle time distributions
P T (N) to N(0, 1) weak convergence of the sequence of image measures P T (N)H(N)−1 to N(0, 1)H−1.
Finally, we define the bounded continuous function

f : C → C , x→
{

x if |x| ≤ 1
x
|x| if |x| > 1

and conclude
∫

C

P T (N)H(N)−1(dx)f(x) →
∫

C

N(0, 1)H−1(dx)f(x), for N → ∞.
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But
∫

C

P T (N)H(N)−1(dx)f(x) =

∫

R

P T (N)(dt)f(H(N)(t))

=

∫

R

P T (N)(dt)

∫

R
M−1
+

P (Y2,...,YM )(dx2, . . . , xM )1
∆

tσN +νN
M−1

(x2, . . . , xM )

·
(

P ((Y2, . . . , YM ) ∈ ∆tσN +νN

M−1 )
)−1

· exp



iθ1
tσN + νN −∑M

j=2 xj −ES
(N)
1

√

VarS
(N)
1



 ·
M
∏

j=2

exp (iθjxj),

and
∫

C

N(0, 1)H−1(dx)f(x) =

∫

R

N(0, 1)(dt)f(H(t))

=

∫

R

N(0, 1)(dt) exp(iθ1t) ·
∫

R
M−1
+

P (Y2,...,YM )(dx2, . . . , xM ) ·
M
∏

j=2

exp (iθjxj)

= e−θ2
1/2 ·

J
∏

j=2

µj − µ1

µj − µ1 − iθj
.

The proof is complete.

6 Appendix

Proof. (Lemma 4.1) From 1 > µ1

µ2
> µ1

µ3
> · · · > µ1

µM
> 0 we conclude directly (ii):

lim
N→∞

C1,N+1 = lim
N→∞

M
∏

j=1
j 6=1

µj

µj − µ1

M
∏

j=2

µj

µj − µ1
+

M
∑

i=2

(

µ1

µi

)N M
∏

j=1
j 6=i

µj

µj − µi

= 1 .

In order to prove (iii) we take into account µ1/µk < 1 for every i = 2, . . . ,M, and write

N rCk,N+1 =

N r

(

1

µk

)N M
∏

j=1
j 6=k

µj

µj − µk

M
∑

i=1

(

1

µi

)N M
∏

j=1
j 6=i

µj

µj − µi

=

N r

(

µ1

µk

)N M
∏

j=1
j 6=k

µj

µj − µk

M
∏

j=2

µj

µj − µ1
+

M
∑

i=2

(

µ1

µi

)N M
∏

j=1
j 6=i

µj

µj − µi

.

Finally, the alternating signs of
(

1
µi

)N M
∏

j=1
j 6=i

µj

µj−µi
prove property (iv) because by (7) the denominator

of the rhs of (8) is the normalizing constant G(M,N) and therefore positive.
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