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Abstract. We consider the two-sample testing problem with randomly right censored
data under the partial Koziol-Green model. It is distinguished between informative and non-
informative censoring in this model. Rank and permutation tests that are distribution free
under the hypothesis of randomness are derived and their optimality is discussed. Since the
optimal scores of rank and permutation tests in the case of censored data usually depend
on the distribution of the observations under the hypothesis of randomness we estimate the
cumulative distribution function of the life times and the cumulative distribution function
of the observations. With these estimators we can define rank and permutation tests whose
optimality merely depends on the direction of the alternatives. Examples and simulations are
discussed.
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1 Introduction

In this paper we consider the two-sample testing problem under the partial Koziol-Green (PKG) model
introduced by Gather and Pawlitschko (1998) [3]. The PKGmodel extends the general random censorship
model with right censoring which is quite common in survival analysis. Its key feature is the distinction
between informative and non-informative censoring. We call a censoring informative, if it contains addi-
tional information about the distribution of the life times that we are interested in. A rigorous definition
of informative censoring can be found in Andersen et al. (1993) [1, pp. 150]. Under the PKG model we
assume that the survival functions of the informative censoring times are powers of the survival functions
of the life times, that is to say the cumulative hazard functions are proportional.

In the next paragraphs we present the model, our notation and main assumptions. Let Tn,1, . . . , Tn,n, n ≥
2, be non-negative, real-valued and stochastically independent (s.i.) random variables (r.v.s) denoting the
unobservable life times of the pooled sample. We assume the first sample (control group) Tn,1, . . . , Tn,mn ,
1 ≤ mn < n, to be i.i.d. with continuous cumulative distribution function (c.d.f.) F (c) and the second
sample (test group) Tn,mn+1, . . . , Tn,n to be i.i.d. with continuous c.d.f. F (t). These life times are
right censored by the informative censoring times C1,n,1, . . . , C1,n,n and the non-informative censoring
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times C2,n,1, . . . , C2,n,n. All censoring times are mutually s.i. and also s.i. of the Tn,i’s. Because of
the Koziol-Green assumption of the model C1,n,1, . . . , C1,n,mn are i.i.d. with c.d.f. 1 − (1 − F (c))β and
C1,n,mn , . . . , C1,n,n are i.i.d. with c.d.f. 1− (1 − F (t))β , whereas β > 0 is an unknown but fixed model
parameter. The non-informative censoring times are real-valued, i.i.d. r.v.s with continuous c.d.f. G.
Under our model we can merely observe the censored life times Xn,i = Tn,i ∧ C1,n,i ∧ C2,n,i and the
censoring indicator ∆n,i = 1[0,∞)

(
(C1,n,i ∧ C2,n,i) − Tn,i

) − 1(0,∞)

(
(C1,n,i ∧ Tn,i) − C2n,i

)
, i = 1, . . . , n.

a ∧ b stands for the minimum of a, b ∈ R and 1A denotes the indicator function of the set A. Hence,
∆n,i = 1 implies that the i-th observation is uncensored, whereas ∆n,i = 0 (∆n,i = −1) means that it
was informatively (non-informatively) censored.

We aim to develop tests for the null hypothesis of randomness H0 : F (c) = F (t) versus the non-
parametric alternative K : F (c) ≥ F (t), F (c) �= F (t) (the underlying distribution of second sample F (t)

is stochastically larger than the underlying distribution of the first sample F (c)) and H : F (c) ≤ F (t)

versus K . In order to achieve this aim we use asymptotic decision theory deriving rank and permutation
tests that are distribution free under H0 and any continuous c.d.f. G.

Let F = {Pt | t ∈ (−ε0, ε0)}, ε0 > 0, be a distribution family such that Pt2 is stochastically larger than
Pt1 , that is to say Ft1 ≥ Ft2 and Ft2 �= Ft1 , if and only if t1 < t2, whereas Ft is the c.d.f. of Pt. In the
sequel we call distribution families with this property as ordered. Furthermore, we assume that

L(Tn,i) = Pt∗·cn,i ∈ F (1)

for some t∗ ∈ R holds true, whereas

cn,i =

√
mn · (n−mn)

n

{ − 1
mn

, 1 ≤ i ≤ mn,
1

n−mn
, mn + 1 ≤ i ≤ n.

Obviously, the cn,i’s satisfy
n∑

i=1

cn,i = 0 and
n∑

i=1

c2n,i = 1. (2)

Suppose Ft denotes the continuous c.d.f. of Pt ∈ F. For β > 0 we define the distribution P̃t,β having
the continuous c.d.f. F̃t,β = 1 − (1 − Ft)β and the distribution family Fβ = {P̃t,β | t ∈ (−ε0, ε0)}. As
already mentioned above under the PKG model it is assumed that L(C1,n,i) = P̃t∗·cn,i,β for i = 1, . . . , n.
The distribution of non-informative life times is denoted by Q = L(C2,n,i) and its continuous c.d.f. by G.
Under the model assumption (1) the testing problems H ′

0 : t∗ = 0 versus K ′ : t∗ > 0 and H ′ : t∗ ≤ 0
versus K ′ : t∗ > 0 are clearly subproblems of the general testing problems.

Under these assumptions and defining Z : (R3,B3) → (R × {−1, 0, 1},B ⊗ P{−1, 0, 1}), (t, c1, c2) �−→
(t ∧ c1 ∧ c2, 1[0,∞)

(
(c1 ∧ c2) − t

) − 1(0,∞)

(
(c1 ∧ t) − c2

)
, we can describe the distribution of a single

observation by the distribution family Rβ = {Rβ
t = (Pt ⊗ P̃t,β ⊗ Q)Z | t ∈ (−ε0, ε0)}, that is to say

L(Xn,i,∆n,i) ∈ Rβ, for i = 1, . . . , n. Consequently, the distribution of the pooled sample is given by

Rβ
n,t∗{cn,i} :=

n⊗
i=1

Rβ
t∗·cn,i

.

The paper is organized as follows. In section 2 asymptotically optimal, parametric tests are developed
by using LAN-theory. Therefore we state criteria ensuring that the sequence of statistical experiments

{Ωn,An,R
β
n} =

{
n�

i=1

(
R× {−1, 0, 1}), n⊗

i=1

(
B⊗ P{−1, 0, 1}),{Rβ

t{cn,i}
∣∣ t ∈ (−εn, εn)

}}
,

εn := (max{|cn,1|, . . . , |cn,n|})−1 · ε0, is asymptotically normal. In section 3 rank and permutation tests
for the testing problem in question are suggested. Especially, the situations in which sequences of the
proposed rank and permutation tests are asymptotically optimal are discussed. Since optimal scores
of rank tests in random censorship models depend on the c.d.f. of the censored life time Xn,i and the
c.d.f. of life time Tn,i we use the modified Kaplan-Meyer estimator proposed by Gather and Pawlitschko
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(1998) [3] for estimating the survival time of the Tn,i’s under the PKG model to obtain statistics whose
asymptotic optimality properties merely depend on the direction of the alternatives. In section 4 examples
and simulations are presented. The auxiliary results needed for the proofs of our main results are given
in section 5.

Rank and permutation tests for models with randomly right censored data under local alternatives were
already studied by Neuhaus (1988) [7], who considered translation families and positive scale families,
and Janssen (1989) [6], who extended these results by assuming that both the distribution of the life
times and the censoring times can be described by L2-differentiable distribution families. In both papers
it turns out that for deriving asymptotically optimal rank and permutation tests, i.e. choosing optimal
scores, one has to know the direction of the alternatives as well as the distribution of Xn,i under the null
hypothesis. The proofs concerning the asymptotic properties of the rank and permutation tests and the
variance estimator in section 3 are extensions of the proofs given in Neuhaus (1988) [7] to our case.

2 Asymptotically optimal tests for parametric distribution families

In order to derive asymptotically optimal tests we apply asymptotic decision theory to the PKG model.
This gives us parametric, asymptotically optimal tests that are asymptotically equivalent to the rank
and permutation tests suggested in section 3. In a first step it is shown that the sequence of statistical
experiments {Ωn,An,R

β
n}, n ≥ 2, is asymptotically normal by assuming that the distribution family

Rβ is L2(R
β
0 )-differentiable. Since Rβ is derived from F and Fβ one is interested in guaranteeing this

property by the L2(P0)- and L2(P̃0,β)-differentiability of the distribution families F and Fβ respectively.
The theorems 2.4-2.6 investigate this matter.

Note, a distribution family P = {Pt | t ∈ (−ε, ε)} on the measurable space (X,C ) is called L2(P0)-
differentiable with L2-derivative L̇, if L̇ is a L2(P0)-integrable mapping satisfying the conditions∫

X

(
2
(
L

1/2
0,t − 1

)− t · L̇
)2

dP0 = o(|t|) (3)

and
Pt

(
N0,t

)
= o(t2), (4)

whereas (L0,t, N0,t) is a Lebesgue-decomposition of Pt with respect to P0. A definition of a Lebesgue-
decomposition can be found in Strasser (1985) [8, p. 3]. In the sequel Rβ

n,0{cn,i} is abbreviated to Rβ
n,0

and we assume that mn

n → ν ∈ (0, 1) as n→∞. The latter implies

lim
n→∞max{|cn,1|, . . . , |cn,n|} = 0. (5)

Together with (2) this means that the regression coefficients cn,i, i = 1, . . . , n, n ≥ 2, satisfy the strict
Noether-conditions. As an immediate consequence of Le Cam’s second lemma we obtain

2.1 Theorem. Let Rβ be a L2(R
β
0 )-differentiable distribution family with L2-derivative ḣβ. The se-

quence of statistical experiments {Ωn,An,R
β
n}, n ≥ 2, is asymptotically normal with central sequence

Zn

(
(xi, δi), i = 1, . . . , n

)
:=

∑n
i=1 cn,iḣβ(xi, δi). More precisely, it holds LRβ

n,0

(
Zn

) L−→ N(0, σ2),

σ2 := VarRβ
0
(ḣβ), and

Lβ
0,t{cn,i} = exp

(
t · Zn, t− 1

2
σ2 · t2 + ζn,t

) [
Rβ

n,0

]
, ζn,t

Rβ
n,0−→ 0, for all t ∈ R,

whereas Lβ
0,t{cn,i} denotes a likelihood ratio of Rβ

n,t{cn,i} with respect to Rβ
n,0.

Proof. Cf. Witting and Müller-Funk (1995) [10, Satz 6.130, p. 317].
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2.2 Corollary. Let the assumptions of theorem 2.1 hold. Then ϕ∗
n

(
(Xn,i,∆n,i), i = 1, . . . , n

)
, n ≥ 2,

defined by

ϕ∗
n

(
(Xn,i,∆n,i), i = 1, . . . , n

)
=
{

1,
0,

n∑
i=1

cn,i · ḣβ(Xn,i,∆n,i)
≥
<

uα

√
VarRβ

0
(ḣβ),

is an asymptotically optimal sequence of tests of the level α ∈ (0, 1) for the testing problem H ′ versus
K ′, i.e.

lim
n→∞

∫
ϕ∗
n dR

β
n,t{cn,i} = Φ

(
−uα + t ·

√
VarRβ

0
(ḣβ)

)
, t ∈ R.

Φ denotes the c.d.f. of the normal distribution with mean 0 and variance 1, uα := Φ−1(α).

Proof. Cf. Strasser (1985) [8, Definition 82.7 and Theorem 82.8, p. 430]

2.3 Corollary. Under the assumptions of theorem 2.1 the sequences of distributions {Rβ
n,0 | n ≥ 2} and

{Rβ
n,t{cn,i} | n ≥ 2} are mutually contiguous.

Proof. Le Cam’s first and second lemmata give the result, cf. Witting and Müller-Funk (1995) [10, Satz
6.124 and Satz 6.130, p. 311, 317].

Criteria ensuring the L2(R
β
0 )-differentiability of Rβ are given in the following theorems. In the proofs

of theorem 2.5 and theorem 2.6 the L2-differentiability of the distribution families in question is directly
verified. The most simple case is given, if both F and Fβ are L2-differentiable.

2.4 Theorem. Suppose the distribution family F is L2(P0)-differentiable with L2-derivative L̇. If Fβ is
also L2(P̃0,β)-differentiable then Rβ is L2(R

β
0 )-differentiable and its L2-derivative is given by

ḣβ(x, δ) = 1{0,1}(δ)L̇(x) + 1{−1}(δ)

∫
(x,∞) L̇dP0

1− F0(x)
+ β

∫
(x,∞) L̇ dP0

1− F0(x)
[Rβ

0 ]. (6)

Proof. SetQt = Q for all t ∈ (−ε0, ε0). Obviously, {Qt | t ∈ (−ε0, ε0)} is L2(Q0)-differentiable. Moreover,
one easily sees that

{
Pt⊗ P̃t,β⊗Qt, | t ∈ (−ε0, ε0)

}
is L2(P0⊗ P̃0,β⊗Q0)-differentiable, cf. Witting (1985)

[9, Satz 1.191, p. 177]. Because of (Pt ⊗ P̃t,β ⊗ Qt)Z = Rβ
t , t ∈ (−ε0, ε0), the L2(R

β
0 )-differentiability

of Rβ is an immediate consequence of Witting (1985) [9, Satz 1.193, p. 178]. To complete the proof we
just have to identify the L2-derivative. For this purpose let L̃0,t, t ∈ (−ε0, ε0), be the likelihood ratio of
Rβ

t with respect to Rβ
0 given by Lemma 5.2. We show 2/t(L̃1/2

0,t − 1)→ ḣβ in Rβ
0 -probability as t → 0.

It holds Rβ
0 -a.e. the identity

2
t
(L̃1/2

0,t − 1) = 1{0,1}(δ)
2
t

(
L

1/2
0,t − 1

)
︸ ︷︷ ︸

=I1(t)

+1{0,1}(δ)
2
t

(
L

1/2
0,t − 1

)((
1− Ft

1− F0

) β
2

− 1

)
︸ ︷︷ ︸

=I2(t)

+ 1{0,1}(δ)
2
t

((
1− Ft

1− F0

) β
2

− 1

)
︸ ︷︷ ︸

=I3(t)

+1{−1}(δ)
2
t

((
1− Ft

1− F0

) β+1
2

− 1

)
︸ ︷︷ ︸

=I4(t)

.

(7)

Let us investigate the four terms separately. Using the L2(P0)-differentiability of F and Vitali’s theorem
we have for all ε > 0

1{∣∣ 2
t

(
L

1/2
0,t −1

)
−L̇
∣∣>ε

} P0−→ 0.

Applying lemma 5.1 and Lebesgue’s theorem give

Rβ
0

(∣∣∣2
t

(
L

1/2
0,t − 1

)− L̇
∣∣∣1{0,1}(δ) ≥ ε

)
=
∫
1{∣∣ 2

t

(
L

1/2
0,t −1

)
−L̇
∣∣>ε

} (β + 1)(1−G)(1 − F0)βdP0 → 0,
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i.e. I1(t) → 1{0,1}(δ)L̇ in Rβ
0 -probability as t → 0. A Taylor-expansion at t = 0 using lemma 5.3

shows that ((1 − Ft)/(1− F0)β/2 − 1) → 0 [Rβ
0 ] as t → 0 implying ((1 − Ft)/(1− F0)β/2 − 1) → 0 in

Rβ
0 -probability. Having the previous computation in mind we have I2(t)→ 0 in Rβ

0 -probability as t→ 0.
This proceeding can also be applied to I3(t) and I4(t) giving

I3(t)
Rβ

0−→ 1{0,1}(δ)β

∫
(·,∞)

L̇dP0

1− F0
and I4(t)

Rβ
0−→ 1{−1}(δ) (β + 1)

∫
(·,∞)

L̇dP0

1− F0
.

Since Xn
Rβ

0−→ X(j), j = 1, 2, implies X(1) = X(2) [Rβ
0 ] the proof is complete.

Given the continuous c.d.f.s F (1) and F (2) such that F (1) ≥ F (2) and F (1) �= F (2) holds, one can construct
an ordered family of distributions P = {Pt | t ∈ [ν−1, ν]} such that Fν−1 = F (1) and Fν = F (2), whereas
Ft denotes the c.d.f. of Pt. For this purpose we define the c.d.f. F0 := ν · F (1) + (1 − ν) · F (2) and the
bounded function b := (dF (2)/dF0 − dF (1)/dF0) ◦ F−1

0 , more precisely it holds −1/ν ≤ b ≤ 1/(1 − ν).
By assuming that P0 has the c.d.f. F0 and that Pt has the P0 densities ft = 1 + tb ◦ F0 we obtain
the distribution family P. Note that P satisfies the conditions we imposed on F. In rank test theory
in the uncensored case such distribution families are used to show that the optimality of rank tests
merely depends on the direction of alternatives, i.e. on the choice of b, and is independent of the actual
distribution of the r.v.s under the null hypothesis, s. Behnen and Neuhaus (1989) [2, pp. 18]. The same
considerations can also be applied to our rank and permutation tests and this motivates the next result.

2.5 Theorem. Suppose that all Pt ∈ F have P0-densities ft given by ft = 1 + t · b ◦ F0 [P0], whereas
F0 denotes the continuous c.d.f. of P0 and b : ([0, 1],B ∩ [0, 1])→ (R,B) is a bounded function such that∫
[0,1] b dλ = 0 holds. Then the following assertions hold true:

(i) The distribution family F is L2(P0)-differentiable with L2-derivative L̇ = b ◦ F0 [P0].

(ii) The distribution family Fβ, β > 0, is L2(P̃0,β)-differentiable.

Proof. The first assertion is a well-known result, cf. e.g. Witting [9, Beispiel 1.200, p. 183]. It remains to
prove that Fβ is L2(P̃0,β)-differentiable. Let (L̃0,t, Ñ0,t) be a Lebesgue-decomposition of P̃t with respect
to P̃0. It holds P0 ≡ Pt for all t sufficiently close to 0. Since P̃t,β � Pt it results P̃t,β � P̃0,β . Thus (4)
is trivially satisfied. Define

I(t) :=
2
t

(
L̃

1/2
0,t − 1

)
− b ◦ F0 − (β − 1)

∫
(·,∞) b ◦ F0 dP0

1− F0
· 1(0,1)(F0),

to complete the proof we show limt→0 I(t) = 0 [P̃0,β ] and |I(t)| ≤ C ∈ (0,∞), so that Lebesgue’s theorem
yields (3). It holds L̃0,t =

(
(1− Ft)/(1− F0)

)β−1√1 + t · b ◦ F0 · 1(0,1)(F0) [P̃0,β ]. By using the chain of
identities

2
t

(
L̃

1/2
0,t − 1

)
[P̃0]=

2
t

((
1− Ft

1− F0

) β−1
2

· 1(0,1)(F0) · L1/2
0,t − 1

)
[P̃0]=

2
t

(
L

1/2
0,t − 1

)
+

2
t

((
1− Ft

1− F0

) β−1
2

· 1(0,1)(F0)− 1

)
· L1/2

0,t

[P̃0]=
2
t

(
L

1/2
0,t − 1

)
+

2
t

((
1− Ft

1− F0

) β−1
2

· 1(0,1)(F0)− 1

)

+
2
t

(
L

1/2
0,t − 1

)
·
((

1− Ft

1− F0

) β−1
2

· 1(0,1)(F0)− 1

)
.
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it results

I(t)
[P̃0]=

(
2
t

(√
1 + tb ◦ F0 − 1

)− b ◦ F0

)
· 1(0,1)(F0)

+

(
2
t

(( 1− Ft

1− F0

)β−1
2 − 1

)
− (β − 1)

∫
(·,∞) b ◦ F0 dP0

1− F0

)
· 1(0,1)(F0)

+
2
t

(√
1 + tb ◦ F0 − 1

) ·(( 1− Ft

1− F0

)β−1
2 − 1

)
· 1(0,1)(F0)

= I1 + I2 + I3.

Choose ε̃0 < ε0. Clearly, ε̃0 < |b|−1
∞ , |b|∞ := sup{b(u) | u ∈ (0, 1)}. A Taylor-expansion at t = 0 gives

2
t

(√
1 + tb ◦ F0 − 1

) · 1(0,1)(F0) =
2
t

(
1 + t

b ◦ F0

2
− t2

8
(b ◦ F0)2(

1 + t(·) · b ◦ F0

)3/2 − 1

)
· 1(0,1)(F0),

0 < |t(·)| < |t|. Consequently, for all 0 < |t| ≤ ε̃0 we have the estimate

|I1| = |t|
4

∣∣∣∣∣ (b ◦ F0)2(
1 + t(·) · b ◦ F0

)3/2
∣∣∣∣∣ · 1(0,1)(F0) ≤ |t|

4

∣∣∣∣∣ |b|2∞(
1− ε̃0|b|∞

)3/2
∣∣∣∣∣ ≤ ε̃0

4

∣∣∣∣∣ |b|2∞(
1− ε̃0|b|∞

)3/2
∣∣∣∣∣ =: C1, (8)

whereas C1 is some real number. Again, a Taylor-expansion t = 0 gives

2
t

(( 1− Ft

1− F0

) β−1
2 − 1

)
· 1(0,1)(F0)=

2
t

(
1 +

t

2
(β − 1) ·

∫
(·,∞)

b ◦ F0 dP0

1− F0

+
t2

8
(β − 1)(β − 3)

(∫
(·,∞) b ◦ F0 dP0

1− F0

)2
(
1 + t(·)

∫
(·,∞) b ◦ F0 dP0

1− F0

) β−5
2

− 1

)
· 1(0,1)(F0),

0 < |t(·)| < |t|. Because of the estimate∣∣∣∣∣
∫
(·,∞)

b ◦ F0 dP0

1− F0
· 1(0,1)(F0)

∣∣∣∣∣ ≤
∫
(·,∞)

|b ◦ F0| dP0

1− F0
· 1(0,1)(F0) ≤

∫
(·,∞)

|b|∞ dP0

1− F0
· 1(0,1)(F0) ≤ |b|∞

we have for 0 < |t| < ε̃0

|I2| ≤ |t|
4
|β − 1||β − 3||b|2∞

(
1 + t(·)

∫
(·,∞) b ◦ F0 dP0

1− F0

) β−5
2

· 1(0,1)(F0)

≤ |t|
4
|β − 1||β − 3||b|2∞

((
1 + ε̃0|b|∞

) β−5
2 +

(
1− ε̃0|b|∞

) β−5
2
)

≤ ε̃0

4
|β − 1||β − 3||b|2∞

((
1 + ε̃0|b|∞

) β−5
2 +

(
1− ε̃0|b|∞

) β−5
2
)
: = C2,

(9)

whereas C2 is also some real number. The estimates for I1 and I2 yields an upper bound for I3:

|I3| ≤ |t|
2
|I1 + b ◦ F0| ·

∣∣∣∣∣I2 + (β − 1)

∫
(·,∞)

b ◦ F0 dP0

1− F0

∣∣∣∣∣ · 1(0,1)(F0)

≤ |t|
2
(C1 + |b|∞) (C2 + |β − 1||b|∞) ≤ ε̃0

2
(C1 + |b|∞) (C2 + |β − 1||b|∞) := C3. (10)

Clearly, it holds |I3| → 0 as t → 0. All in all we proved |I1 + I2 + I3| ≤ C1 + C2 + C3 for 0 < |t| < ε̃0.
Moreover, (8), (9) and (10) also show, that I1 + I2 + I3 → 0 [P̃0]. Hence, (3) holds.

The next result gives another condition ensuring that the L2(P0)-differentiability of F is sufficient for
the L2(R

β
0 )-differentiability of Rβ . This result can be applied to distribution families with unbounded

L2-derivatives. This result is also used to obtain optimal tests for the simulations in section 4.
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2 Asymptotically optimal tests for parametric distribution families

2.6 Theorem. We define τF := sup{x | F (x) < 1} as the right end point of some c.d.f. F . If the
distribution family F is L2(P0)-differentiable and τG < τF0 then the distribution family Rβ is L2(R

β
0 )-

differentiable with the L2-derivative ḣβ given by formula (6).

Proof. The following facts are used to prove the L2(R
β
0 )-differentiability of Rβ .

(i) Lemma 5.3 implies limt→0 Ft(τG) = F0(τG). τG < τF gives F0(τG) < 1. Hence, it exists an
ε ∈ (0, ε0), such that 1− Ft(x) ≥ K > 0 for all x ≤ τG and all t ∈ (−ε, ε).

(ii) Given ρ > 0, the real function x �→ xρ is Lipschitz-continuous on [K, 1], i.e. it exists M(ρ) ∈ R such
that

∣∣aρ − bρ
∣∣ ≤M(ρ)

∣∣a− b
∣∣ for all a, b ∈ [K, 1].

Let (L̃0,t, Ñ0,t), |t| ≤ ε, denote Lebesgue-decompositions according to lemma 5.2. Note that
∫
{F0=1}(1−

Ft)β+1 dQ = 0 follows from τG < τFt for all t ∈ (−ε, ε). Thus, the L2(P0)-differentiability of F implies
0 ≤ t−2Rβ

t (Ñ0,t) ≤ t−2(β + 1)Pt(N0, t) → 0 as t → 0, i.e. (4). It remains to verify (3). Using the
inequality (a+ b+ c)2 ≤ 4 · (a2 + b2 + c2) and (7) we have for 0 < |t| < ε the estimate

∫ (
2
t

(
L̃

1/2
0,t − 1

)− ḣβ

)2

dRβ
0 =

1∑
δ=−1

∫ (
2
t

(
L

1/2
0,t (x, δ)− 1

)− ḣβ(x, δ)
)2

h0(x, δ)dµ(x)

≤ 4 · (β + 1)

(∫ (
2
t

(
L

1/2
0,t − 1

)− L̇

)2

(1 − F0)β(1 −G) dP0

+
∫ (

2
t

((
1− Ft

1− F0

)β/2

− 1
)
− β

∫
(·,∞)

L̇P0

1− F0

)2

(1 − F0)β(1 −G) dP0

+
∫ (

2
t

((
1− Ft

1− F0

)β/2

− 1
)(

L
1/2
0,t − 1

))2

(1− F0)β(1−G) dP0

)

+
∫ (

2
t

((
1− Ft

1− F0

) β+1
2

− 1
)
− (β + 1)

∫
(·,∞) L̇P0

1− F0

)2

(1− F0)β+1 dQ

= 4 · (β + 1)
(
I1(t) + I2(t) + I3(t)

)
+ I4(t),

so it suffices to show that limt→0 Ij(t) = 0, i = 1, 2, 3, 4. The L2-differentiability of the distribution family
F gives

0 ≤ I1(t) ≤
∫ (

2
t
(L1/2

0,t − 1)− L̇

)2

dP0 → 0 as t→ 0.

Let us consider I2(t). For arbitrary chosen ξ > 0 lemma 5.3 implies the existence of ε̃ with 0 < ε̃ ≤ ε,
such that ∣∣∣∣∣F0(x) − Ft(x)

t
−
∫

(x,∞)

L̇ dP0

∣∣∣∣∣ ≤ ξ

holds for all 0 < |t| ≤ ε̃ and all x ∈ R. This fact is used to construct a function dominating the integrand,
so that Lebesgue’s theorem gives limt→0 I2(t) = 0. The estimate (a+ b)2 ≤ 2(a2 + b2) yields∣∣∣∣∣∣

(
2
t

((
1− Ft

1− F0

)β/2

− 1
)
− β

∫
(·,∞)

L̇P0

1− F0

)2

(1 − F0)β(1 −G)

∣∣∣∣∣∣ ≤
2(1−G)

(
2
t

(
(1− Ft)

β
2 − (1− F0)

β
2
))2

︸ ︷︷ ︸
m1(t)

+2β2(1−G)

(∫
(·,∞)

L̇ dP0

)2

(1− F0)β−2

︸ ︷︷ ︸
m2(t)

.
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For m1(t) we get using (i), (ii) and the Cauchy-Schwarz-inequality

m1(t) ≤ 8M2(β/2)(1−G)
(
F0 − Ft

t

)2

≤ 8M2(β/2)(1−G)

(
F0 − Ft

t
−
∫

(·,∞)

L̇ dP0 +
∫

(·,∞)

L̇ dP0

)2

≤ 16M2(β/2)(1−G)

(F0 − Ft

t
−
∫

(·,∞)

L̇dP0

)2

+

(∫
(·,∞)

L̇dP0

)2


≤ 16M2(β/2)(1−G)
(
ξ2 + (1− F0) · EP0(L̇

2)
)
.

This function is obviously integrable with respect to P0. Applying the Cauchy-Schwarz-inequality to
m2(t) yields another function that is P0-integrable.

m2(t) ≤ 2β2(1−G)(1 − F0)β−1 · EP0(L̇
2) ≤ β2(1 −G)(1 +Kβ−1) · EP0(L̇

2).

Finally, a Taylor-expansion at t = 0 using lemma 5.3 shows

lim
t→0

(
2
t

((
1− Ft

1− F0

)β/2

− 1
)
− β

∫
(·,∞)

L̇P0

1− F0

)
= 0 [P0],

by Lebesgue’s theorem we conclude limt→0 I2(t) = 0. Concerning I3(t), for arbitrary ξ > 0 it exists ε̃
with 0 < ε̃ ≤ ε, such that |Ft(x)− F0(x)| ≤ ξ for all x ∈ R and 0 < t ≤ ε̃, s. lemma 5.3. By applying (i),
(ii) and Vitali’s theorem it results

0 ≤ lim sup
t→0

I3(t)

= lim sup
t→0

∫ (
(1− Ft)

β
2 − (1− F0)

β
2
)2(2

t
(L1/2

0,t − 1)
)2

(1−G) dP0

≤ lim sup
t→0

M(β/2)2
∫ (

F0 − Ft

)2(2
t
(L1/2

0,t − 1)
)2

(1−G) dP0

≤ lim
t→0

M(β/2)2ξ2

∫ (
2
t
(L1/2

0,t − 1)
)2

dP0

≤M(β/2)2ξ2EP0(L̇
2).

Since ξ was arbitrary, limt→0 I3(t) = 0 follow from ξ ↓ 0. I4(t) can be dealt with analogue to I2(t).

The condition τG < τF0 has a practical interpretation. If one models the time between the entry of
a participant in a case study till the end of the study by the non-informative censoring time then the
condition means that a participant can live longer than the duration of the study with positive probability.
A condition which seems to be not too unrealistic.

3 Asymptotically optimal rank and permutation tests

This section contains the main results of this paper. Rank and permutation tests are developed and their
optimality is discussed. However, before doing so, we need some more notation. Rn := (Rn,1, . . . , Rn,n)
denotes the rank vector of the observations Xn,1, . . . , Xn,n, whereas the rank of the i-th observation is
given by Rn,i :=

∑n
j=1 1[0,∞)(Xn,i−Xn,j). The inverse rank vector Dn := (Dn,1, . . . , Dn,n) is defined by

the identities Rn,Dn,i = Dn,Rn,i = i, i = 1, . . . , n. The order statistic of the observations and the order
statistic of the censoring indicators are defined byXn,↑ :=

(
Xn:1, . . . , Xn:n

)
:=

(
Xn,Dn,1 , . . . , Xn,Dn,n

)
and

8



3 Asymptotically optimal rank and permutation tests

∆n,↑ :=
(
∆n:1, . . . ,∆n:n

)
:=
(
∆n,Dn,1 , . . . ,∆n,Dn,n

)
. One easily proves that the r.v.s Rn and (Xn↑,∆n↑)

are s.i. under Rβ
n,0. More precisely we have

Rβ
n,0(Rn = r) =

1
n!

, r ∈ Sn, and Rβ
n,0(Rn,i = k) =

1
n
, k ∈ {1, . . . , n}, (11)

whereas Sn denotes the set of permutations of the numbers 1, . . . , n.

In the last section we saw that the asymptotically optimal sequences of tests contained the model param-
eter β > 0. Thus, for deriving tests it is essential to estimate this parameter. An important condition
to prove consistency of the following estimator is that an observation remains uncensored with positive
probability .

3.1 Lemma. Define pk = Rβ
n,0

({∆n,i = k}), k ∈ {−1, 0, 1}, and suppose p1 > 0, then it holds p0 = βp1,
cf. Gather and Pawlitschko (1998) [3, Lemma 3.1]. With some β̃ ≥ 0 and with

p̂n,k =
1
n

n∑
i=1

1{k}(∆n:i) =
1
n

n∑
i=1

1{k}(∆n,i), k ∈ {−1, 0, 1},

an estimator of β is given by

β̂n =
{

p̂n,0/p̂n,1, p̂n,1 > 0,
β̃, p̂n,1 = 0,

and it holds that β̂n −→ β in Rβ
n,t{cn,i}-probability for all t ∈ R.

Proof. Corollary 2.3 implies that the consistency needs to be proved under H ′
0 , which immediately results

from the weak law of large numbers.

In the sequel we assume that b : ([0, 1],B∩ [0, 1])→ (R,B) is a bounded function and that the set D(b) =
{u ∈ (0, 1) | b is discontinuous in u} is countable. Furthermore, we define B : ([0, 1],B ∩ [0, 1])→ (R,B)
by u �→ ∫

(u,1)
b dλ · (1 − u)−1 · 1[0,1)(u). Obviously, B is bounded for all u ∈ [0, 1] and continuous for all

u ∈ (0, 1). For n ≥ 2 let bn,i = bn,i(Xn,↑,∆n,↑) and Bn,i = Bn,i(Xn,↑,∆n,↑), i = 1, . . . , n, be scores that
depend at most on the order statistics Xn,↑ and ∆n,↑ such that score-functions bn(t) = bn,
nt�, t ∈ [0, 1]
and Bn(t) = Bn,
nt�, t ∈ [0, 1], �u� := inf{z ∈ Z | z ≥ u}, satisfy the condition

lim
n→∞ERβ

n,0

(∫
(0,1)

(bn − b ◦ F0 ◦H−1)2 dλ

)
= 0 and lim

n→∞ERβ
n,0

(∫
(0,1)

(Bn −B ◦ F0 ◦H−1)2 dλ

)
= 0,

(12)
whereas H(x) = Rβ

n,0(Xn,i ≤ x) = 1− (1− F0(x))β+1(1−G(x)) is the c.d.f. of Xn,i under H0 and H−1

is the pseudo-inverse of H . The next lemma yields score-functions satisfying the condition (12).

3.2 Lemma. Define

b̂n(u) = b ◦ F̂n ◦ Ĥ−1
n (u) and B̂n(u) =

∫
(F̂n◦Ĥ−1

n (u),1)
b dλ

1− F̂n ◦ Ĥ−1
n (u)

· 1[0,1)(F̂n ◦ Ĥ−1
n (u))

for all u ∈ [0, 1], whereas F̂n is an estimator of the c.d.f. F0 such that ‖F̂n − F0‖[0,τH ] := sup{|F̂n(x) −
F0(x)| : x ∈ [0, τH ]} → 0 in Rβ

n,0-probability and F̂n(x) = 0 [Rβ
n,0] for all x < inf{x | F0(x) > 0}. Ĥ−1

n

is the pseudo-inverse of the empirical distribution function of (Xn,1, . . . , Xn,n). The functions b̂n and B̂n

are indeed score functions with the scores b̂n,i = b̂n(i/(n+ 1)) and B̂n,i = B̂n(i/(n+ 1)), i = 1, . . . , n. If
the condition D(b) ∩K(F0) = ∅, K(F0) = {u ∈ (0, 1) | ∃x1 < x2 such that F0(x1) = F0(x2) = u}, holds
true then b̂n and B̂n satisfy the condition (12).

Proof. Ĥ−1
n (u) = Xn:i, for all u ∈ ( i−1

n , i
n ], implies that b̂n and B̂n are score functions, i.e. b̂n(u) = b̂n,
nu�

and B̂n(u) = B̂n,
nu�, u ∈ (0, 1). In a first step it is proved that
∫
(0,1)

(̂bn − b ◦ F0 ◦H−1)2 dλ → 0 in

9
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Rβ
n,0-probability. Since this integral is bounded, Lebesgue’s theorem gives

lim
n→∞ERβ

n,0

(∫
(0,1)

(̂bn − b ◦ F0 ◦H−1)2 dλ

)
= 0.

Without loss of generality it can be assumed that the r.v.s (Xn,i,∆n,i), i = 1, . . . , n, n ≥ 2 are
defined on the probability space {�∞

n=2 Ωn,
⊗∞

n=2 An, P :=
⊗∞

n=2 Rβ
n,0}. Therefore it is sufficient

to show that there is a subsequence {nk} in every subsequence of the natural numbers such that∫
(0,1)

(̂bnk
− b ◦ F0 ◦H−1)2 dλ→0 [P ].

In every subsequence of the natural numbers we can find a subsequence {nk} such that

‖F̂nk
− F0‖[0,τH ] := sup{|F̂nk

(x) − F0(x)| : x ∈ [0, τH ]} → 0 [P ]

and Ĥ−1
nk

(u)→ H−1(u) [P ] for all u ∈ (0, 1)\D(H−1), whereas D(H−1) denotes the set of discontinuity
points of H−1. This gives

|F̂nk
◦ Ĥ−1

nk
(u)− F0 ◦H−1(u)| ≤ |F̂nk

◦ Ĥ−1
nk

(u)− F0 ◦ Ĥ−1
nk

(u)|+ |F0 ◦ Ĥ−1
nk

(u)− F0 ◦H−1(u)|
≤ ‖F̂nk

− F0‖[0,τH ]︸ ︷︷ ︸
−→0 [P ]

+ |F0 ◦ Ĥ−1
nk

(u)− F0 ◦H−1(u)|︸ ︷︷ ︸
−→0 [P ]

−→ 0 [P ], (13)

u ∈ (0, 1)\D(H−1), note that F0 is continuous.

Suppose it exists u ∈ (0, 1) such that F0 ◦H−1(u) = 0, set u0 = H(x0), x0 = inf{x | F0(x) > 0}. Note
H−1(u0) = x0. It holds F0 ◦H−1(u) = 0 for all u ∈ (0, u0) and 0 < F0 ◦H−1(u) < 1 for all u ∈ (u0, 1).
We have

Ĥ−1
nk

(u)→ H−1(u) < H−1(u0) = x0, for all u ∈ (0, u0)\D(H−1).

Since F̂n(x) = 0 [P ] for all x < x0 it exists k0(u) such that F̂nk
◦ Ĥ−1

nk
(u) = 0 [P ] for all k ≥ k0(u).

Consequently,
b ◦ F̂nk

◦ Ĥ−1
nk

(u)→ b(0) = b ◦ F0 ◦H−1(u) [P ].

b being continuous for all u ∈ (0, 1)\D(b) and (13) imply b̂nk
(u) → b ◦ F0 ◦ H−1(u) [P ] for all u ∈

(u0, 1)\(D(H−1)∪M), M = {u ∈ (0, 1) | F0 ◦H−1(u) ∈ D(b)}. In case it does not exist a u ∈ (0, 1) such
that F0 ◦H−1(u) = 0 the above convergence holds for all u ∈ (0, 1)\(D(H−1) ∪M).

D(b) ∩K(F0) = ∅ gives that the set M is countable. Suppose for d ∈ D(b) it exists u1, u2 ∈ (0, 1) such
that u1 �= u2 and F0 ◦H−1(ui) = d, i = 1, 2. Then either H−1(u1) = H−1(u2) or H−1(u1) �= H−1(u2).
The first contradicts the fact that H is continuous and the latter implies d ∈ K(F0). Thus, for every
d ∈ D(b) it exists exactly one u ∈ (0, 1) satisfying F0 ◦H−1(u) = d.

All in all it was proved b̂nk
(u)→ b ◦ F0 ◦H−1(u) [P ] for a.e. u ∈ (0, 1). Note that (̂bnk

− b ◦ F0 ◦H−1)2

is bounded, so Lebesgue’s theorem yields
∫
(0,1) (̂bnk

− b ◦ F0 ◦H−1)2 dλ→0 [P ].

Since B is continuous on (0, 1) and bounded on [0, 1] one shows with the same arguments as above

lim
n→∞ERβ

n,0

(∫
(0,1)

(B̂n −B ◦ F0 ◦H−1)2 dλ

)
= 0.

3.3 Remark. The condition D(b) ∩K(F0) = ∅ is satisfied, if either F0 is a strictly monotone function
on [0, τH ] or b is continuous on (0, 1). A suitable estimator of the c.d.f. of F0 is given by the modified
Kaplan-Meyer estimator introduced by Gather and Pawlitschko (1998) [3],

F̂n(t) = 1−
(

n∏
i=1

(
1− 1{0,1}(∆n:i)

n+ 1− i

)1(−∞,t](Xn:i)
)p̂n

, p̂n =
p̂n,1

p̂n,1 + p̂n,0
.

This estimator satisfies the conditions ‖F̂n−F0‖[0,τH ] → 0 in Rβ
n,0-probability, cf. Gather and Pawlitschko

(1998) [3, Theorem 4.1], and F̂n(x) = 0 [Rβ
n,0] for all x < inf{x | F0(x) > 0} of lemma 3.2.
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3 Asymptotically optimal rank and permutation tests

Having proposed appropriate scores we can concentrate on a rank statistic. A rank statistic for testing
problems is given by

Ŝn(bn, Bn) =
n∑

i=1

cn,i

(
1{0,1}(∆n,i)

(
bn,Rn,i + β̂nBn,Rn,i

)
+ 1{−1}(∆n,i)(1 + β̂n)Bn,Rn,i

)
.

Of course, the structure of this statistic is closely related to the L2-derivative given in (6). Since we
want to compute the asymptotic power function of tests depending on the statistic Ŝn(bn, Bn) it is
necessary to compute the asymptotic distribution of the statistic Ŝn(bn, Bn). For doing so we need
a bit more notation. Let qi : ((0, 1), (0, 1) ∩ B) → (R,B), i = 1, 2, 3, be functions given by qi(u) =
ERβ

n,0

(
1{2−i}(∆n,1) | Un,1 = u

)
, i = 1, 2, 3. With L̇ of theorem 2.4 we define the optimal score generating

functions b̃, B̃ : ([0, 1], [0, 1] ∩ B)→ (R,B),

b̃(u) = L̇ ◦ F−1
0 (u) · 1(0,1)(u) and B̃(u) =

∫
(u,1)

L̇ ◦ F−1
0 dλ

1− u
· 1[0,1)(u).

And for convenience let us introduce the abbreviations

k̃1 = b̃ ◦ F0 ◦H−1 + βB̃ ◦ F0 ◦H−1 and k̃2 = (1 + β) · B̃ ◦ F0 ◦H−1.

Note the close connection of these functions and the L2-derivative given in theorem 2.4 as well as the
functions stated in lemma 3.2. If one considers the situation in theorem 2.5 one sees that b̃ and B̃ do
not necessarily depend on F0, i.e. the foot-point of the underlying parametric distribution family. For
the next proof , we employ the following auxiliary statistic S∗

n(b, B) =
∑n

i=1 cn,i
(
1{0,1}(∆n,i)

(
b ◦ F0 ◦

H−1(Un,i)+βB ◦F0 ◦H−1(Un,i)
)
+1{−1}(∆n,i)(1+β)B ◦F0 ◦H−1(Un,i)

)
, whereas Un,i = H(Xn,i). Note

that the Un,i, i = 1, . . . , n, are s.i. r.v.s that are uniformly distributed on (0, 1) under H ′
0 . Furthermore,

the abbreviations k1 = b ◦ F0 ◦H−1 + βB ◦ F0 ◦H−1 and k2 = (1 + β) ·B ◦ F0 ◦H−1 are used.

3.4 Theorem. For the test statistic Ŝn(bn, Bn) it holds

LRβ
n,t{cn,i}

(
Ŝn(bn, Bn)

) L−→ N (t · µb, σ
2
b ) as n→∞,

whereas

µb :=
∫

(0,1)

k1k̃1q1 + k1k̃1q2 + k2k̃2q3 dλ

and

σ2
b :=

∫
(0,1)

k2
1q1 + k2

1q2 + k2
2q3 dλ−

(∫
(0,1)

k1q1 + k1q2 + k2q3 dλ

)2

.

Proof. Because of (2) and (5) we can apply Satz 5.112 in Witting and Müller-Funk (1995) [10, p. 112]
obtaining

LRβ
n,0

(
S∗
n(b, B)

) L−→ N (0, σ2
b ) as n→∞ (14)

with

σ2
b = VarRβ

n,0

(
1{0,1}(∆n,1) · k1(Un,1) + 1{−1}(∆n,1) · k2(Un,1)

)
= ERβ

n,0

(
1{1}(∆n,1) · k2

1 + 1{0}(∆n,1) · k2
1 + 1{−1}(∆n,1) · k2

2

)2
−
(
ERβ

n,0

(
1{1}(∆n,1) · k1 + 1{0}(∆n,1) · k1 + 1{−1}(∆n,1) · k2

))2

=
∫

(0,1)

k2
1q1 + k2

1q2 + k2
2q3 dλ−

(∫
(0,1)

k1q1 + k1q2 + k2q3 dλ

)2

.
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By Slutsky’s lemma and (14) it results

LRβ
n,0

(
t · S∗

n(̃b)
) L−→ N (0, t2σ2

b̃
).

Since the statistic in question is linear it holds

S∗
n(xb+ yt̃b, xB + ytB̃) = x · S∗

n(b, B) + y · tS∗
n(̃b, B̃)

for all x, y ∈ R. In particular we have

LRβ
n,0

(
x · S∗

n(b, B) + y · t · S∗
n(̃b, B̃)

) L−→ N (0, σ2
xb+yt̃b

),

because of (14). Applying the Cramér-Wold-device yields

L
(
S∗
n(b, B), t · S∗

n(̃b, B̃)
)T L−→ N

((
0
0

)
,

(
σ2
b t · µb

t · µb t2σ2
b̃

))
as n→∞,

whereas

µb = CovRβ
n,0

(
1{0,1}(∆n,1)k1(Un,1) + 1{−1}(∆n,1)k2(Un,1),1{0,1}(∆n,1)k̃1(Un,1) + 1{−1}(∆n,1)k̃2(Un,1)

)
= ERβ

n,0

(
1{0,1}(∆n,1)k1(Un,1)k̃1(Un,1) + 1{−1}(∆n,1)k2(Un,1)k̃2(Un,1)

)
− ERβ

n,0

(
1{0,1}(∆n,1)k1(Un,1) + 1{−1}(∆n,1)k2(Un,1)

)·
ERβ

n,0

(
1{0,1}(∆n,1)k̃1(Un,1) + 1{−1}(∆n,1)k̃2(Un,1)

)
︸ ︷︷ ︸

(∗)
= 0

=
∫

(0,1)

k1k̃1q1 + k1k̃1q2 + k2k̃2q3 dλ.

The equality (∗) is a consequence of

S∗
n(̃b, B̃) =

n∑
i=1

cn,iḣβ(Xn,i,∆n,i)

and
ERβ

n,0

(
1{0,1}(∆n,1) · k̃1(Un,1) + 1{−1}(∆n,1) · k̃2(Un,1)

)
= ERβ

n,0
(ḣβ(Xn,1,∆n,1)) = 0,

cf. Witting (1985) [9, Hilfssatz 1.178, p. 164].

S∗
n(̃b, B̃), n ≥ 2, is a central sequence of a sequence of asymptotically normal experiments, s. theorem 2.1,

thus it holds

log

(
dRβ

n,t{cn,i}
dRβ

n,0

)
−
(
t · S∗

n(̃b, B̃)− 1
2
t2σ2

b̃

)
Rβ

n,0−→ 0 as n→∞.

Using lemma 5.4 and Slutsky’s lemma one obtains

L

(
Ŝn(b, B), log

(
dRβ

n,t{Cn,i}
dRβ

n,0

))T

L−→ N

((
0

− 1
2σ

2
b̃

)
,

(
σ2
b t · µb

t · µb t2σ2
b̃

))
as n→∞.

Le Cam’s third lemma, cf .Witting and Müller-Funk (1995) [10, Korollar 6.139, p. 329], yields the
assertion

LRβ
n,t{cn,1}

(
Ŝn(b, B)

) L−→ N (tµb, σ
2
b ).
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3 Asymptotically optimal rank and permutation tests

3.5 Corollary. The sequence of tests (ϕn(bn, Bn))n∈N defined by

ϕn(bn, Bn) =
{

1,
0, Ŝn(bn, Bn)

≥
<

uα ·
√

σ2
b

is asymptotically of the level α ∈ (0, 1) and has the asymptotic power function

lim
n→∞ERβ

n,t{cn,i}
(ϕn) = Φ

(
−uα + t

µb√
σ2
b

)
. (15)

Suppose it exists some η > 0 such that ηb = b̃ then the sequence of tests is asymptotically optimal for the
testing problem H ′ vs. K ′.

Proof. The first assertion is an immediate consequence of theorem 3.4. The existence of some η > 0 such
that ηb = b̃ implies ηB = B̃. Since the rank statistic in question is linear we have the following identities
σ2
b = σ2

b̃
· η2 and µb = µb̃ · η. Moreover, using the definitions of b̃ and B̃ it holds µb̃ = σ2

b̃
= VarRβ

0
(ḣβ).

Hence, the test sequence (ϕn(bn, Bn))n∈N has the asymptotic power function

Φ

(
−uα + t

µb√
σ2
b

)
= Φ

−uα + t
µb̃√
σ2
b̃

 = Φ
(
−uα + t

√
VarRβ

0
(ḣβ)

)
.

That is to say the asymptotic power function of an asymptotically optimal sequence of tests, s. corol-
lary 2.2.

However, this sequence of tests still depends on the unknown variance σb. The next lemma yields a con-
sistent estimator of this variance which can be employed to derive under H0 asymptotically distribution
free tests.

3.6 Lemma. Using the abbreviation

V̂n(i) = 1{0,1}(∆n,i)
(
bn,Rn,i + β̂nBn,Rn,i

)
+ 1{−1}(∆n,i)(1 + β̂n) ·Bn,Rn,i , (16)

a consistent estimator of the variance σ2
b is given by

σ̂2
n =

1
n

n∑
i=1

V̂ 2
n (i)−

(
1
n

n∑
i=1

V̂n(i)

)2

,

i.e. σ̂2
n → σ2

b in Rβ
n,t{cn,i}-probability for all t ∈ R.

Proof. Because of corollary 2.3 it suffices to show the assertion under H ′. Let Vn,β(i) =
1{0,1}(∆n,i)

(
bn,Rn,i + βBn,Rn,i

)
+ 1{−1}(∆n,i)(1 + β) · Bn,Rn,i and Wn,β(i) = 1{0,1}(∆n,i)

(
b ◦ F0 ◦

H−1(Un,i) + βB ◦ F0 ◦ H−1(Un,i)
)
+ 1{−1}(∆n,i)(1 + β) · B ◦ F0 ◦ H−1(Un,i), i = 1, . . . , n, be auxil-

iary r.v.s. The weak law of large numbers yields

1
n

n∑
i=1

Wn,β(i)2 −
(
1
n

n∑
i=1

Wn,β(i)

)2
Rβ

n,0−→ VarRβ
n,0

(
Wn,β(1)

)
= σ2

b ,

so that by showing

1
n

n∑
i=1

Vn,β(i)2 − 1
n

n∑
i=1

Wn,β(i)2
Rβ

n,0−→ 0,

(
1
n

n∑
i=1

Vn,β(i)

)2

−
(
1
n

n∑
i=1

Wn,β(i)

)2
Rβ

n,0−→ 0 (17)

and
1
n

n∑
i=1

V̂n(i)2 − 1
n

n∑
i=1

Vn,β(i)2
Rβ

n,0−→ 0,

(
1
n

n∑
i=1

V̂n(i)

)2

−
(
1
n

n∑
i=1

Vn,β(i)

)2
Rβ

n,0−→ 0 (18)

13



Testing hypotheses under a generalized Koziol-Green model with partially informative censoring

we obtain the assertion. Using the abbreviations kn,1 = bn,Rn,1− b◦F0 ◦H−1(Un,i) and Kn,1 = Bn,Rn,1 −
B ◦ F0 ◦H−1(Un,i), (28) and (29) imply

ERβ
n,0

(
Vn,β(1)−Wn,β(1)

)2 ≤
4
(
ERβ

n,0

(
k2
n,1

)
+ β2 · ERβ

n,0

(
Kn,1

)2 + (β + 1)2 · ERβ
n,0

(
Kn,1

)2)→ 0 as n→∞. (19)

Obviously, it holds supn∈N

(
ERβ

n,0
(Vn,β(1) +Wn,β(1))2

)
< ∞, so that applying the Cauchy-Schwarz-

inequality and (19) give

ERβ
n,0

(|V 2
n,β(1)−W 2

n,β(1)|
)
= ERβ

n,0

(|V 2
n,β(1) +W 2

n,β(1)| · |V 2
n,β(1)−W 2

n,β(1)|
) ≤√

ERβ
n,0

(
Vn,β(1) +Wn,β(1)

)2 ·√ERβ
n,0

(
Vn,β(1)−Wn,β(1)

)2 → 0.

Note that under Rβ
n,0 the r.v.s (Vn,β(i),Wn,β(i)), i = 1, . . . , n, are identically distributed , s. (24) and

(25). It holds

ERβ
n,0

∣∣∣∣∣ 1n
n∑

i=1

V 2
n,β(i)−

1
n

n∑
i=1

W 2
n,β(i)

∣∣∣∣∣ = 1
n

n∑
i=1

ERβ
n,0

∣∣V 2
n,β(i)−W 2

n,β(i)
∣∣ =
ERβ

n,0

∣∣V 2
n,β(1)−W 2

n,β(1)
∣∣→ 0

implying the first part of (17). Applying the same arguments one derives the inequality

ERβ
n,0

∣∣∣∣( 1
n

n∑
i=1

Vn,β(i)
)2

−
(
1
n

n∑
i=1

Wn,β(i)
)2∣∣∣∣

= ERβ
n,0

∣∣∣∣∣
(
1
n

n∑
i=1

Vn,β(i) +
1
n

n∑
i=1

Wn,β(i)
)(

1
n

n∑
i=1

Vn,β(i)− 1
n

n∑
i=1

Wn,β(i)
)∣∣∣∣∣

≤ 1
n2

n∑
i,j=1

ERβ
n,0

∣∣(Vn,β(i) +Wn,β(i)
)(

Vn,β(j)−Wn,β(j)
)∣∣

≤ 1
n2

n∑
i,j=1

√
ERβ

n,0

(
Vn,β(i) +Wn,β(i)

)2√ERβ
n,0

(
Vn,β(j)−Wn,β(j)

)2
=
√
ERβ

n,0

(
Vn,β(1) +Wn,β(1)

)2√ERβ
n,0

(
Vn,β(1)−Wn,β(1)

)2 −→ 0,

i.e. the second part of (17). Since the sums 1
n

∑n
i=1|bn,i ·Bn,i|, 1

n

∑n
i=1 B2

n,i and
1
n

∑n
i=1 b

2
n,i are bounded,

applying lemma 3.1 to

1
n

n∑
i=1

V̂n(i)2 − 1
n

n∑
i=1

Vn,β(i)2 =
1
n

n∑
i=1

(
1{0,1}(∆n,i)(β2 − β̂2

n)B
2
n,Rn,i

+ 2(β − β̂n)bn,Rn,iBn,Rn,i

+ 1{−1}(∆n,i)
(
(1 + β)2 − (1 + β̂n)2

)
B2

n,Rn,i

)
gives the first assertion of (18). By the same arguments one shows the second part of (18).

Obviously, corollary 3.5 also holds for the sequence of tests φn = 1(Ŝn(bn, Bn) ≥ uα

√
σ̂2
n), n ≥ 2. In

the next step we are going to derive tests that are distribution free under H0 with finite sample sizes.
Consider the test statistic

T̂n

(
Dn, Xn,↑,∆n,↑

)
=

n∑
i=1

cn,Dn,i

(
1{0,1}(∆n:i) · (bn,i + β̂nBn,i) + 1{−1}(∆n:i) · (1 + β̂n) · Bn,i

)
.
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3 Asymptotically optimal rank and permutation tests

Clearly, it holds T̂n(Dn, Xn,↑,∆n,↑) = Ŝn(bn, Bn). Note that the estimators β̂n, bn,i andBn,i, i = 1, . . . , n,
merely depend on the order statistics Xn,↑ and ∆n,↑. Given the order statistics, the distribution of
T̂n(Dn, Xn,↑,∆n,↑) is just dependent on the inverse rank vector which is uniformly distributed on the
set of Permutations Sn, i.e. the distribution of the statistic is principally known and can easily be
approximated by simulations. This leads to the introduction of conditional permutation tests.

Let Fn,xn,↑δn,↑ denote the c.d.f. of the distribution LRβ
n,0

(
T̂n(Dn, xn,↑, δn,↑)

)
, δn,↑ ∈ {−1, 0, 1}n and

xn,↑ ∈ R
n
<. For every α ∈ (0, 1) there are real numbers γn

α(xn,↑, δn,↑) and cnα(xn,↑, δn,↑) satisfying the
condition ∫

1{cn
α(xn,↑,δn,↑)} + γn

α(xn,↑, δn,↑) · 1(cn
α(xn,↑,δn,↑),∞) dFn,δn,↑ = α.

The sequence of tests defined by

ψn(bn, Bn, Xn,↑, Dn,∆n,↑) =


1,

γn
α(Xn,↑,∆n,↑),

0,
T̂n(Dn, Xn,↑,∆n,↑)

>
=
<

cnα(Xn,↑∆n,↑)

is called conditional permutation test of the level α. Obviously, this test holds the level, i.e.
ERβ

n,0

(
ψn(bn, Bn, Dn, Xn,↑,∆n,↑)

)
= α, for all n ≥ 2. The next result enables us to characterize the

asymptotic properties of these tests.

3.7 Theorem. If σ2
b > 0 it holds for all t ∈ R that

sup
y∈R

∣∣∣∣∣Fn,Xn,↑∆n,↑(y)− Φ

(
y√
σ2
b

)∣∣∣∣∣−→0 in Rβ
n,t{cn,i}-probability.

Proof. The proof given here relies on the same ideas as the proof of theorem 5.2 in Neuhaus (1988)
[7]. Because of corollary 2.3 it suffices to verify the assertion under H ′

0 . Without loss of generality,
we can assume the r.v.s (Xn,i,∆n,i), i = 1, . . . , n are defined on the probability space (Ω,A , P ) =
{�∞

n=2 Ωn,
⊗∞

n=2 An,
⊗∞

n=2 Rβ
n,0}

For the proof another probability space (Ω′,A ′, P ′) is needed on which the r.v.s Un,i, i ≤ 1 ≤ n, n ≥ 2,
are defined. It is assumed that Un,1, . . . , Un,n are i.i.d. and uniformly distributed on (0, 1). By R′

n =
(R′

n,1, . . . , R
′
n,n) andD′

n = (D′
n,1, . . . , D

′
n,n) the rank vector and the inverse rank vector of (Un,1, . . . , Un,n)

are denoted. Analogue to equation (16) we define for every ω ∈ Ω, i ∈ {1, . . . , n} and n ≥ 2 the
quantities vn(i, ω) = 1{0,1}(∆n:i(ω)) · (bn,i(ω)+ β̂n(ω)Bn,i(ω))+1{−1}(∆n:i(ω)) · (1+ β̂n(ω)) ·Bn,i(ω) and
vn(ω) = 1

n

∑n
i=1 vn(i, ω). It holds 1

n

∑n
i=1 (vn(i, ·)− vn(·))2 = σ̂2

n, whereas σ̂2
n is the variance estimator

of lemma 3.6.

Because of lemma 3.1, lemma 3.6 and (12) it exists a subsequence {nk} in every subsequence of the
natural numbers and a set N ∈ A , P (N) = 1, such that following assertions hold true:

lim
k→∞

∫
(0,1)

(bnk
− b ◦ F0 ◦H−1) dλ = 0, lim

k→∞

∫
(0,1)

(Bnk
−B ◦ F0 ◦H−1) dλ = 0,

lim
k→∞

β̂nk
(ω) = β and lim

k→∞
1
nk

nk∑
i=1

(vnk
(i, ω)− vnk

(ω))2 = σ2
b

for all ω ∈ N .

For fixed ω ∈ N we define the linear statistic Tn(ω) =
∑n

i=1 cn,ivn(�n · Un,i� + 1, ω), n ≥ 2 and show
by the central limit theorem of Lindeberg-Feller, cf. Witting and Müller-Funk (1995) [10, Korollar
5.102, p. 103], that it converges in distribution to some normal distribution. Because of (2), (5) and
Un,i, 1 ≤ i ≤ n, being i.i.d. it holds for all n ≥ 2 EP ′

(
Tn(ω)

)
= 0 and s2

n := VarP ′
(
Tn(ω)

)
=∑n

i=1 c2n,iVarP ′
(
vn(�n · Un,i� + 1, ω)

)
= VarP ′

(
vn(R′

n,1, ω)
)
= 1

n

∑n
i=1 (vn(i, ω)− vn(ω))

2, whereas the
fact �nUn,i + 1� ∼ R′

n,i is used. In particular it holds

lim
k→∞

s2
nk

= σ2
b . (20)
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Testing hypotheses under a generalized Koziol-Green model with partially informative censoring

In the next step the Lindeberg condition is verified. For ε > 0 we have the estimate |vn(�nu+ 1�, ω)| ≤
|bn,�nu+1�|+ (1+ β̂n(ω)) · |Bn,�nu+1�| = |bn(u, ω)|+ (1+ β̂n(ω))|·Bn(u, ω)| =: wn(u, ω) for a.e. u ∈ (0, 1).
Since Un,1, . . . , Un,n are i.i.d. for n ≥ 2 it holds

1
s2
n

n∑
i=1

∫
{|cn,ivn(�nUn,i+1�,ω)|≥

√
s2n}

c2n,iv
2
n(�nUn,i + 1�, ω) dP ′

=
1
s2
n

n∑
i=1

c2n,i

∫
{max1≤i≤n{|cn,i|}·wn(Un,1)≥

√
s2n}

w2
n(Un,i, ω) dP ′

=
1
s2
n

∫
{max1≤i≤n{|cn,i|}·wn(Un,1)≥

√
s2n}

w2
n(Un,1, ω) dP ′

︸ ︷︷ ︸
In

.

It holds limk→∞ Ink
= 0, since firstly the functions bn and Bn converge to the functions b and B in

quadratic mean, secondly limk→ s2
nk

= σ2
b > 0 and thirdly (5) holds. Thus, the Lindeberg condition is

valid and the central limit theorem gives

LP ′
(
Tnk

(ω)
) L→ N (0, σ2

b ) as k →∞. (21)

For the next step in the proof we need the following assertion

1√
nk

max
1≤i≤nk

|vnk
(i, ω)− vnk

(ω)| → 0. (22)

It holds

1√
nk

max
1≤i≤nk

|vnk
(i, ω)− vnk

(ω)| ≤ 1√
nk

max
1≤i≤nk

|vnk
(i, ω)|+ 1√

nk
max

1≤i≤nk

|vnk
(ω)| ≤

2
1√
nk

max
1≤i≤nk

|vnk
(i, ω)| ≤ (1 + β̂nk

(ω)) · 1√
nk

max
1≤i≤nk

|Bnk,i(ω)|+
1√
nk

max
1≤i≤nk

|bnk,i(ω)| =: znk
(ω).

Since nk
−1/2 max{|bnk,i(ω)| : i = 1, . . . , nk} and nk

−1/2 max{|Bnk,i(ω)| : i = 1, . . . , nk} converge to 0 as
k→∞, cf. Neuhaus (1988) [7, Proof of theorem 5.2], we have limk→∞ znk

(ω) = 0.

Because of (20) and (22) theorem 3.1 in Hájek (1961) [4] can be applied and one obtains

EP ′

(
nk∑
i=1

cnk,ivnk
(R′

nk,i
, ω)− Tnk

(ω)

)2

−→ 0 as k →∞.

This result and (21) lead to

LP ′
( nk∑
i=1

cnk,ivnk
(R′

nk,i
, ω)

) L−→ N (0, σ2
b ) as k →∞. (23)

With xn,↑ = Xn,↑(ω) ∈ R
n
< and δn,↑ = ∆n,↑(ω) ∈ {−1, 0, 1}n it holds the following identities

LP ′
( n∑
i=1

cn,ivn(R′
n,i, ω)

)
= LP ′

( n∑
i=1

cnvn(D′
n,i, ω)

)
=

LP ′
(
T̂n(D′

n, Xn,↑(ω)∆n,↑(ω)
)
= LP

(
T̂n(Dn, xn,↑, δn,↑)

)
.

The statistic T̂nk
(Dnk

, xnk,↑, δnk,↑) has c.d.f. Fnk,Xnk,↑(ω)∆nk,↑(ω), therefore (23) implies

sup
x∈R

∣∣∣∣∣Fnk,Xnk,↑(ω)∆nk,↑(ω)(x) − Φ
(

x√
σ2
b

)∣∣∣∣∣→ 0 as k →∞,

by subsequence principle it results the assertion.
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4 Examples and Simulations

3.8 Corollary. It holds cnα(Xn,↑,∆n,↑) −→ uα ·
√

σ2
b in Rβ

n,t{cn,i}-probability for all t ∈ R.

Proof. Since Φ is a strictly monotone function, Φ−1 is a continuous function. Theorem 3.7 and Satz 5.76
in Witting and Müller-Funk (1995) [10, p. 71] give the result.

One easily sees that the sequences of tests ϕn and ψn, n ≥ 2, are asymptotically equivalent, therefore the
assertions of corollary 3.5 also hold for the sequence of tests ψn, n ≥ 2.

4 Examples and Simulations

In this section we present some examples and the results of our simulations. Typical families of survival
time distributions are given by families of Weibull distributions.

4.1 Example. Let W (α, γ) be a distribution on (R,B) with Lebesgue density

f(x) = αγxγ−1 exp (−αxγ) · 1(0,∞)(x) [λ], α, γ > 0.

W (α, γ) is obviously a Weibull distribution. Satz 1.194 in Witting (1985) [9, p. 179] gives that the
distribution family {W (α − t, γ) | t ∈ (−α, α)} is L2(W (α, γ))-differentiable with L2-derivative L̇(x) =
xγ − 1/α [W (α, γ)]. Assume that the non-informative censoring time distribution is bounded, i.e. τG ≤
c ∈ (0,∞). Theorem 2.6 gives that the distribution family Rβ is L2(R

β
0 )-differentiable with L2-derivative

ḣβ(x, δ) = 1{0,1}(δ)
(
xγ − 1

α

)
+ 1{−1}(δ)xγ + βxγ [Rβ

0 ].

Set c̃ = F0(c), F0(x) := (1− exp(−α · xγ)) · 1(0,∞)(x). It holds the identity

ḣβ(x, δ) = 1{0,1}(δ)̃b ◦ F0(x) + 1{−1}(δ)B̃ ◦ F0 + βB̃ ◦ F0 [Rβ
0 ],

whereas b̃, B̃ : ((0, 1),B ∩ (0, 1))→ (R,B)

b̃(u) := − 1
α
·
{

1 + log(1− u), u ≤ c̃
log(1 − c̃), u > c̃

B̃(u) := − 1
α
·
{

log(1 − u), u ≤ c̃
log(1− c̃), u > c̃

.

Because of corollary 3.5 we can substitute the functions b and B for b̃ and B̃

b(u) := −
{

1 + log(1 − u), u ≤ c̃
log(1− c̃), u > c̃

B(u) := −
{

log(1 − u), u ≤ c̃
log(1− c̃), u > c̃

Applying the results of the previous section we can derive asymptotically optimal rank and permutation
tests. In the case that the distributions of the survival times belong to a family of Weibull distributions
{W (α− t, γ) | t ∈ (−α, α)} that satisfy the condition W (α, γ){(0, τG]} ≤ c̃ the sequences of test φn and
ψn, n ≥ 2, are asymptotically optimal. Note, the functions b and B do not depend on the parameters of
the Weibull distribution family.

In the simulations observations X = ((Xn,i,∆n,i), = 1, . . . , n) satisfying L(X) = Rβ
t{cn,i}, t ∈ {−0.9+ j ·

0.1 | j = 0, . . . , 60}, were generated. The power functions of the different tests are estimated with these
observations. For given t the test was evaluated 20 000 times. The tests employed are of the level 5%.
Note that n = n1 + n2 is the size of the pooled sample.

4.2 Simulation. In this simulation the distribution of the survival times belongs to the distribution
family {W (1 − t, 1) | t ∈ (−1, 1)}, i.e. the survival times are distributed according to an exponential
law. The non-informative censoring time is uniformly distributed on the interval (0, 4), β = 1.3 and
n1 = n2 = 50. In this situation the optimal parametric test is used, s. corollary 2.3.
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Fig. 1: n1 = n2 = 50
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Fig. 2: n1 = n2 = 50

Figure 1 shows the asymptotic power function (solid line) and the simulated power function of the optimal
parametric test (dashed line). In figure 2 the difference between the asymptotic and the simulated power
function is displayed, i.e. Φ(−u0.05 + tj · σb)− η̂(tj), tj = −0.9 + j · 0.1, j = 0, . . . , 60, whereas η̂ denotes
the simulated power function. One sees that the simulated power function fits well the asymptotic power
function.

4.3 Simulation. The same setting as in simulation 4.2 is used. Instead of the parametric test, the
optimal rank test φn, with estimated scores, estimated variance and the estimated model parameter β is
utilized.
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Fig. 3: power functions
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Fig. 4: n1 = n2 = 50
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Fig. 5: n1 = n2 = 100
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Fig. 6: n1 = n2 = 200

Figure 3 shows the asymptotic power function and the simulated power functions of the optimal rank
test for different sample sizes. In the figures 4-6 the differences between the asymptotic power function
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and the simulated power functions are displayed. With increasing sample sizes one observes that this
difference decreases. Note that under H ′

0 about 11% of the observations are non-informatively censored.

4.4 Simulation. In this simulation the same setting as in simulation 4.3 is used. But this time the
distribution of the maximum of two s.i., uniformly on the interval (0, 4) distributed r.v.s is used as
law of the non-informative censoring time. In this situation only about 3% of the observations are
non-informatively censored. This leads to significant gain of power of the rank test in comparison to
simulation 4.3.
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Fig. 7: power functions
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Fig. 8: n1 = n2 = 50

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-1 0 1 2 3 4 5

Fig. 9: n1 = n2 = 100
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Fig. 10: n1 = n2 = 200

Again, the difference between the simulated power function and the asymptotic power functions decreases
with increasing sample sizes, s. figures 8 - 10.

4.5 Simulation. In the setting of simulation 4.3 the properties of the optimal rank test are investigated,
if the control and the test group have different sizes.
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Fig. 11: power functions
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Fig. 12: n1 = 75 n2 = 25
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In the case that there are more observations in the control group, the power of test the is better in
comparison to simulation 4.3, s. figure 11 and 12. If the control group is smaller than the test group
we see a decrease in the power of the optimal rank test. However, the difference between the simulated
power function and the asymptotic power function decreases with increasing number of observations.
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Fig. 13: power functions
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Fig. 14: n1 = 25 n2 = 75
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Fig. 15: n1 = 50 n2 = 150
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Fig. 16: n1 = 100 n2 = 300

4.6 Simulation. In the situation of simulation 4.5 the optimal permutation test instead of the optimal
rank test is used. For estimating the 95% quantile of the permutation test 6000 random permuations
were generated. In figure 17 we see the simulated power functions of the rank test (solid line) and the
permutation in the case n1 = 75 and n2 = 25. In figure 18 the difference between the simulated power
functions of the permutation test and the rank test is displayed.
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Fig. 17: power functions
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Fig. 18: n1 = 75 n2 = 25

The results for sample sizes (n1 = 25 and n2 = 75) are shown in figure 19 and 20.
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Fig. 19: power functions
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Fig. 20: n1 = 25 n2 = 75

In this case there are no considerable differences between the performance of the rank and the permutation
test.

Another typical example for survival time distributions are log-logistic distributions.

4.7 Example. Let L (α, γ) denote a distribution on (R,B) with Lebesgue density

f(x) =
γ

x
·
(x

α

)γ
·
(
1 +

(x

α

)γ)−2

· 1(0,∞)(x) [λ], α, γ > 0.

L (α, γ) is called a log-logistic distribution. Satz 1.194 in Witting (1985) [9, p. 179] gives that the
distribution family F = {L (α + t, γ) | t ∈ (−α, α)} is L2(L (α, γ)) with L2-derivative

L̇ = − γ

α

(
1− 2

(
1 +

(x

α

)γ)−1 (x

α

)γ)
· 1(0,∞)(x) [L (α, γ)].

Using the same theorem one verifies that the distribution family Fβ, β > 0, is L2-differentiable, hence
theorem 2.4 yields that the distribution family Rβ is L2(R

β
0 ) differentiable with L2-derivative

ḣβ(x, δ) = 1{0,1}(δ) · b̃ ◦ F0(x) + 1{−1}(δ) · B̃ ◦ F0(x) + β · B̃ ◦ F0 [Rβ
0 ],

whereas

F0(x) =
(
1 +

(x

α

)γ)−1

·
(x

α

)γ
· 1(0,∞)(x), b̃(u) =

γ

α
· (2u− 1) and B̃(u) =

γ

α
· u.

Note, F0 is the c.d.f. of L (α, γ). Because of corollary 3.5 we can substitute the functions b(u) = 2u− 1
and B(u) = u for b̃ and B̃. Applying the results of the previous section we obtain asymptotically optimal
rank and permutation tests provided that the distribution of the survival times belongs to a family of
log-logistic distributions.

4.8 Simulation. In this simulation the distribution of the survival times belongs to the distribution
family {L (1.8+ t, 2.2) | t ∈ (−1.8, 1.8)}, i.e. the survival times are distributed according to a log-logistic
law. The non-informative censoring time is uniformly distributed on the interval (0, 4), β = 1.3 and
n1 = n2 = 50. In this setting the optimal parametric test, s. corollary 2.3, and the optimal rank test φn

with estimated variance and estimated model parameter β are used. The parameters of distributions are
chosen in a way that a lot of the observations are non-informatively censored. Under H ′

0 , about 37%
of the observations are non-informatively censored. In figure 21 we see the simulated power functions
of the parametric and the rank test as well as the asymptotic power function. The rank test performs
considerably worse than the parametric test. The number of non-informatively censored observations has
apparently a significant impact on the power of the rank test, s. also simulation 4.3 and 4.4.
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Fig. 21: power functions
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Fig. 22: n1 = n2 = 50

4.9 Simulation. In this simulation the same setting as in the previous simulation is used, but instead of
a uniformly distributed non-informative censoring time the censoring time of simulation 4.4 is employed.
As a consequence there are less non-informatively censored observations in this situation. Under H ′

0

merely about 14% of the observations are non-informatively censored.
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Fig. 23: power functions
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Fig. 24:n1 = n2 = 50

In figure 23 the simulated and the asymptotic power function are displayed. In figure 24 the difference
between them is shown. The power of the rank test is better compared to simulation 4.8, s. also
simulation 4.3 and 4.4

4.10 Simulation. Analogue to simulation 4.5 the properties of the rank test are investigated in case that
the sample sizes of the control and the test group are different. We chose the cases (n1, n2) = (75, 25)
and (n1, n2) = (25, 75), again. The results of the simulation in the setting of simulation 4.8 is displayed
in figure 25. In figure 26 the result of the simulations in the setting of simulation 4.9 is shown.
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Fig. 25: power functions
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Fig. 26: power functions
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In simulation 4.5 it turned out that the power of the rank test was better, if there were more observations
in the control group than is the tests group, i.e. n1 > n2. In this simulation the contrary is can be
observed.

4.11 Discussion. The simulations show that the simulated power functions seem to converge to the
asymptotic power function, if the size of the pooled sample size is increased, s. simulation 4.3, 4.4 and
4.5. This underlines the results of section 2 and 3. Moreover, the power of the optimal rank test is
considerably worse than the power of the optimal parametric test. However, this is the price to pay for
the fact that rank tests are asymptotically distribution free under the null hypothesis. The power of
the optimal rank test seems to correlate with the number of non-informatively censored observations.
The more observations are non-informatively censored the less powerful is the corresponding rank test,
s. simulation 4.3, 4.4, 4.8 and 4.9. In case that the number of observations in the control and test group
was different, we obtained inconsistent results, s. simulation 4.5 and 4.10. In such situations one can
hardly predict the properties of the rank test, if it is applied to small sample sizes. Certainly, one can
easily overestimate the asymptotics.

5 Auxiliary Results

In this section the auxiliary results used in previous proofs are given.

5.1 Lemma. For B1 ∈ B and B2 ∈ P{−1, 0, 1} it holds Rβ
t

(
B1 × B2

)
= 1B2(−1)

∫
B1
(1 − Ft)β+1 dQ +

1B2(0)
∫
B1

β(1 − Ft)β(1 −G) dPt + 1B2(1)
∫
B1
(1− Ft)β(1−G) dPt.

Proof. Straightforward.

5.2 Lemma. Suppose ft and f0 are µ-densities of Pt and P0 respectively, e.g. µ = Pt + P0. Without
loss of generality it can be assumed that ft = 0 on the set {Ft ∈ {0, 1}}. By L0,t := ft/f01(0,∞)(f0) and
N0,t := {x ∈ R | f0(x) = 0} we define

L̃0,t(x, δ) := 1{0,1}(δ)
(
1− Ft(x)
1− F0(x)

)β

· L0,t(x) + 1{−1}(δ)
(
1− Ft(x)
1− F0(x)

)β+1

· 1[0,1)(F0(x))

and Ñ0,t := N0,t × {0, 1} ∪ {F0 = 1} × {−1}. The tuple (L̃0,t, Ñ0,t) is a Lebesgue-decomposition of Rβ
t

with respect to Rβ
0 .

Proof. For B1 ∈ B and B2 ∈ P{−1, 0, 1} we have Rβ
t

(
B1×B2

)
= Rβ

t

(
B1∩N�

0,t×B2∩{0, 1}
)
+Rβ

t

(
B1∩

{F0 < 1} × B2 ∩ {−1}
)
+ Rβ

t

(
B1 ∩ N0,t × B2 ∩ {0, 1}

)
+ Rβ

t

(
B1 ∩ {F0 = 1} × B2 ∩ {−1}

)
. Applying

lemma 5.1 to the first two terms gives

Rβ
t

(
B1 ∩N�

0,t ×B2 ∩ {0, 1}
)
+Rβ

t

(
B1 ∩ {F0 < 1} ×B2 ∩ {−1}

)
= 1B2(0)

∫
B1∩N�

0,t

β(1 − Ft)β(1−G)ftdµ+ 1B2(1)
∫
B1∩N�

0,t

(1− Ft)β(1−G)ftdµ

+ 1B2(−1)
∫
B1∩{F0<1}

(1 − Ft)β+1dQ

= 1B2(0)
∫
B1∩N�

0,t

(
1− Ft

1− F0

)β
ft
f0
· 1(0,∞)(f0)β(1 − F0)β(1−G)f0dµ

+ 1B2(1)
∫
B1∩N�

0,t

(
1− Ft

1− F0

)β
ft
f0
· 1(0,∞)(f0)β(1 − F0)β(1−G)f0dµ

+ 1B2(−1)
∫
B1∩{F0<1}

(
1− Ft

1− F0

)β+1

· 1[0,1)(F0) · (1− F0)β+1dQ

=
∫
B1×B2

L̃0,t dR
β
0 .

23



Testing hypotheses under a generalized Koziol-Green model with partially informative censoring

Thus, Rβ
t

(
B1 × B2

)
=
∫
B1×B2

L̃0,t dR
β
0 + Rβ

t

(
(B1 × B2) ∩ Ñ0,t

)
. Since Rβ

0 (Ñ0,t) = 0 the proof is
complete.

5.3 Lemma. Let F = {Pt | t ∈ (−ε0, ε0)}, ε0 > 0, be a L2(P0)-differentiable distribution family on (R,B)
having the L2-derivative L̇. It holds

∇F0 :=
∂Ft

∂t
∣∣t=0

= lim
t→0

Ft(·)− F0(·)
t

=
∫

(−∞,·]
L̇ dP0 = −

∫
(·,∞)

L̇dP0,

whereas the difference quotient converges uniformly.

Proof. Let (L0,t, N0,t) be a Lebesgue-decomposition of Pt with respect to P0, t ∈ (−ε0, ε0). Since L2(P0)-
differentiability implies L1(P0)-differentiability we have

lim
t→0

∣∣∣∣∣
∫

(−∞,·]

1
t

(
L0,t − 1

)
− L̇ dP0

∣∣∣∣∣ ≤ lim
t→0

∫
(−∞,·]

∣∣∣∣1t (L0,t − 1
)
− L̇

∣∣∣∣ dP0

≤ lim
t→0

∫ ∣∣∣∣1t (L0,t − 1
)
− L̇

∣∣∣∣ dP0 = 0

and

lim
t→0

∣∣∣∣1t Pt

(
N0,t ∩ (−∞, ·])∣∣∣∣ ≤ lim

t→0

1
|t|Pt

(
N0,t

)
= 0.

Given ε > 0 we can choose t0 > 0 such that for all t, 0 < |t| ≤ t0, and for all x ∈ R∣∣∣∣∣
∫

(−∞,x]

1
t

(
L0,t − 1

)
− L̇dP0

∣∣∣∣∣ ≤ ε

2
and

∣∣∣∣1t Pt

(
N0,t ∩ (−∞, x]

)∣∣∣∣ ≤ ε

2

hold. This means∣∣∣∣∣Ft(x)− F0(x)
t

−
∫

(−∞,x]

L̇dP0

∣∣∣∣∣ =
∣∣∣∣∣
∫

(−∞,x]

1
t

(
L0,t − 1

)− L̇dP0 +
1
t
Pt

(
N0,t ∩ (−∞, x]

)∣∣∣∣∣
≤
∣∣∣∣∫

(−∞,x]

1
t

(
L0,t − 1

)− L̇dP0

∣∣∣∣+ ∣∣∣∣1t Pt

(
N0,t ∩ (−∞, x]

)∣∣∣∣ ≤ ε

for all x ∈ R and for all t satisfying 0 < |t| ≤ t0. Since
∫
L̇dP0 = 0, cf. e.g. Witting [9, Hilfssatz 1.178,

p. 164], we have
∫
(−∞,x] L̇dP0 = −

∫
(x,∞) L̇dP0.

The proof of theorem 3.4 depends crucially on the following result.

5.4 Lemma. It holds S∗
n(b, B)− Ŝn(bn, Bn)−→0 in Rβ

n,0-probability.

Proof. The r.v.s (Xn,i,∆n,i), 1 ≤ i ≤ n, are i.i.d. under Rβ
n,0, so it holds

LRβ
n,0

(
(Rn,i, Un,i,∆n,i), (Xn,↑,∆n,↑)

)
= LRβ

n,0

(
(Rn,j , Un,j,∆n,j), (Xn,↑,∆n,↑)

)
(24)

and

LRβ
n,0

(
(Rn,i, Un,i,∆n,i), (Rn,j , Un,j,∆n,j), (Xn,↑,∆n,↑)

)
=

LRβ
n,0

(
(Rn,k, Un,k,∆n,k), (Rn,m, Un,m,∆n,m), (Xn,↑,∆n,↑)

)
(25)

for i �= j and k �= m. With the auxiliary statistic

Sn(bn, Bn) =
n∑

i=1

cn,i
(
1{0,1}(∆n,i)

(
bn,Rn,i + βBn,Rn,i

)
+ 1{−1}(∆n,i)(1 + β)Bn,Rn,i

)
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we show Sn(bn, Bn)−S∗
n(b, B)→0 in Rβ

n,0-probability in the first part of the proof. The Cauchy-Schwarz-
inequality gives for two identically distributed r.v.s Y and Z

|E(Y Z)| ≤
√
E
(
Y2
) · E(Z2

)
= E

(
Y2
)
. (26)

Using the abbreviations kn,i = bn,Rn,i − b ◦ F0 ◦H−1(Un,i) and Kn,i = Bn,Rn,i − B ◦ F0 ◦H−1(Un,i) the
inequality (x+ y)2 ≤ 2(x2 + y2) yields the estimate

ERβ
n,0

(
Sn(bn, Bn)− S∗

n(b, B)
)2

= ERβ
n,0

(
n∑

i=1

cn,i1{0,1}(∆n,i)(kn,i + βKn,i) +
n∑

i=1

cn,i1{−1}(∆n,i)(β + 1) ·Kn,i

)2

≤ 4

ERβ
n,0

(
n∑

i=1

cn,ikn,i

)2

+ β2ERβ
n,0

(
n∑

i=1

cn,iKn,i

)2

+ (β + 1)2ERβ
n,0

(
n∑

i=1

cn,iKn,i

)2
 .

Applying (2), (24), (25) and (26) one obtains

ERβ
n,0

(
n∑

i=1

cn,ikn,i

)2

=
n∑

i=1

c2n,i · ERβ
n,0

(
kn,i

)2 + n∑
i=1

cn,i ·
n∑

j=1
i�=j

cn,j · ERβ
n,0

(
kn,ikn,j

)

≤ ERβ
n,0

(
kn,1

)2 + n∑
i=1

cn,i

n∑
j=1
i�=j

cn,j · ERβ
n,0

(
kn,ikn,j

)

= ERβ
n,0

(
kn,1

)2 + n∑
i=1

cn,i

n∑
j=1
i�=j

cn,j · ERβ
n,0

(
kn,1kn,2

)
= ERβ

n,0

(
kn,1

)2 − ERβ
n,0

(
kn,1kn,2

)
≤ 2 · ERβ

n,0

(
kn,1

)2
.

By the same arguments one shows the estimate

ERβ
n,0

(
n∑

i=1

cn,iKn,i

)2

≤ 2 · ERβ
n,0

(
Kn,1

)2
. (27)

Because of (5) ERβ
n,0

(Sn(bn, Bn)− S∗
n(b, B))2 → 0 is implied by

lim
n→∞ERβ

n,0

(
kn,1

)2 = 0 and lim
n→∞ERβ

n,0

(
Kn,1

)2 = 0

which is shown in the next lines. Let b∗n,i be the exact scores, cf. Hájek and Šidák (1967) [5, p. 157
formula (12)], and b∗n(t) = b∗n,
nt�. Remember bn,i = bn,i(Xn,↑,∆n,↑). Exploiting the fact that the rank
vector and the order statistics are s.i. and (11) one obtains

ERβ
n,0
(bn,Rn,1 − b∗n,Rn,1

)2

=
∫

ERβ
n,0

[(
bn,Rn,1(Xn,↑,∆n,↑)− b∗n,Rn,1

)2 | (Xn,↑,∆n,↑) = (x, δ)
]

︸ ︷︷ ︸
=E

R
β
n,0

(
bn,Rn,1(x,δ)−b∗n,Rn,1

)2
dRβ

n,0

(Xn,↑,∆n,↑)
(x, δ)

= ERβ
n,0

∫
(0,1)

(bn − b∗n)
2 dλ.
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Furthermore it holds

ERβ
n,0
(bn,Rn,1 − b∗n,Rn,1

)2 ≤ 2 ·ERβ
n,0

∫
(0,1)

(bn − b ◦ F0 ◦H−1)2 dλ+2 ·
∫

(0,1)

(b ◦ F0 ◦H−1 − b∗n)
2 dλ→ 0,

whereas the first term converges to 0 because of (12) and the second term converges because of Hájek and
Šidak (1967), [5, Theorem V.1.5.b]. Using these results and theorem V.1.4.a in Hájek and Šidak (1967),
[5] one obtains

ERβ
n,0

(
kn,1

)2 = ERβ
n,0

(
bn,Rn,1 − b ◦ F0 ◦H−1(Un,1)

)2
≤ 2 · ERβ

n,0

(
bn,Rn,1 − b∗n,Rn,1

)2 + 2 · ERβ
n,0

(
b∗n,Rn,1

− b ◦ F0 ◦H−1(Un,1)
)2 −→ 0.

(28)

By the same arguments it is proved that

lim
n→∞ERβ

n,0

(
Kn,1

)2 = 0. (29)

Since L2-convergence implies convergence in probability we get Sn(bn, Bn) − S∗
n(b, B)

Rβ
n,0→ 0. Because

of Ŝn(bn, Bn) − S∗
n(b, B) = Ŝn(bn, Bn)− Sn(bn, Bn) + Sn(bn, Bn)− S∗

n(b, B), it remains to show that

Sn(bn, Bn) − Ŝn(bn, Bn)
Rβ

n,0−→ 0. For the r.v.s Tn =
∑n

i=1 cn,i · Bn,Rn,i and T ∗
n =

∑n
i=1 cn,i · B(Un,i)

the estimate (27) and the limit (29) imply Tn − T ∗
n−→0 in Rβ

n,0-probability. Because of (2) and (5) the
convergence theorem for linear statistics in Witting and Müller-Funk (1995) [10, Satz 5.112, p.112] can be
applied. This gives LRβ

n,0
(T ∗

n)
L−→ N (0, σ2), whereas σ2 = VarRβ

n,0

(
B◦F0◦H−1(Un,1)

)
. Slutsky’s lemma

yields LRβ
n,0
(Tn)

L−→ N (0, σ2). By applying Slutsky’s lemma and lemma 3.1 it results Sn(bn, Bn) −
Ŝn(bn, Bn) = (β − β̂n)

∑n
i=1 cn,i · Bn,Rn,i−→0 in Rβ

n,0-probability, that is to say the assertion.
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