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1 Introduction

Non-life insurance contracts often have to manage the problem that losses cannot be settled

immediately but rather cause indemnity payments throughout the following years. The

insurer has to estimate these amounts in order to allocate provisions and to calculate the

business profit as well as the premiums appropiately.

The commonly used technique for this purpose is the Chain-Ladder method. It allows to

predict the required total reserves if the portfolio is sufficiently homogeneous. This article,

however, focuses on the situation with large losses dominating the aggregate payments.

Here, it appears reasonable to treat these major claims separately.

In a closely related context, Mack (2002), p. 312ff., has proposed to apply certain nearest-

neighbour methods: The future payments are forecasted by comparing the claims expe-

rience of the particular loss event under consideration with the corresponding history of

those claims observed the years before.

At first, the most similar past loss (with respect to the hitherto provided compensation)

is identified. The multiplicative or additive increment of the accumulated indemnities

during the particular development period is then used to extrapolate the concerned claim

accordingly.

Mack (2002) also suggests to improve this approach using several (i.e. k ∈ N) similar

losses of recent years to predict the future late claims. In the following section, this k-

nearest-neighbour estimator is interpreted in the framework of a nonparametric regression

model. By means of its asymptotic normality, confidence intervals for the expected future

payments can be constructed for every single loss. Deriving confidence intervals for the

aggregate loss of the portfolio remains an open problem, though.

In Section 3, an empirical comparison with the Chain-Ladder method shows that (for a

large range of values of k) relatively precise predictions are obtainable.

Afterwards, the practical application of the k-nearest-neighbour estimator is discussed in

Section 4.

The paper closes with a brief conclusion.

1E-Mail: dittmer@math.uni-hamburg.de
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2 Asymptotic properties of the k-nearest-neighbour estima-

tor

2.1 The model

For analytical purposes, the prognosis of future indemnities based on the claims experience

of p ∈ N development years is interpreted as a nonparametric regression problem.

Concretely, let X : (Ω,A, P ) −→ (Rp,Bp) describe the payments of compensation within

the first p years. Moreover, Y : (Ω,A, P ) −→ (R,B) denotes the amount of a certain later

period.

Usually, one is interested in predicting the losses accumulating either in a particular year

(e.g. the following) or within the next q ∈ N years.2

Below, a model of the type

Y = m(X) + σ(X) · ε (1)

is presumed, where m and σ denote real-valued functions and ε a random variable (inde-

pendent of X) with E(ε) = 0 and Var(ε) = 1. This ensures

m(x) = E(Y |X = x)

and

σ2(x) = Var(Y |X = x)

for PX-almost every x ∈ R
p.

For the sake of predicting the expected future payments due to a damage characterised by

a (fixed) claims experience x ∈ R
p, i.e. m(x), the already observed losses are represented

by n ∈ N independent random variables

(X1, Y1), . . . , (Xn, Yn), with (X,Y ), (Xi, Yi) iid.

Furthermore, let ||·|| be an arbitrary norm on R
p. For a sequence {kn}n∈N of natural

numbers (with kn ≤ n), the kn-nearest-neighbour estimator (for m(x)) is then defined as

mn(x) :=

∑n
i=1K(Xi−x

Rn
)Yi

∑n
i=1K(Xi−x

Rn
)
. (2)

Here, Rn denotes the distance between x and the kn-th nearest neighbour among the

Xi, i ∈ {1, . . . , n},

Rn := inf
{

t ≥ 0
∣

∣

n
∑

j=1

1{||Xj−x||≤t} ≥ kn

}

.

2In principle, the proposed estimator in (2) may analogously be defined for a multivariate Y (in order

to forecast the amounts of the following years in a single step). Such an approach would go beyond the

scope of this paper, though.
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K : R
n −→ [0,∞) is a kernel function with K(u) > 0 for u ∈ B1(0) and K(u) = 0 else.3

Assuming m as a smooth function, m(x) is estimated as weighted average of the Yi. The

weights K(Xi−x
Rn

) are positive for the kn − 1 most similar losses (to x). Thus, the choice of

kn determines the number of loss events that contribute to the estimation. This way, kn

directly serves as a smoothing parameter.

The selection of ||·|| defines the measure of the similarity of the claims experiences Xi and

x and therefore determines which past losses are taken into account.

Furthermore, the kernel K is often chosen such that those observations are the further

downweighted the more Xi deviates from x. For example, K may be defined via

K(u) := κ
(

(1 − ||u||2) + δ
)

1B1(0)(u), u ∈ R
p, (3)

with δ ≥ 0 and κ > 0 fixed that way to ensure
∫

K(u)du = 1. To fulfill assumption (4) of

Theorem 2.1, δ > 0 is required. With δ = 0, (3) would describe the well-known Epanech-

nikov kernel.

The estimator mn(x) is a weighted average of such values Yi for which the distance ||Xi−x||
falls below the bandwidth Rn. Estimating m(x) assuming m to be locally constant leads to

a systematic error since m(Xi) actually deviates from m(x). As Rn increases with kn, this

bias becomes more important when the number of included neighbours rises. Additionally,

for a major part of the losses, ||Xi−x||
Rn

tends to zero choosing kn too large. This would

undermine the idea of weighting the Yi according to the similarity between Xi and x.

In contrast, for very small values of kn, the variance of the estimation error turns out to

be very large. Thus, we have to deal with a typical bias-variance tradeoff concerning the

choice of kn.

In the context of nonparametric statistics, the discussed kind of kn-nearest-neighbour esti-

mator has been introduced by Collomb (1979) and has been analysed by Mack (1981) and

Liero (1987), among others. The theory is partially based on results in the related field of

kernel density estimation, see Loftsgaarden/Quesenberry (1965), Mack/Rosenblatt (1979)

and Mack (1980).

3In this paper,

Br(w) := {u ∈ R
p | ||u − w|| < r}

denotes the open ball in R
p with radius r centered at w.
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2.2 Asymptotic normality of the kn-nearest-neighbour estimator

In the following, an expression for the approximative normal distribution of mn(x) is stated

- allowing to construct confidence intervals for m(x). As before, x ∈ R
p is fixed.

2.1 Theorem. Let X be absolutely continuous with Lebesgue density f and f(x) > 0. The

functions f and m are assumed bounded and (in a neighbourhood of x) twice continuously

differentiable. Let

l(u) := m2(u) + σ2(u) = E(Y 2|X = u), u ∈ R
p,

be continuous at x and bounded. Assume that

E(|Y |3|X = u) ≤M

for some M <∞ and PX -almost every u ∈ R
p. Let {kn}n∈N satisfy

kn ≤ n ∀ n ∈ N, lim
n→∞

kn = +∞, lim
n→∞

kn

n
= 0 and

η := lim
n→∞

kn · n−4/(4+p) <∞.

Finally, assume

∃N1, N2 > 0 : N1 ≤ K(u) ≤ N2 ∀ u ∈ B1(0), (4)

K(u) = 0 ∀ u /∈ B1(0), (5)
∫

K(u)du = 1 and (6)

∫

K(u)uαdu = 0 ∀ α ∈ {1, . . . , p}. (7)

Then,
√

kn

(

mn(x) −m(x)
)

−→ N
(

B, c · σ2(x)

∫

K2(v)dv
)

, (8)

in distribution as n→ ∞, with

c := λp

(

B1(0)
)

(Lebesgue-measure of the unit ball in R
p with regard to ||·||) and

B := η1/2+2/pB̃ := η1/2+2/pQ(mf)(x) −m(x)Q(f)(x)

2f(x)(cf(x))2/p
.

Here, for a function ψ : R
p −→ R, twice continuously differentiable at x, Q(ψ)(x) is defined

as

Q(ψ)(x) :=

p
∑

α=1

p
∑

β=1

∫

vαvβ
∂2ψ(x)

∂α∂β
K(v)dv.
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The proof is subdivided into two parts. At first, mn(x) and the underlying random variables

are analysed conditioned under Rn. The convergence

√

kn

(

mn(x) −E
(

mn(x)|Rn

)

)

n→∞−→ N
(

0, c · σ2(x)

∫

K2(v)dv
)

(9)

is established using the central limit theorem of Berry-Esséen. The basic procedure cor-

responds to the methods applied in Mack (1981). Examining the referenced proof more

precisely, however, one finds that certain additional assumptions4 are required in order to

derive the desired results.

Afterwards, it suffices to show

√

kn

(

E
(

mn(x)|Rn

)

−m(x)
)

n→∞−→ B in probability. (10)

For further details see Dittmer (2005), p. 33ff.

Approximative confidence intervals can hence be derived in the usual way. For any

α ∈ (0, 1), Theorem 2.1 yields

P
{

m(x) ∈
[

mn(x) − B√
kn

− τn(x), mn(x) − B√
kn

+ τn(x)
]}

n→∞−→ 1 − α, (11)

with

τn(x) := z1−α/2

√

c

kn
σ2(x)

∫

K2(v)dv (12)

and z1−α/2 denoting the (1 − α/2)-quantile of the standard normal distribution. Since B

and σ2(x) are usually unknown, they have to be estimated from the data. Replacing both

of them (in (11) and (12)) by consistent estimators B̂ and σ̂2(x), asymptotic confidence

intervals with level (1 − α) are obtained again.

In general, the performance of the normal approximation is better for more symmetric

distributions of ε featuring less heavy tails.

Under weak additional assumptions, n4/(4+p)E
(

mn(x) −m(x)
)2

converges in (0,∞) and

is asymptotically minimized if we choose

kn = ⌊η∗ · n4/(4+p)⌋ (13)

for

η∗ :=
(p

4
· cσ

2(x)
∫

K2(v)dv

B̃2

)p/(p+4)
.

4In particular, Mack (1981) aims at proving (9) without presuming N1 > 0 in (4). However, his proof is

flawed and it has turned out that it cannot be corrected without assuming that K is bounded away from

zero on B1(0).
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2.3 Prediction accuracy of the kn-nearest-neighbour estimator

Aiming at assessing the forecast of the future values of Y , the influence of ε (in (1)) has

to be kept in mind. For this purpose, we also consider prediction intervals. They cover a

proportion of future observations of at least 1 − α.

Under the assumptions stated above, the prediction error

mn(x) − Y =
(

mn(x) −m(x)
)

− σ(x) · ε

is the sum of the independent random variables mn(x) − m(x) and −σ(x) · ε. Hence,

prediction intervals can be determined by calculating the corresponding convolution. They

are always wider than confidence intervals. Moreover, we obtain

Var
(

mn(x) − Y
)

= Var
(

mn(x) −m(x)
)

+ σ2(x). (14)

The asymptotic limit distribution of mn(x) − m(x) is given by Theorem 2.1, while the

behaviour of ε has to be examined analysing the standardised residuals

Y −mn(x)
√

σ̂2(x)
.

For a non-normally distributed ε, the distribution of mn(x) − Y cannot be calculated ex-

plicitly which complicates the computation of the prediction intervals.

Under weak additional assumptions,

1

kn
cσ2(x)

∫

K2(v)dv

can be considered as an approximation to Var
(

mn(x) −m(x)
)

. Then, by (14), we have

√

Var
(

mn(x) − Y
)

≈ σ(x)

√

1 +
c

kn

∫

K2(v)dv.

With K from (3) and the Euclidean norm ||·|| we have c
∫

K2(v)dv ≤ 2 for any p ∈ N and

δ > 0. Thus, for larger numbers of neighbours the influence of mn(x)−m(x) and kn on the

prediction error decreases rapidly. For very small values of kn (as in the extreme example

kn = 1) the estimation error becomes important, though.
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3 Accuracy of methods for reserving for individual losses

Considering third party liability insurance data as an example, the performances of the

aforementioned methods are compared empirically. We consider claims experiences of an

established german insurance company. The data is provided by courtesy of AON Rück

(in a perturbed form).

Concretely, 1346 losses above a certain threshold are available that incurred between 1973

and 2004. The number of loss events tends to increase over the years - from 10 (before

1979) up to 96 (in 1996). Typically, damages result in annual indemnities with the largest

amounts during the first three development years.5 For few losses, the compensation does

not commence in the year of reporting the damage. Then we define the period of the initial

payment as accident year and thus as first development year.

Since information about loss increments of former years is used to predict future late

claims, trend effects caused by inflation would falsify the results. Therefore, the payments

are converted into values of 2004.6 The effect that some amounts of the earlier years

may have been fallen below the threshold mentioned above, partly explains the increasing

number of loss events taken into account.

Figure 1 displays the structure of the average annual loss increments for the particular

development years. In addition to mean and standard deviation, the estimated linear time

trend is illustrated. The latter is the slope coefficient of a linear least squares regression of

payments (within the fixed development year) versus time. It is negative for most of the

early development years (2 to 10) and behaves contrarily afterwards. Apparently, struc-

tural changes took place. The settlement of losses seems to shift to the later development

years. As these effects are neglected below, it does not surprise that all of the methods

under consideration slightly overestimate the indemnities of the first development years.

This section primarily deals with the comparison of the discussed k-nearest-neighbour

estimator with several of the other techniques proposed by Mack (2002) and a version of

the Chain-Ladder method (applied to individual losses). For this purpose, an adequate

backtesting procedure is used.

Concretely, we consider the prediction of compensation payments of the following year

on the basis of the claims development hitherto observed. For the sake of simplicity,

the involved calendar years are renamed as 1, . . . , I (i.e. I = 32). For every year

p ∈ {2, . . . , I − 1} and for every individual loss that has not been closed by then, the

future indemnities are predicted using the information so far available. Afterwards, the

5In case of refunding excessive compensation, the indemnification in later development years can be

negative on occasion.
6For this purpose, the consumer price indices for Germany, published by the Federal Statistical Office

(www.destatis.de), have been applied.
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Figure 1: Averaged annual loss increments of the distinct development years: Progression of

mean, standard deviation and estimated linear time trend

prognosis is compared with the actually payed amount.

In practice, predicting the accumulated payments from the presence up to a specified

final year L is similarly relevant. The corresponding estimators can obviously be defined

analogously to the case treated in this section. However, the application of a backtesting

procedure is more problematic. On the one hand, claims experiences can only be used

as historical data if the L-th development year has already been observed. On the other

hand, only such predictions can be included for which the actual payments are available.

Therefore, only those losses can be used for assessment that incurred in the calendar years

L to I−L+1. Hence, for large values of L, the number of involved data decreases rapidly.

An examination for L = 5 and L = 10 (in Dittmer (2005), p. 25ff.) yields qualitatively

similar results as in Figure 2, though.
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3.1 Specification of the regarded reserving methods

In the following, a brief survey of the reserving techniques discussed in this paper is pre-

sented.

For the purpose of predicting future late claims with respect to individual losses, a natural

modification of the Chain-Ladder method provides a possible solution:

Let Sik denote the aggregated indemnities of the accident year i and development year k

(i.e. Sik :=
∑nik

m=1Xikm) and Cik the correspondent accumulated claims

Cik :=

k
∑

j=1

Sij.

Carrying out the original Chain-Ladder estimation, for every development year an incre-

mental factor is determined as

f̂k :=

∑I−k
i=1 Ci,k+1

∑I−k
i=1 Cik

, k ∈ {1, . . . , I − 1}. (15)

Future cumulated claims Cik (with k ∈ {1, . . . , I} and i + k > I + 1) are then forecasted

by means of

Ĉik := Ci,I+1−i · f̂I+1−i · . . . · f̂k−1.

Considering individual losses, it suggests itself to calculate the factors f̂k just as in (15)

but to apply these to the separate data.

Following a proposal of Mack (2002), p. 312ff., one may predict late claims belonging

to a certain loss by determining the most similar claims experience among the historical

data. The observed (additive or multiplicative) increment of the indemnities during the

particular development year is used to carry forward the considered loss. In this regard

and concerning the distance between multivariate losses (stating the degree of similarity)

there exist certain choices.

As in Section 2, let x ∈ R
p (fixed) and Xi, i ∈ {1, . . . , n}, describe the claims experiences

of the considered and the various historical damages, respectively. More precisely, denote

the accordant components as x(k) and X
(k)
i , k ∈ {1, . . . , p}, representing the accumulated

claims up to development year k. The associated indemnifications of the (p+ 1)-th period

are described by Y (to be estimated) and Yi, i ∈ {1, . . . , n} (observed).

As an alternative, x(k) and X
(k)
i could characterise the actual (non-accumulated) indem-

nity payments within the particular year. Such a proceeding, though, leads to less accurate

forecasts and is not taken into consideration any further.
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In order to measure the similarity between different losses (considering the distance

||Xi − x||), an adequate norm ||·|| on R
p has to be specified. Two natural approaches

are used by either defining ||·|| as the Euclidean norm,

||u|| :=

√

√

√

√

p
∑

i=1

u2
i , u ∈ R

p, (16)

or as the absolute value of the p-th component,

||u|| := |up|, u ∈ R
p. (17)

Utilising the Euclidean distance, the accumulated payments of the entire claims experience

are compared after every development year. In the one-dimensional case (17), however, only

the single difference of the indemnities accumulated up to the present year is considered.

That claims experience (among the Xi, i ∈ {1, . . . , n}) with minimal distance to x is

denoted as X̃ whereas Ỹ characterises the correspondent amount of the (p+ 1)-th period.

The value of Ỹ is used to extrapolate x by means of an additive or multiplicative continu-

ation in order to forecast the future indemnification Y ,

Ŷ(add) := Ỹ (18)

and

Ŷ(mult) := x(p) · Ỹ

X̃(p)
, (19)

respectively. The terms additive and multiplicative are used due to the relationships (with

X̃(p+1) := X̃(p) + Ỹ denoting the accumulated loss after p+ 1 periods)

x(p) + Ŷ(add) = x(p) + (X̃(p+1) − X̃(p))

and

x(p) + Ŷ(mult) = x(p) · X̃
(p+1)

X̃(p)
.

As a different approach, the k-nearest-neighbour estimator presented in (2) is interpreted

as a forecast of the future indemnities,

Ŷknn := mn(x).7 (20)

For this purpose, the kernel function K and the norm ||·|| have to be specified. In the

following, let K be defined by (3), with δ = 0.05. Furthermore, we define ||·|| as the Eu-

clidean norm.

7Note that mn(x) = Ŷ(add) for kn = 2 (only one included neighbour).
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More generally, we could determine the underlying norm as ||u|| :=
√

∑p
i=1 aiu

2
i , u ∈ R

p,

for a fixed a ∈ [0,∞)p. Thus, the influence of the different development years can be

controlled by weighting the correspondent components of the claims experience. Since the

consideration is based on accumulated payments, the amounts of later development years

also include information about preceding periods and may reasonably be incorporated to

a higher degree. In Dittmer (2005), p. 25ff., the special case ai := 2i−1, i ∈ {1, . . . , p}, is

treated as well. The performance of this method, however, is only slightly better than in

the Euclidean case (a = (1, . . . , 1)T ). Hence, the choice of ||·|| supposably does not affect

the outcome crucially.

The considered techniques (including the Chain-Ladder method) can be improved by only

including claims experiences of the latest ten years - partially eliminating the trend ef-

fects stated above. Compared to each other, the performances of the methods remain

qualitatively unchanged.

3.2 Assessment criteria for reserving methods

Let Xikm denote the m-th among the nik losses belonging to the i-th accident year and

to the k-th development year. The correspondent backtesting estimators (assessing these

payments on the basis of the hitherto observed data) are described by X̂ikm.

Depending on the prevailing objective, different performance measures are useful to com-

pare the methods presented in 3.1.

The sum of squared residuals over the separate indemnities of every accident and develop-

ment year in the backtesting period,

SSRind :=
I−1
∑

i=2

I−i+1
∑

k=2

nik
∑

m=1

(X̂ikm −Xikm)2, (21)

indicates the precision of the prognosis with respect to individual losses.

One’s main interest may lie, however, in a satisfactory prediction of the total losses ac-

cumulated over the payments of fixed accident and development years (allowing effects of

balancing out between the nik payments). In this case,

SSRann :=

I−1
∑

i=2

I−i+1
∑

k=2

(

nik
∑

m=1

X̂ikm −
nik
∑

m=1

Xikm

)2
(22)

should preferably be taken into account.
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In addition, calculating certain quantiles of the empirical distribution of the absolute re-

siduals |X̂ikm − Xikm|, we receive supplementary information about the adequacy of the

estimation.

3.3 Comparison of alternative reserving methods

Table 1 summarises the comparison of the estimators Ŷ(add) and Ŷ(mult) with the Chain-

Ladder method. Apparently, the latter is superior to all of the considered alternatives with

respect to the precision of forecast - regarding both assessment criteria.

Method Distance Continuation SSRind SSRann

Nearest-neighbour (16) Additive 4.849·1011 5.476·1011

Nearest-neighbour (16) Multiplicative 5.569·1011 6.443·1011

Nearest-neighbour (17) Additive 5.088·1011 5.407·1011

Nearest-neighbour (17) Multiplicative 5.187·1011 5.606·1011

Chain-Ladder 3.090·1011 4.063·1011

Table 1: Prediction accuracy of the Nearest-neighbour estimators Ŷ(add) and Ŷ(mult) and the

Chain-Ladder method

Multiplicative variants appear to deliver inadequate predictions in particular. This is at-

tributed to the fact that some losses feature only minor compensation during the first

development years but substantial amounts later on. In this situation, multiplicative in-

crements of the accumulated claims can turn out to be very large. Additive methods, in

contrast, are less affected by this problem.

For the same reason, another attempt fails that intends to standardise the claims experi-

ences x and Xi by their respective means (in case of p ≥ 2 observed development years) in

order to eliminate multiplicative differences in level,

x

x
and

Xi

Xi

, with x :=
1

p

p
∑

k=1

x(k) and Xi :=
1

p

p
∑

k=1

X
(k)
i .

Evidently, additive approaches are unemployable in this context.

The k-nearest-neighbour estimators perform substantially better in this situation. As it

can be seen from Figure 2, for a wide range of values of k, Yknn yields more precise

predictions than the Chain-Ladder method (with respect to SSRind). Even the prognosis

of the aggregate loss within fixed accident and development years (the original intention

of the Chain-Ladder method - assessed by SSRann) is more accurate applying the k-

nearest-neighbour technique. While SSRind and SSRann decrease rapidly with kn for
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small numbers of neighbours (e.g. SSRind(kn = 5) ≈ 0.67 · SSRind(kn = 1)), both criteria

are slowly falling until approximately kn = 75 and slightly increasing afterwards.8

In particular, the amounts of the first ten development years are predicted comparatively

well. The Chain-Ladder method, though, performs marginally better in forecasting the

payments of the following years where the number of underlying data decreases.9
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Figure 2: Performance measures for the k-nearest-neighbour estimator Ŷknn in comparison with

the Chain-Ladder method (dashed)

8If kn exceeds n, we set kn = n. Therefore, the illustrated sums of squared residuals in Figure 2 may

undervalue the effect of an increasing number of neighbours. A further backtesting analysis only including

those forecasts where at least 200 preceding observations have been available does not show any major

qualitative changes, though.
9Thus, a correspondent combination of these procedures can be reasonable in practice.
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Figure 3: Quantiles of absolute residuals of the k-nearest-neighbour estimator Ŷknn in compar-

ison with the Chain-Ladder method (dashed)

Figure 3 displays the quantiles of the absolute residuals |X̂ikm−Xikm|. A (1−α)-quantile is

the smallest value that is exceeded by less than α·100% of the data. The lower 50%-quantile

shows that the Chain-Ladder method forecasts a large number of future indemnities slightly

more precisely than the k-nearest-neighbour estimator. However, the comparison of the

75%-, 90%- and 95%-quantiles shows that it generates substantial discrepancies between

predicted and observed payments more often, in return. A further inspection reveals that

larger absolute residuals tend to emerge together with major losses.

Thus, confirming the initial conjecture, the Chain-Ladder method should preferably be ap-

plied to homogeneous portfolios while the k-nearest-neighbour technique is advantageous

in case of heterogeneity.

In order to gain a deeper insight into the k-nearest-neighbour procedure, the individual

predictions are now analysed in more detail.

For example, we consider an insurance company that is interested in predicting the indem-
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nification payments of the fifth development year, based on the observed losses of the four

preceding periods. To ensure that the forecasts can be compared with the actually payed

amounts and to include a satisfactory number of data, we consider the losses that incurred

in 1998. Thus, the estimation is assumed to be carried out at the end of 2001 (with the

corresponding level of information).

With respect to an application of the results derived in 2.2 (for X possessing a Lebesgue-

density), only those losses are taken into account which feature loss increments distinct

from zero in every year of the past claims experience.

Using the normal approximation (8) to the estimation error

mn(x) −m(x) = Ŷknn −m(x),

confidence intervals for m(x) can be specified according to (11).

Applying another backtesting procedure on the considered data and comparing the sums

of squared prediction errors (analogously to (21) for fixed i and k), we find that kn = 130

(for here n = 536) would be the optimal choice.10 However, including less neighbours, the

prediction accuracy is only scarcely worse. Choosing kn clearly lower than according to

(13), η (and therefore B) becomes zero or at least negligibly small. Thus, we presume that

B is neglectable for kn = 30.

Now, an appropriate consistent estimator of σ2(x) has to be selected. Maintaining the

k-nearest-neighbour approach, it suggests itself to define

σ2
n(x) := |ln(x) −m2

n(x)|
with

ln(x) :=

∑n
i=1K

(

Xi−x
Rn

)

Y 2
i

∑n
i=1K

(

Xi−x
Rn

) .

Let u 7→ E(Y 4|X = u) be continuous at x and bounded. Then, under the assumptions of

Theorem 2.1, σ2
n(x) is consistent for σ2(x).

A comparison with the prediction error (Figure 4) reveals that only less than half of the

(ex post) observed payments in fact belong to the respective 0.95-confidence intervals

(displayed by the dashed line). This is not surprising, bearing in mind the argumentation

in Subsection 2.3.

In the present situation prediction intervals cannot be derived analytically since ε is not

normally distributed. In order to gain a rough impression of their widths, prediction

intervals (represented by the solid line in Figure 4) are calculated as if ε was Gaussian,

nevertheless.

A possible explanation for the apparent asymmetry of the prediction error is a skewness

(to the right) of ε.

10Note that such a global selection of kn is made by purpose of simplicity. In fact, the optimal kn is

given by (13) and depends on x ∈ R
p.
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Figure 4: Prediction error in comparison to the estimated value of σ(x); dashed: confidence

interval, solid: prediction interval.

4 Application of the k-nearest-neighbour estimator

Usually, insurance companies are interested in estimating the expected future payments

within every single development year. For this purpose, Ŷknn (defined in (20)) can be used

to predict these amounts in repeated (i.e. L ∈ N) steps. Confidence intervals for these

annual loss increments can be constructed according to (11).

Additionally, we can forecast the sum of the indemnities during these L years in one

single step. This also allows us to derive confidence intervals for the expected payments

accumulating in this period.

The empirical analysis in Section 3 has shown that the aggregate loss of the portfolio is

predicted comparatively well. However, the distribution of the corresponding prediction

error cannot be specified easily.
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In any case the number of neighbours and the kernel function have to be determined.

The kn-nearest-neighbour procedure seems to deliver relatively precise predictions for a

large range of values of kn. In the aforementioned example the best results have been

found choosing kn lower than 10-20 percent of the number of data but not smaller than

ten neighbours. Such rules of thumb may have to be revised after applying the method to

different portfolios, however.

It is more reliable to analyse the data carrying out a backtesting procedure (as described

in Section 3) for varying numbers of neighbours. If comparatively few loss experiences

are available, a cross-validation approach typically used for kernel estimation with fixed

bandwidth can be suitable. Here, one loss at a time is left out of the portfolio and then

estimated on the basis of the remaining observations. A comparison of the accumulated

squared residuals for different values of kn provides an indication about a reasonable choice

of the number of included neighbours.

The kernel function K should be designed such that

K(u) > K(v) > 0 for ||u|| < ||v|| ≤ 1.

This way, observations contribute the more to the forecast the more similar they have been

to a considered loss experience (up to the present). A popular choice is the (modified)

Epanechnikov kernel defined in (3) with ||·|| as the Euclidean norm.

5 Conclusion

In this article, the k-nearest-neighbour procedure is discussed as a method to predict future

late claims in heterogeneous portfolios. A normal approximation for the estimator of the

expected payments is provided and an empirical advantage over the Chain-Ladder method

has been observed. In connection with this paper several interesting aspects arise.

The proof of the asymptotic normality of mn(x) is based on the condition that X possesses

a Lebesgue density. Claims experiences, however, may comprise periods without incurred

payments (although the loss has not yet been concluded). Therefore, it can be desirable

to generalise Theorem 2.1 allowing X to have probability mass in zero for the particular

development years.

Since the asymptotic limit distribution of the estimation error mn(x) − m(x) does not

depend on f , a corresponding statement should be valid under adequate additional as-

sumptions.

In Section 3 it has been shown that the k-nearest-neighbour method provides precise

predictions for indemnities of the following period as well as for accumulated payments
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up to a fixed development year. Carrying out the prognosis for every development year

separately, one receives an estimation of the entire future loss process.

For this purpose one could alternatively consider an R
I−p-valued random variable des-

cribing the particular amounts of the remaining periods p + 1 to I. Completely analo-

gously to the present case it can be forecasted by means of k similar claims experiences.

The analysis of the prediction accuracy cannot be transferred directly, though.
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Summary

Nearest-Neighbour Methods for Reserving with respect to Individual Losses

This paper focuses on the problem of predicting individual future late claims

within a heterogeneous portfolio. For this purpose, the k-nearest-neighbour method

is analysed, which intends to carry forward a considered loss according to k

appropriately weighted similar observed claims experiences. Using a nonpara-

metric regression approach, a normal approximation and asymptotic confidence

intervals for the expected future indemnities are derived. The application of a

backtesting procedure to third party liability insurance data reveals that the

k-nearest-neighbour estimator performs better than the Chain-Ladder method.

Zusammenfassung

Nächste-Nachbarn-Verfahren zur einzelschadenbezogenen Reservierung

Diese Arbeit behandelt die Problematik der einzelschadenbezogenen Vorhersage

zukünftiger Spätschäden innerhalb eines heterogenen Risikokollektivs. Zu diesem

Zweck wird das k-nächste-Nachbarn-Verfahren analysiert, bei dem ein betrachteter

Schaden entsprechend k geeignet gewichteter ähnlicher beobachteter Schaden-

verläufe fortgeschrieben wird. Mithilfe eines nichtparametrischen Regressionsan-

satzes werden eine Normalapproximation und asymptotische Konfidenzintervalle

für die erwarteten zukünftigen Entschädigungen hergeleitet. Die Anwendung einer

Backtesting-Prozedur auf Daten aus der Haftpflichtversicherung zeigt, dass der

k-nächste-Nachbarn-Schätzer genauer prognostiziert als das Chain-Ladder-

Verfahren.
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