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1. Introduction

The treatment of optimal control problems with state equality and/or inequality constraints
leads to boundary value problems (BVP) with switching conditions. Subroutine BNDSCO
developed by Oberle [8] on the basis of several earlier BVP solvers due to Bulirsch (4]
generates numerical solutions of these problems. BNDSCO is an implementation of the
multiple shooting algorithm (see Stoer, Bulirsch [11, 12]) adapted to the special problem
mentioned above.

The documentation is structured as follows: Chapter 2 provides an overview over the most
common optimal control problems and the necessary conditions associated with them. They
are taken from three different sources: The book by Bryson, Ho [3], the paper by Bryson,
Denham and Dreyfus [2] and the report of Bock [1]. The nomenclature used in chapter 2
is adapted from Bryson, Ho [3]. The description of BNDSCO itself is given in chapter 3.
Section 3.1 describes the mathematical principles and procedures used in BNDSCO; Section
3.2 deals with the practical handling of the program. The description in chapter 3 is similar
to the one given in the user manual by Oberle [8]. Chapter 4 explains the methodology to
set up the two subroutines which need to be provided for BNDSCO. A numerical example is
given in chapter 5. Users who are familiar with optimal control can restrict themselves to
chapters 3 and 4. The minimum information necessary to handle BNDSCO is given in
chapter 3.1.1, 3.2.1 —3.2.4 and 4.

This manual is meant only for the version of BNDSCO as indicated in the appendix. Note
that the whole source code is written in double precision. For the numerical example given
in chapter 5 this version has been tested and run with the SIEMENS—compiler on an IBM
3090 at DLR, Oberpfaffenhofen.

BNDSCO has been applied successfully on many optimal control problems, mainly in the
area of flight path optimization. A special feature of BNDSCO compared to other proce-
dures is the high precision of the solutions. Many results generated with BNDSCO can be
found in thesis works submitted at the Mathematical Institutes of the Technical University
in Munich and the University of Cologne. An easily accessible example is the report of
Oberle [9] which in pardcular describes an optimal control with singular arcs. A lot of
optumal control problems have successfully been solved with BNDSCO at the Institute of
Flight Systems Dynamics (part of the German Aerospace Research Establishment DLR),
Oberpfaffenhofen. Meanwhile, users of BNDSCO and the predecessor routine OPTSOL (see
Bulirsch [4]) can be found at research institutes all over the world.



2. The General Optimal Control Problem

2.1 The Unconstrained Optimal Control Problem

2.1.1 Problem F lation

(P) is a general formulation of the unconstrained optimal control problem:

b)

(P) Find the contol function u(t) e 1Rm, 0 <t < T, such that the cost function
Ju] = x (DD

is minimized subject to the following constraints:
The state vector x(t) € R" satisfies the state equations:

(1) = f(x®), ut)) (D

Some components of the state x are prescribed at initial time t = 0

xi(O) =X, > ielc {1,...n} )
At final time t = T x satisfies the boundary conditions:

¥ (X(T)T) = 0 , where y ¢ R€ 3)

The final time T may be prescribed or free. In the latter case, the free final time T is also
subject to optimization.

(S8 ]



2.1.2 Two More General Problems and how to Reduce them to Problem 2.1.1

2.1.2.1 Problems of Bolza Type

Let ye R™ denote the state vector and y(t) = g(y(t), u(t)) the state equations. An optimal
control problem is said to be of Bolza type if the cost function is of the form

T
] = ¥eMD + [ Lym, uw) de
0

In the special case L=0or ¥ =0 we talk about Mayer Problems or Lagrange Problems,
respectively. By introducing an additional state variable, say z(t), Bolza Problems can be
reduced to Mayer Problems. With the definitions

y(t)}
, X(1) =
z(t)

gly(v, u(®)
L(y(1), u(v)

x(t) ==

} = f(x(t), u(t)),

Hx(DT) = ¥(y(T), T) + 2(T)

and the initial condition z(0) =0 the standard form (P) is retrieved.

2.1.2.2 Non—Autonomous Systems

The state equations (1) in problem (P) are autonomous, i.c. they do not explicitly depend
on t. Non—autonomous systems of the form

[eH®, v®) 0 , 0 <050,

(6 = independent variable, y = state vector, v = control) can be reduced to the special
case of autonomous systems. We consider 6 as additional state variable and t ;=6 - 60
as new independent variable. Defining



y(8,+1)
x (t) := , u(t) ;= v(GO + 1)
0

8(y(8,+0), u(n), 6_+1)

T = ef—eo , f(x(0), u@)) := { |

we get

X (1) =fx@®,u®) , 0<t<T .

213N nditicn

The theory of optimal control provides necessary conditions for the trajectory x(t) and the
control function u(t) associated with it. There are Lagrange multpliers

AD = G © e J\xn(t))T ¢ RP

and a (constant) vector V ¢ [Rk such that the following conditions a) — d) are satisfied along
an optimal trajectory x(t), u(t).
Let

H (x(9), M), u(®) := A fx(0), u(o) @)

denote the Hamiltonian.

a) A1) satisfies the adjoint differential equations:

A®) =~ H (x(), MO, u(0) (5)
b)  u(v) is determined by the Pontryagin Minimum Principle:

H (x(), 21, u@®)) = minm H (x(v), A1), v)
velR

Yie [0.T] (6)



This implies
H =0 (7

and the Legendre—Clebsch condition demands that Huu be a positive semi—definite
martrix.

c) boundary conditions on A:

A ©)=0 forieK:= {1n} \I 8)
X

2Ty = HEMD T (D). ©

d) In case of free final time T we have
HT) = - %G _ [T gD (10)

Remarks

1) The Hamiltonian H is called regular if the minimum with respect to the control vector
is uniquely determined for all (x,}) ¢ R" x R™. In pardcular this implies that H depends
nonlinearly on all components of u. If the Hamiltonian is regular the optimal control
u(t) is a continuous function of time.

2) His constant:

g? HOe(), Mo, u(®) =H % + Hy & + H_4
=0Tk + Th + 0
=0

Note that this property only holds for autonomous systems. For these systems it holds for
whatever initial conditions are imposed on x and A.



2.1.4 The Two—Point Boundarv Value Problem (TPBVP) for the Optimal Trajectorv

2.1.4.1 The TPBVP for Fixed Final Time

The set of boundary conditions (1) — (3) in (P) and the necessary conditions 2.1.3. a) —
2.1.3 d) lead to a TPBVP for the vector function

x(t)

y = |A)| eR
\Y%

2n+k

Its first ime derivative is given by

| F(x() \ u()
y(@:= —H;I(‘ (x(t), ACt), u(®) = g(y(1))

0)

2n+k x R2n+k . m2n+l(

The vector function r: R represents the boundary conditions. Here

let X denote the vector of x—components with indices in I and X[0 the vector of prescrib-

ed initial values x, . And finally let Ay denote the vector of those A, withieX.
1
Then

x((0) = xpq
A (0)

r(y(0), y(T)) = =0

yix(T), T)

0‘-"' q):{‘ - WIV)I =T

The extremal y(t) is a solution of the TPBVP

v() =g(y(t)), 0

IN
IN
~

Il
o

r(y(0), y(T))




Here the control variables u(t) in g(y) are determined by the Minimum Principle 2.1.3.b. In
so far u is a function of x and A:

u = u(y)
In particular, u is a solution of the equation system
H (@, M1, u®) =0

If this equation cannot be solved in closed form a Newton method has to be applied in
each integration step to evaluate g(v) (see 4.1.3). Whenever possible the conditions

0‘“"3 —W;EV)[.__T =0

should be used to eliminate some or all of the Vi - These vi’s and the conditions used to
eliminate them can be cancelled in the TPBVP. In the most favourable case we end up
with n-k equaﬁons independent of v.

2.1.4.2 The TPBVP with Free Final Time T

To incorporate the free final time into the optimization we apply the transformation

T :='{. , T e [01].

At the same time T will be considered as an additional state variable. Clearly, the free
final time T will be added as an additional component in the vector function v(.) and the
independent variable will be T rather than t.

-x(T' r)-
A(T 1)

y(T) = c [R2n+k+1

v
T




By the chain rule we have

F(X(T 1), u(T 1)
—HZ x(T-1), MT-1), u(T-1)

0
0

o
Ar<

T = g(y(v)

The boundary conditions are

xI(O) — X
Mg (0)

I0

r(y(0),y(1)) = }‘r’(*m% T =0
A - ¢x - ¥y V)t=l
(H + (pT + \J,I% v),c=1

The extremal is the solution of the TPBVP

Y- gy, 0T < 1

(11)
r(y(0), y(1)) =0

2.1.5 The Special Case of Prescribed States at Final Time

We consider the special case where certain X, 1e M c {1,..,n}, are prescribed at final

time:
xi(T) = Xor forie M.
Then vy is simply

Y (DT = xy (T =Xy



Here XM denotes the vector of states X, 1e M, Xyt denotes the vector of the prescribed
final values associated with X\ In this case the parameter vector v can be eliminated. The

boundary conditions on the adjoints lx', ie N:={1,...n}\ M, are
1

T
Ay — = 0
[N ¢XN]t=T

XN and x5 denote the vectors whose components are Kx‘ and x;with 1€ N | respective-
1
ly. In case of free final time T, H is determined by

(H+¢T)t='1‘ =0 .

2.2 The Constrained Optimal Control Problem

In this section we consider problem (P) augmented by a condition of the form

S[x(t), u(t)] <0 VYie [0,T].

2.2.1 — 2.2.6 deal with the case of a pure state constraint, i.e. S does not explicitly de-
pend on u. In 2.2.7 and 2.2.8 the case S, Z 0 is added.

2.2.1 The State Constraint and the Order of the State Constraint

Let us consider the unconstrained optimization problem (P) with conditions (1), (2), (3) as
stated in 2.1.1. Now assume an additional constraint is given of the form

SGx(®) €0 Ve [0.T]. (12)

Note that S does not explicitly depend on u. The case where u explicitly appears in S will
be discussed in 2.2.7. Without loss of generality it is assumed that S does not explicitly
depend on t (otherwise transform tae problem as described in 2.1.2.2).



For the treatment of the problem the order q of the constmaint (12) is crucial. It is defined as
follows: q 1is the smallest integer i such that d¥dt! S(x(1)) is explicitly dependent on .

Here state derivatives are always eliminated by use of equation (1). Hence, formally the
following recursion determines q:

i=0: $O () , u) = Sx)

IT sDx | uqy) = Sii_l)(x(t) u(®) Ex()  u()

If Sl(li) £ 0 then stop and set q :=1.
By assumption S(i) is independent of u for0<i< q:
sWxw = sV
Define

SO (x|

N(x(D) = : eRY . (13)

5@ (xay),

10



ponprry

State conszaint (12) can be active pointwise and/or on whole intervals.

a)  An isolated zero 1 € [0,T) of S(x(t)) is called a "contact peint”. If additionally
S(l)(x(t)) 1s 0 at % then t is called a "touch point”. In this case t 1s a local

maximum of S(x(t)).

S(x(1)) Ty |

(P

11




b)  An interval [tl, tz] c [0,T], <y, is called a constrained arc if

Six() = 0 ont <t < 5 and
Sx(®) < 0 in some neigbourhoods left of 5 and right of ¢, ,
respectively.

S(x(t)) t to T




[0, T] is partitioned in constrained and unconstrained subarcs by junction points like o
and t,. The sequence of subarcs constituting the extremal is called "switching structure".
2.2.3 Nece 1tion g an Optimal Trajectory
Assume the state constraint (12) is of order q, i.e. S(x(1)) =0 onte [ty, t;] is equivalent to
$O0() = 0. S Vx() = 0, SDixv), u(t)) =0 on t e [ty 1] . Let the Hamiltonian be
defined as before:
AT
H(x, A, u) := A7 f(x, u) (14)

and let the Lagrange multipliers be the solutions of the adjoint equations

A = —HI (A 0) — sf(CUT(x, ) . (15)

Here i is a multiplier to link condition SP(x, u) = 0 to the Hamiltonian. The Minimum
Principle is restricted to control vectors u satisfying S(Q)(x, u) = O

u(t) = argmin H (x(t), A(t), v) (16)
veR™
s@ (x(t)v) =0
A solution of (16) satisfies the first order conditions
H, [x(t), A, u(t)] +usl® [x(t), u(t)} =0 (17)

s@ [x(t), u(t)] =0

and the second order condition

Sul [Huu [x(t), D), u(t)] + sl [x(t), AL, u(t)H Suz 0

v 8u ¢ R™ sadisfying 8% (x(v, u() su =0 (18)



In general these equations determine u(t) and {.(t) uniquely for given states x(t) and costates
A(t), and the trajectory can be integrated.

2.2.4 Necessary Conditions for Unconsirained Arcs and Touch Points
At switching point 4y the beginning of the constrained arc, we have
N(x(tl)) = 0. (19)

The multiplier vector A (see Euu. (13) for the definition of N) is continuous at ty , but
discontinuous at 4

+ T, - .
AL «h = 2t ol N (x(t))) (20)
where
6.0 , i=0,.q—1 @1

are additional constant muitipliers. At both switching points, Y and t the Hamiltonian is
continuous:

H(({) = H(@) , i=12. (22)
The muluplier u(t) 1s q times continuously differenuable on (tl,t2), and with

,Lli(i) = (—d/dryiu(t) we have

“i(t) >0 on (t1 ,[2) , 1= 0,.,q, (23)

P-i ([1) = cq—l—i D 'LLi (t?_) =0, (24)

14




for q>2 andi=0,.,q=2

and

+ _ .
Raet () 2 O o (5) 20 (25)
If =1 "="1instead of "2" is necessary in (25).

A touch point % is determined by the conditions

sVt aE)) = 0. i=0,1 , (26)
H(rg) = H(y) , Q27
e = xT(tg)—xo S (x(t,)) withl >0 . 28)

Condidon (22) can be examined without explicitly taking into account the jump conditions
(20). We have

HOD -HED = M) (xep, ueh) - mT ek, ue)
- [x(q)T - 6N, [x(tl)]] f[x(tl) : u(t“l’)] - )t f[x(tl) u(E))
= X(tI)T [f[x(tl) , u(t;')} - f[x(tl) , u(tI)]]

This holds true as along the optimal wajectory

(3(1)!*_f+
!

Nx[x(tl)] f{x(tl),u(q)} = =0

15




Here u(t;) is the unconstrained control (solution of equ. (6) with A(ty)) and u(tT) 1s the
constrained control (solution of equ. (16) with ?»(IT)) at ume ¢ . If H is regular, then u(t)
is continuous. In this case, condition (22) is equivalent to u(tT) = u(t}). The same remarks
hold for t,.

2.25  The Existence of Constrained Arcs and Touch Points in Dependence of the Order
th nstrain

Not for all positive integers q both constrained arcs and touch points can occur. E.g.
constraints of order q = 1 do not become active in form of touch points. On the other hand,
constrained arcs are impossible for q =3, 5, 7,.... A summary of these results is given in
the following table.

touch points constrained arcs
q possible possible
1 no yes
2,4,6,... yes yes
3,5,7,... yes no

2.2.6 The MPBVP for the Case of a Constrained Arc

By the necessary conditions stated in 2.2.3 and 2.2.4 the extremal of a constrained optimal
control problem is characterized as the soluton of a mulapoint boundary value problem
(MPBVP).

Generally the construction of the MPBVP depends on the switching structure associated
with the problem under consideration. As an example, the MPBVP will be given here for
the case of a single constrained arc. The construction in case of other switching structures
is similar. The dependent variables are states X, adjoints A, parameters v and &, and
the free final ume T. To allow integration within fixed bounds, the time interval [0.T]

16



will be normalized to [0,1] as follows:

(X (T7)]
A(TT)
y(t) = |V ,0<1<1
c
T

-f{x(Tr), u(Tt)]
dy _|” H{ (x(T1), A(To), o(T) —LLS)(Cq)T[x(Tt), o(T7)) :
a%’ = 0 'T=:g[y(t),.
0
0
%1 (0) = xpq
A (0)
tlyoym) = lyxm.T) 0.

T
(A - ¢x _WIV%:I

(H + ¢T +\":II“V)*C=1

The switching points t; » by are transformed into

According to 2.2.4 the switching conditions at T, are

{N[X(Ttl)] ]
0 = Sl[y(‘tl)] = 'Hl _H| —J ¢ pd+!

L

17




Furthermore the jump conditions are
0=h [y(’tl)] =T -t )+ OIN, [x(T rl)}

At switching point T, we have

0 = SQ{Y(TZ)] = H} . —H] -

Together we get the following MPBVP:

Yoy . te o, 1]

boundary conditions r(y(0) , y(1)) =0
switching conditicns Sl(y(rl)) = Sz(y(rz)) =0

jump conditions h(y(‘cl)) = 0

These are 2n + k + q + 3 conditions for 2n + k + q + 3 unknowns, namely, v, T T

Control u and multiplier p are determined by

T
Af (x,u 0 | :
u( ) a.ong unconstrained arcs

" :OIOSt <7, T2<‘CSI

L}

X.Tfu(x,u) + [ S(g)(x,u)

S(q)(x,u) - arc T, <1< 1

0 along the constrained
0

18




Remarks

(1)

(2)

3

(4)

(5

If the final time T is fixed and prescribed in advance then the last differential equa-
tion and the last boundary condition is dropped. Also the transformation T = t/T is
no longer necessary then.

The dimension of y should be reduced as much as possible by eliminating com-
ponents of parameter vector v (see remark in 2.1.4). If all final states are prescribed
explicitly then v is of dimension zero (see 2.1.3).

By virtue of equation (24) condidon H] +=H]|

t=1] can be replaced by

H(T=f£) =0 ifq 2 2,
In case of a touch point t, we only have the conditions

S(x(t,)) = 0 , Hj = H| _ -

+ —
t=1t t=1,

The condition S(l)(x(tb)) = 0 will be satisfied automatically if the assumed switch-
ing structure is correct. In contrary to the case of a constrained arc it is always

necessary to perform the jumps in the multipliers A (equ. (28)) before evaluating

Hi _ + .
t=1ty

By integrating the trajectory backwards fromt = Ttot = O the meaning of 5 and 4
as beginning and end of the constrained arc is interchanged. z—“.pplymcr the nen.essary

It is possible tha:r a wajectory satisfies all necessary conditions when integrating
forward while violating an optimality condition when the direction of integration is
reversed. An example can be found in Hiltmann (7].

19




2.2.7 Constraint Explicitly Dependent on Controls

The constraint

S (x(, u®] <0 with 5, # 0 (29)

can be regarded as special case of a state constraint namely of order 0. Accordingly all
conditions stated in 2.2.3 hold with ¢ = 0 and SO = S . Generally, active constraints of the
form (29) do not yield touch points. Differences with respect to the case q21 anse in the
treatment of constrained arcs. The Lagrange multipliers are continuous at the switching

points th 4 - Hence there are no parameters ¢. The only switching condition at t is the
continuity of the Hamiltonian:

H@ = H@)

2.2, in he F 2 9 max

As a special case of 2.2.7 let us consider the control constraint

Sx(t), u(t)) = ul(t) =Yy S 0 (30)

Here uy and Y1 max denote the first component of u and a constant upper bound on
u;, respectvely. As a result of the simple structure of constraint (30) the mulaplier § can
be eliminated. The Hamiltonian is as before:

H(x, A, u) = XT f(x, u)
Again control u is determined from the Minimum Principle

u(t) = arg mian (x(1), A0, v) (3D
velR

v, £
1 u Imax




where the multpliers A1) are solutions of the adjoint differential equations

- T
A= —-H,

At t=0and t = T the transversality conditions (8), (9) and (10) as stated in 2.1.3 are
valid. The structure of the optimal control u(t) determined by the Minimum Principle

(31) depends on whether or not (31) has a unique solution for all (x,A) ("regularity of the
Hamiltonian™).

2.2.8.1 Regular Hamiltonian

A regular Hamiltonian always depends nonlinearly on u . The optimal conwoi is continuous.
Along an unconstrained arc the optimal control (denoted by u'™®) is in the interior of the
admissible domain u, < U max and hence is solution of

0 = H (x4, u free)

Along a constrained arc the optimal control furnishes the constrained minimem of H:

yeonstrained _ - min_H (x(1), A0, v)
Ve
V1 = Yimax

In practice the unconswrained minimum ufe® of the Hamiltonian represents the optimal

free «
a ga <
control as long as u Uy max

2.2.8.2 Linear Control

The linear control is the most common case of a nonregular Hamiitonian. Consider the
following structure of H:

21



H(x, A, u) = ho(x, Ay Ugsenss um) +

- A 39
uy h1 (x, A, Us,eons um) ) (32)

To guarantee a solunion of the Minimum Principle (31), (32) only makes sense with u
restricted to a compact interval:

1

< u, <
1

u, . u
Imin Imax

the Minimum Principle takes the form

u(t) = arg minm H(x(t), A1), v) (33)
veR
Uim in S V1S Upax

If h1 # 0 holds for the solution of (33), the optimal value of u; must be one of the
bounds:

4 = 2“‘““ | i:l Z 8
lmax ’ 1
Extremals associated with a Hamiltonian like (32) are often completely made up of con-
strained arcs for uy- Such a sequence of subarcs altenating between 94 min and u
is called "bang—bang—control”. The switching points are determined as zeros of h
1s called "switching function" in this context.

1max
which

1
Moreover, subarcs with h1 =0 can occur. Along such an interval uy 1s called "singular

control” and generally takes values in the interior of [uImin , ulmax] . Note that
Hul = h1 does not explicitly depend on uy. A representation of u asa function of x
and A requires at least twice differentiation of hl = 0. For further information see e.g.
Oberle [9]. This report also includes the solution of a singular contol problem with

BNDSCO.
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3. The Multiple Shooting Method and its Implementation in
Program BNDSCO

3.1 General Description of the Method

371.1 The Boundarv Value Problem with Switching Conditons

The TPBVP 2.1.4 and the MPBVP 2.2.6 belong to the general class of boundary value
problems with switching conditions. This is the most general kind of BVP that can be
solved with BNDSCO. Find:

a)  a piecewise smooth function y (x) € iRn, X1 <x < Xg s and
b)  switching points E-i ,i=1,.,s, where X =t &0 < él <.< és < §s+1 = Xg

with the following properties:

1 ¥y (x) = fi(x, yx)) , xS&kH,OSkSs.
2) Y(ék) = hk (ik'y(ék)) for k = 1,..,s.

3) 8 (y(xl) , y(xf)) =0 for1<ig g .

4) r (E_ki , )’@Ei)) =0 fori=n + 1, ,n+s .

Condition 1) represents a piecewise defined system of ODEs on y. In the case of an under-

lying optimal control problem, the fk represent the state equations with different types of
optimal control.

Equaton 2) describes a jump condition at switching point &,{ . In the framework of an
optimal control problem hk could be the jump condition (20) at the beginning of a stare
constrained subarc.

Equations 3) are the usual two point boundary conditions.
Equations 4) stand for switching conditions at point gk The index k indicates that one,

more than one, or possibly no switching condition cen be associated w1th a single switch-
ing point.
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Important:  The switching swucture, that means the number of switching points and the
sequence of different right—hand sides fi in 1) has to be prescribed by the user.

312 The Multiple Shooting Method for Solving Boundary Value Problems with
Switching Conditions

Starting point for the Multiple Shooting Method is the choice of a fixed subdivision of the
time interval

< ) <...<) = X
X1 <Xy *m f

where Xy * §i for k=1,.,m,i=1,.., s, and the guessing of initial dara:

Y}O) : guess for y(xj) j=1l.,m=-1
§1((°) : guess for E_k k = 1,.,s

These data will be iteratively changed into a solution of 1) — 4) in 3.1.1. In the following

description of a single iteration the superscript for iteration count will be omitted. Define

T
z(x) = W(X)} . &= [él is} ’
i
Zj = E_]} for j = 1,.,m-1
LS

Step 1:

Find the numerical solution of the initial value problems

j
, X. <x<x.

Mf(x. y(x))
0 J J j+1

z'(x) = [

z(xj) = L,j

for j = 1,..., m—1 . Along the process also the jump conditions 2) have to be executed at
switching points E‘k € [xj , ij-l]‘ Note also that the right—hand side f changes with k.
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Let

z (X; xj , Z_]) = [Y(Xl Xé , ZJ)]

denote the solution in the interval [xj , xj +1J
tep 2:
a)  Compute the jumps
o _ RIS
F. (Z1 reees _1) = z(xj+1 ; xJ ) ZJ 1 € R

for 1<j<m-2 .
b)  Evaluate the boundary and switching conditions

- |[RZy,Z_ 1) _ ph+s
F*n——l (Z1 Zm—l) = [ 1°"m-1 e R

S$Zy - -, zm_l)}

where
- . 0y
R(Zl’zrn—l) T {r(Yl’ y (Krn m—1’ m l))J 1,-.,111 ek
o . pl+S—1
SZyn 2 () = [r (gk y(hk 3 » Zg ))] i=n +1,..04s R

The index 5; 1s defined by

Also let F(Z,,.., Z_ ) = (1:$ L ED 3T p(m=1)(n+s)

m—l) . A trajectory y(x), and the
switching points associated with it are solution of problem 3.1.1 if and only if vector

(Zl’ .- 1) is a zero of F. Program BNDSCO is basically an implementation of




the Modified Newton Method to determine this zero. Steps 1), 2) serve for evaluating
function F. Steps 3), 4), 5) determine the Newton correction.

Stgp 3:

Numerical approximation of the Jacobian matrix M of F (Z) via numerical differentiation

or via an appropriate Broyden update of M as obtained in a previous iteration. For details
see 3.1.3 and 3.1.4.

Step 4.

Compute Newton correction AZ from M - AZ = —F (Z) . For details see 3.1.5 .

Step 5.

Determine an appropriate relaxation factor A ¢ [0, 1] and compute
ZW) 74 Az .

For details see 3.1.6.

3.1.3 The Structure of the Multiple Shootine Matrix

As block matrix of format (m—1, m—1) M is given by

G, -I
6, -I
M = .
G, -I
A An2 n-




Here G; and A, are square matrices of dimension n+s. Explicity

._ 0 . .
Gj = BZJ_ v4 (xj+1 ; xj ,Zj) for j=1,..., m-2
E
321 R(Zl Z 1)
A, = ,
1 J
az; > G 2y
0
Aj = forj=2,.,m-2 ,
0
9z, > Z1 e )
-
d RZ,.Z_.)
IZ 1 1" “m-i
Am—l = N
9z S@re Iy
L J
1.4 Computati f th | hooting

Before each Newton iteration the program assigns scaling factors

_ T _ pn+s .
Wj = (wlj wn+s,j) e R© °. Basically
1 old .
w; —2-(|ZJ-|-+-|Zj |) for 1<j<m-1
where |- | is understood componentwise, and "old" denotes the second last iteration.

ye R(n+s, n+s)

Wj = diag (w1j eens wn+s,J




3.1.4.1 Numerical Differentiation

The differendal quotients in 3.1.3 are replaced by difference quotients with an increment
) Zij for the i—th component of the vector Z.. This increment is proportional to ETA
which is an input parameter in the parameter list of BNDSCO. Except for some special
cases 0 Zij is computed as follows:

a) i<n : Zij
3 Zij = sign (Zij) MW

isa y-component .

b) 1>n : Z. isa switching point .
1

0Z..:=1NnZ

ij IS

Al

The computational effort for the calculation of difference quotients is considerable as each
function evaluation z (x ; x ji»Zj+d Z;; ;) requires solving an additional initial value
problem (e;e R™* is the i~th canonical unit vector).

3.1.4.2 Broyden Approximation
During the k—th iteration this method replaces the submatrix Agk) (or ng)) of the multiple
shooting matrix by the sum of Agkﬁl) (or ng—l)) and an appropriate rank—1 matrix. A

general description of this update formula can be found in Stoer [10], pp. 239-242. The
Broyden Approximation will be applied only during the "convergence phase” (see 3.1.6).

3.1.5 Solving the Linear Svstem M - AZ = — F(Z7)

First the system will be rescaled in a numerically reasonable way. The multiple shooting
matrix M will be replaced by

Wy 0 1

M* = M - \ ’

0 W




(for the definition of W.1 see 3.1.4).

Instead of the original correction step (AZ1 AZm_I) this yields the scaled correction step

. -1
AZW.- (W1 AZ

By a sequence of Householder transformations M* is brought to upper miangular form and we
get the decomposition

= QR ,

where R 1is a right upper triangular matrix and Q is a unitary mamix (Q is the product of
all Householder transformations menuoned above). With this decomposition the computation
of AZ, — M* -1 F(Z) = =R Q F(Z) basically reduces to a backward substrution.
A general description of this procedure can be found in Stoer [10], pp. 164—170. For the
remainder let r;; be the diagonal elements of R . Following Deuflhard [5] we have

IM* x|,
p:= max |r.!|<lub, M* := max ———=
i 2
i x#0 || x|l
max |r.. | 1
C = < cond, M* := (lub, M*) (lub, M* )
rmnlrii 2 2 2

P and G serve as estimates on the magnitude of the norm and condition number of M*
respectively. In case 1/0 is less than the machine precision M* will be regarded as singular
and the calculation stops.




3.1.6 The A-Strat

The procedure to determine the relaxation factor A € [0, 1] is based on a work by Deuflhard
[6]. The variables crucial for the choice of A in the k—th iteration are A Zv(,k) , and the
number

A zwz B o _ &yl gz

obtained from a "simplified" Newton step.

With
K
la z, .
He = . k-1
7K o
la-zL) —a z {0y,
we set
I if u 207
Xk Hy if Hy <0.7
In a first atempt Z&TD = 2K L3 A 20 4 Z‘SE*'U = — oy gDy g

FZ®*D) will be computed. Then thres test functions T; (F(Z) . A Z,),i=123, deter-

mine whether relaxation factor Ay is accepted ("monotonicity tests”): If

(k+1)y + (e (k) (k)i
T, [Fz®+Dy, o zwzE D] < T, Bz, 82,9

for some i€ {1, 2,3} then Ay is accepted. Otherwise Ay is decreased until one of these
inequalities is satisfied.

The Broyden approximation of the multiple shooting method is applied only if all three
monctonicity tests are positive. Explicitly the three test functions ("level functions") are
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Level 1; "relatve error”
m-2
T {F Z),AZ ]z |F (Z)ll?' + Y |IW'1P(Z)‘]2
| F@, 82, )= |IFy @l + 2 |W," E@l;
j=1

So the jumps at nodes are weighted while the deviations in boundary and switching condi-
tons are not.

Level 2; "mixed test functuon”
m—2
- 2 - 2
T, [F@naz) = jwiltaz2 + = Iw;' F@ly
3=1
vel 3: "weighted corrections”

)
T, [F@.82,) = |az, |3

Interesting for the user but without influence on the procedure is the "absolute error”

1, F@.a2,) = F@I

3.1.7 The Stop Criterion

Vector Z 1s considered as a sufficiently good approximation of a zero of F if all com-

ponents of the weighted correction A ZW are smaller in absolute value than a given upper
bound "eps” :

|aZ < eps .

1
wlleo

eps determines the prescribed relative precision of the solution and is an input parameter
of BNDSCO (parameter EPS).




3.2 The Use of BNDSCO
2.1 The Parameter List of B!

The parameter list of BNDSCO is

(F, R, METHOD, X, XS, Y, WORK, IWORK, IS, N, M, MS, KS, TOL,
I[TMAX, KP, MMAX, MSMAX, MMS, NMS, NDW, NDIW, NFILE, PAR,
IPAR)

The first three entries are user supplied subprograms:

F: subroutine to evaluate the right—hand side of the system of ODEs as given in 1)
.n chapter 3.1.1 (see also section 4.1)

R: subroutine to evaluate the boundary and switching conditions 3), 4)1in 3.1.1 and
to perform the jump conditions 2) in 3.1.1 (see also section 4.2)

METHOD: subroutine to numerically solve initial value problems for ODEs (see also 3.2.3)

The remaining variables are scalars or arrays. Their type is always consistent with the
declaration IMPLICIT DOUBLE PRECISION (A—H,0-Z). The explanations below refer o
the symbols in chapter 3.1.1. The following variables must be initialized by the calling
program before the BNDSCO—call:

X: double precision array of dimension MMS. X contains the nodes X, in ascending
order (see 3.1.1). In paruoular X(1) is the initial point and X(M) thc final point.

XS: double precision array of dimension MSMAX. XS() is the initial guess for the
switching point E_i (see 3.1.1).

Y: double precision array of dimension (NMS, MMS). Y(i,j) is the inital guess for
Y (‘() the i—th y—component at the j~th node (see 3.1.1).

N: Antever variable; dimension of the ODE—systems tk in 3.1.1, item 1).

M: integer variable; number of nodes.

MS: integer variable; number of switching points.

KS: For KS =1 in the printout of :he final result the switching points along with the

associated y—components will be inserted in order with the nodes. If KS = 0 this
1s not the case.

(%)
(3]
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TOL: double precision variable; desired relative precision of the solution (parameter
eps in 3.1.7). Moreover, TOL affects the error tolerance of the integrator (para-
meter TOL in subroutine METHOD): It is set to the maximum of TOL * 1.E-2
and EPMIN (see 3.2.2).

ITMAX: integer vanable; maximum number of iterations. A reasonable value is
ITMAX = 20. ITMAX = 0: Step 1 in 3.1.2 is performed once. [TMAX = —1:
Step 1 in 3.1.2 is performed once but in single shooting mode.

KP: integer variable; print parameter (see also 3.2.4).

MMAX: integer variable; dimension of X as declared in the calling program; must be
greater or equal M.

MSMAX: integer variable; first dimension of XS and second dimension of JS as declared
in the calling program. MSMAX must be greater or equal MS.

MMS: integer variable; second dimension of Y and first dimension of JS as declared in
the calling program. MMS must be greater or equal M + MS.

NMS: integer vanable; first dimension of Y as declared in the calling program. NMS
must be greater or equal N + MS. .

NDW: integer variable; dimension of WORK as declared in the calling program. NDW
must be greater or equal NMS * (8 + MMAX * (10 + 6 * NMS)).

NDIW:  integer variable; dimension of IWORK as declared in the calling program.
NDIW must be greater or equal 5 * NMS.

NFILE: integer variable; logical file number for output.

PAR: double precision array whose dimension is tixed by the user. PAR is not changed
by BNDSCO and its subprograms. PAR is channelled to the user supplied sub-
programs F and R. Thus the user is enabled to use application dependent model
parameters in F and R without defining common blocks.

IPAR: integer array; the same as PAR only for integer variables.

The following arrays are only used as working space by BNDSCO:
WORK:  double precision array of dimension NDW
IWORK: integer array of dimension NDIW

IS: integer array of dimension (MMS, MSMAX)

The input valuzs of X, XS, Y, M and KP are overwritten by BNDSCO. The meaning of
the variables on output is as follows:

X X1s unchanged if KS =0.If KS =1 the last values of the switching points are
inserted into the X—array.




XS: last values of the switching points.

Y: Y(i,j) is the last iterate for yi(xj), the i—th y—component at node xj.
KP: error flag (see also 3.2.6).
M: unchanged If KS=0; =M +MS if KS=1

The last values of the XS~ and Y—components are the solution data if convergence was
achieved. In case of failure XS and Y contain the last iterates.

22 1 Meth rameters in BND

BNDSCO contains some local constants affecting the multiple shooting algorithm. They are
initialized in a DATA—statement at the beginning of the BNDSCO—routine. The statement
should be modified if the values do not seem to be appropriate for the user's machire or
application. The names and meanings of the local constants are given below. All of them
are double precision constants except KBROY which is of type integer.

EPMACH: EPMACH should contain the actual value tor the relative machine precision.
EPMACH prevents too small values for the desired accuracy of the solution: If
TOL (see 3.2.1) is less than EPMACH * 1. E+4 then TOL is set to this value.

EPMIN: EPMIN is the lower bound for the error tolerance of the integrator.

ETA: parameter M to compute the increments on numerical differendation (see
3.1.4.1). Recommendation: ETA = SQRT(MAX(EPMIN,TOL*1.E-2)). The
number under the square root is the internal error tolerance of the integrator.
ETA should always be greater than this number.

FCMIN: FCMIN is the minimum permitted value for the relaxation parameter A (see
3.1.6). Simultaneously, FCMIN is the initial value i5r A. Usual value:

FCMIN = 1.LE-2.

COND:  The iteration matrix is regarded to be singular if the estimate for the condition
number (0 in 3.1.5) is greater than COND. In this case BNDSCO returns imme-
diately.

KBROY: KBROY = I: The iteration matrix is replaced by a Broyden update (see 3.1.4.2)

of the previous one as long as all monotonicity tests (see 3.1.6) are satisfied.
KBROY = 0: no Broyden update at all.
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3.2.3 The In ion in

The integration routine provided under the formal parameter METHOD has to have the
following parameter list:

(N, F, X, Y, XEND, TOL,HMAX, H, J, L, JS, MMS, PAR, IPAR)

In the following the meaning of these parameters is explained.

N: number of ordinary differendal equations

F: subroutine to evaluate the right—hand side of the system of ODEs. The parameter
list of F 1is described in chapter 4.1.1.

X independent variable

Y(N): vector containing the dependent variables

XEND:  end of the integration interval

TOL: upper bound for the local discretization error
- HMAX: maximum step size

H: initial step size

J, L, JS, MMS, PAR, TPAR are part of the parameter list since they are input paramters of
subroutine F. They are neither used nor changed by METHOD. The meaning of J§, MMS,
PAR and IPAR is briefly outlined in 3.2.1. For further information see 4.1.

N, XEND, TOL and HMAX are input parameters and must not be changed by METHOD.

X, Y and H are input parameters but are changed by METHOD, i.e. are returned with
different numerical values.

Important: If the numerical integration breaks dowr before XEND is reached then BNDSCO
expects the output H = 0 . BNDSCO requires integrations to be performed with very high
precision. Hence preferable integrators are Runge—-Kutta—Fehlberg methods of order 7/8 or
extrapolation methods. The program package listed in the appendix contains an implementa-

tion of the exmrapolation method (SUBROUTINE DIFSYB) which satisfies the standards
required by BNDSCO.

The parameter list of METHOD deviates from the usual list of an integrator. Compared to
the usual list it is augmented by the part J, L, JS, MMS, PAR, [PAR. A standard integrator
can easily be adapted to the form required by BNDSCO by adding exactly this set
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of variables. In this case the additional parameters should be declared like this:

INTEGER J, L, MMS, JS(MMS, *), IPAR(*)
DOUBLE PRECISION PAR(*)

Moreover, the variables J, L, JS, MMS, PAR, IPAR must be added wherever the subpro-
gram to evaluate the right—hand side of the ODE—system is called.

2.4 The Prin

Pr vB

The input value of KP controls the output produced by BNDSCO. The following options do

exist.

No printout. Useful e.g. for homotopies. Even in this case at least the final

results on X, Y and XS should be stored or printed out. Appropriate commands
have to be implemented in the calling routine.

First the input X, Y, XS, N, MS, EPS and [TMAX are printed out. Then infor-
mation on the performance of the Newton—method is given (only if

ITMAX > 0). With each iteration a two line message is printed out. The first
line contains:

1

4)

The iteration number k is printed in the column headed by "IT" .

N

The values of T;[FZ"), 4 2(9], i =0, 1,2 3, are printed in the

columns headed by "ABS.ERR.", "LEVEL 1", "LEVEL 2", "LEVEL 3",

respectively (the definitions of Ti’ 1=0,1,2, 3, are given in 3.1.6).

Under "NEW" information is given about how the multiple shooting

matrix was obtained:

NEW =0:  numerical differentiation

NEW >0:  Broyden update. The number given under NEW is the
number of Broyden updates performed subsequently, in-
cluding the present one.

Under "RANK" the rank (M —1) (N + MS) of the multiple shooting matrix

1s given.

Under "COND(E)" and "NORM(E)" the approximations ¢ and p for the

condidon number and norm of the scaled multiple shooting matrix M* are

given, respectively. The definitions of ¢, p and M* are given in 3.1.5.

2
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The second line refers to the "simplified Newton step”: Subsequently numbers
for

(k+1) + .
Ti[F(Z ), A ZW(IE D ,1=0,1,2,3,

are printed out. Addidonally Ay is printed out ufldcr "REL. FC." (the definition
of A is given in 3.1.6).

After the last iteration the values of X, XS, and Y are printed out. If the pro-

gram aborted an additional message is printed out. If ITMAX = 0 then addition-
ally the solutions of the initial value problems

[ — (O) | =
yj = f(x, yj),xj <x< xj+1 ,yj (xj) = Yj , J =1, M=2

are given, i.e. xj +1 and yj (xj +1) are printed out. Furthermore the test func-
tions T 0’ Tl (as defined in 3.1.6) are computed for the input data.

KP=1: Additonally to the output produced with KP = 0 the arrays X, Y and XS are
printed out after each iteration.

2.5 The Subpr t B

In the diagram below the modular structure of the BNDSCO-package is shown. If two

subprograms X and Y are combined with a line and Y stands below X then X contains a
callon Y.




BNDSCO

NEWTON
BROYDN JACOBI TRAJEC SUBST HOUSE EXIT
METHOD
/
R F

The names of the subprograms are chosen as to reflect the task within the algorithm.
NEWTON coordinates the Newton—method outlined in 3.1.2. In particular, the A—strategy
described in 3.1.6 is performed in NEWTON. TRAJEC perfomis the piecewise integration
of the trajectory (step 1 and 2 in 3.1.2). JACOBI performs step 3 in 3.1.2, the computaticn
of the mulaple shooting matrix M, which is the Jacobian of the function F whose zero is
sought by NEWTON. BROYDN performs the Broyden—update of M as outlined in 3.1.4.2.
HOUSE decomposes M into the product of a unitary matrix and an upper tiangular mattix
by application of a sequence of Householder transformations (see also 3.1.5). SUBST per-
forms the backward substitution to obtain the Newton correction based on the decomposed
form of M (see also 3.1.5). EXIT processes the whole output produced by BNDSCO.

METHOD is the integrator described in 3.2.3. F and R are user supplied subroutnes de-
scribed in chapter 4.




3,2.6 Error Exits

In case the multiple shooting method terminates abnormally, routine BNDSCO returns with
KP containing a negative integer which denotes the nature of the error that occurred. For
KP 2 0 on input the following error messages (in quotes) are printed out.

KP=_2:

KP=—4.

KP = -8

“Iteration terminates after ITMAX iteration steps".
Restarting the program with a bigger value ITMAX is sensible only if the test
functons Ti’ 1=0,1, 2, 3, show decreasing tendency.

"BOUNDSCO terminates at singular trajectory”.
The numerical solution of an initial value problem fails.

"Modified Newton—method fails to converge".
The relaxaton factor }'k is reduced below its lower limit FCMIN which is set

FCMIN = 0.01 in BNDSCO. Usually it does not make sense to further decrease
FCMIN.

"Numerical differentiation terminated".

During the computation of the multiple shooting mawrix via numerical differen-
tiation the integration of an initial value problem has failed. Decreasing ETA
(see section 3.2.2) may solve the problem. One mught also think of a special
choice of increments (for the numerical differentiation) on "critical compo-

nents”. This would require careful examination of the problem and changes in
BNDSCO itself.

“Singular iteration matrix".

The scaled multiple shooting matrix M* is considered singular (see also chapter
3.1.5).

"Inconsistent estimation of the switching points".

Along an iteration a switching point has been shifted outside the interval [X(1),
X(M)]. Possibly a wrong switching structure is assumed.

"Inconsistent estimation of the initial data.”

One of the dimension parameters MSMAX, MMAX, MMS, NMS, NDW,
NDIW is less than the minimum value given in 3.2.1.
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Increasing the number of nodes is always a good first guess to help errors KP = — 3 and also
KP =~ 7. On the other hand usually M > 40 is not reasonable. Note that the subintervals do
not have to be chosen equidistantly. Nodes should be placed more densely in areas with
rapid changes and areas that caused error code KP = — 3.

o

lemen h

Besides boundary and switching conditions the solution of an optimal control problem also
satisfies certain sign conditions along whole subintervals. These conditions can not be
considered in BNDSCO and have to be checked after BNDSCO converged. Practically this
can be done using ITMAX = 0 (see also chapter 3.2.1).

Explicitly these sign conditions are:

a) unconstrained problem;
Legendre—Clebsch condition or — more general — the correctness of the
control vector in the sense that it is a solution of the Pontryagin Minimum

Principle (see chapter 2.1.3). Equation (7) in 2.1.3 alone does not guarantee
this property.

b) constrained problem;
. no constraint violation on unconstrained arcs,
J sign conditions on parameter p (Equ.(23) in chapter 2.2.4),
o sign conditions on switching functions (see also chapter 2.2.8.2).
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4. Subroutines to be Provided by the User

4.1 Subroutne F

41.1

Parameter List of F

Subroutine F evaluates the system y' = fk(x, y(x)) of ordinary differential equations. The
structure of f changes with the index k, which is defined by the position of x relative to the
switching points: x € [ik, §k+1] (see also 3.1.1). The parameter list of F is

(X, Y, DY, J, L, JS, MMS, PAR, [PAR)

Following variables are input parameters and must not be changed by F:

JS:

MMS:

double precision variable: value of the independent variable.

double precision array; recommended dimension declaration is Y(*); contains the
dependent variables.

integer variable. J is the number of the subinterval where "subinterval” refers to
the partidon induced by the multiple shooting nodes and the switching points.
integer variable. L is the number of the subinterval in the partition defined only
by the multiple shooting nodes. The relation to J is J=L + K where K is the
number of switching points being smaller than X.

integer array. Recommended dimension declaration is JS(MMS,*). IS contains
information about the position of X relatve to the switching points:

IS, K) = -1 for X < XS(K),

JS{J, K) = +1 for X > XS(K).

With the information contained in JS the user is enabled to identify the position of
X relative to the switching points and the correct index k in the sequence of
ODE—systems y' = fk(x, y(x)) in 3.1.1:

k=0 and X <XS(1) if JSQU, 1)=—1,

k=MS and X >XSMS) if JSJ,MS)=1 and

k=K and XS(K) < X<XS(EK+1) if JS(J, K) * JS(J, K+1) = —1.

integer variable; leading dimension of JS.

The only output parameter is DY (recommended declaration statement DY(*)) which
contains the vector fk(x, y(x)).
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PAR and IPAR are arrays whose length is fixed by the user. PAR and IPAR are not
changed by BNDSCO and its subprograms. PAR and IPAR are reserved for problem
dependent model parameters of the user which can thus be accessed without defining
common blocks.

PAR: double precision array
IPAR: integer array

Remark: Usually subroutine F will be called several thousand times during a BNDSCO
run. Hence the computational effort essentially depends on efficient programming of F.

4.1.2 Execution ot a Newton Method

The Minimum Principle often requires the numerical solution of complicated nonlinear
algebraic equations systems (Equ. (7) in 2.1.3, Equ.(17) in 2.2.3). It is necessary to do this
with very high accuracy. A recommended stop criterion is

Au.

i

< epmach

for all control variables u; . Aui and epmach denote the Newton correction for u and
the machine precision, respectively. It can be expected that from one integration step to
the next one u changes only marginally. Hence the last computed value for U, is usually
an excellent initial guess for the next iteration cycle. Also relaxation factors are not neces-
sary in these cycles. Initial guesses for u, can be stored on PAR.

To further reduce the computational effort, the Newton matrix may be kept constant over
several iteration steps. To improve efficiency, the user should make sure thar values which

do not depend on u, will be computed only once (outside the iteration loop) in each call
of F.
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4,13 Check H = const,

In optimal control problems a simple property of the Hamiltonian H is known which can
be used to check subroutine F for programming errors. If the state equations are autono-
mous (as shown in chapter 2.1.2.2 they can always be made autonomous), then the Hamil-
tonian is constant (see remark 2) in 2.1.3). This property is independent of initial condi-
tons and boundary conditions and holds for both constrained an unconstrained arcs. It
must be confirmed by a simple numerical experiment: Integrate the state equations and the
adjoint equadons by calling METHOD (N, F, X, Y, XEND, TOL, HMAX, H) with arbi-
trary input values for X, Y, XEND. The relative change of the Hamiltonian must not
exceed the magnitude of TOL.

4.2 Subroutdne R

4.2.1 The Parameter List of R

Subroutine R evaluates boundary and switching conditions r, and executes jump conditions
hk . Again the explanations refer to the nomenclature in 3.1.1. The parameter list of R is

(YA, YB, ZZ, W, NYA, NSK, J, L, LS, JS, MMS, PAR, IPAR)
The following parameters are input parameters and must not be changed by R:

YA: Array of length N + MS. The first N components contain the dependent variables
at the point x = Xy
YB: Array of length N + MS. The first N components contain the dependent variables
at the point x = Xg.

LS: Indicates from where and for what purpose R has been called.
= -1 R has been called to initialize NYA and NSK and to evaluate
those boundary conditions which have been marked by the

NYA—array.

LS=0: R has been called to evaluate the two—point boundary conditions.
=K >0 R has been called at switching poin: XS(K) in order to evaluate
the switching conditions and execute the jump conditions associ-

ated with this point.

J, L, JS, MMS: see description of subroutine F in 4.1.1.




In complicated problems it is sometimes necessary to call subroutine F in R. This is the
reason why these parameters have been added to the list.

ZZ is a "transient” which is changed by R if nontrivial jump conditions are executed.

ZZ: Array of length N + MS. If R is called at a switching point XS(K) then the first
N components of ZZ contain the left hand limits of the independent variables at
the point X = XS(XK).

On output the first N components of ZZ contain the right hand limits of the de-
pendent variables computed according to the jump condition hk‘

The remaining MS components of YA, YB and ZZ contain the switching points
(XSM), I =1, MS).

W, NYA and NSK are output parameters:

W: Array of length N + MS. After executing R W contains the values r; (boundary

and switching conditions) in arbitrary sequence. (For further information see

NYA: Integer array of length N + MS to mark prescribed initial values. If the initial
value of Y1 1s given explicitly say yI(xl) =y and W({J) = YA(D) — 11 1s the
corresponding boundary condition then the statement NYA() = J must be added
in R. All remaining components of NYA will be set zero by BNDSCO.

NSK: Integer array of iength N + MS to mark switching conditions. If W(J) refers to a
switching condition at the switching point XS(K) then this has to be indicated by
seting NSK(J) = K. All remaining components of NSK will be set zero by
BNDSCO.

PAR and IPAR have the same meaning as in subroutine F (see chapter 4.1.1).

4.2.2 Evaluation of Boundary and Switching Conditions and Execution of Jump Conditions

For the evaluation of two—point boundary conditions r (y(xl) , y(xf)) the arrays YA, YB
contain the numerical values of y(xl) and y(xf) , respectively. The computed values of r
have to be stored in the array W.

On the first call of R (with LS = — 1) all those W(J) are evaluated which belong to a




prescribed iniual value and are marked by a statement of the form NYA(T) = J for some 1.
[n case one of the conditions is not satisfied, i.e. W(J) # 0 for some J as above the follow-

ing message 1s printed out:
"warning: initial data and boundary conditions are inconsistent".

Then the computation is continued with the actually given Y(I, 1), regardless of the value
of W().

The jumps y(&}) = hy &k » y(EW)) are executed if and only if R is called with LS = K to
make sure that these jumps, in fact, will be executed only at switching point XS(K).

In this case at the entry of subroutine R y(&) and &, are stored in ZZ(I), I =1, N, and
ZZ(N + k) , respectively. With these data the "jumps" hy can be evaluated and the new values
y(&ﬁ) can be assigned to the elements ZZ(I), I = 1, N . In fact, variable LS is needed only 10
control the execution of jump conditions. Furthermore LS may be used to avoid unnecessary
evaluations of boundary and switching conditions at points where it is not needed.

Of course the calculation of the switching conditions r ‘{E’ki’ y(&il)) has to be performed before

the jump conditions at & are executed.
1

Important: The components of vector W have to be scaled appropriately by the user. As
described in chapter 3.1.6 the boundary and switching conditions enter the first "monotoni-
city test” without any further scaling and hence have a direct influence on the Newton
method.

The weighting of the components of W should be such that these components are ail of
about the same order. As an example a boundary condition prescribing the value YI on
yI(xf) shouid be formulated in the following form:

W =YBM/YI -1.DO

435




5. An Example
5.1. Problem Formulation

The following problem is adapted from Bryson, Ho [3]. pp. 121-123.

Problem: Find a control function at), 0 <t < 1,
such that the cost functional
1

2
J[a] := f%a(t)“ dt
0

1s minimized subject to the constraints
v = a, V(O) = —V(l) = 1‘:
X =v, x(0) = x(1) = 0,

x(t) £ ¢ for 0<t< 1.

This problem can be transformed into a Mayer problem by introducing the addidonal

variable z, satisfying z = % a2 , z(0) = 0. We then have the equivalent problem

Minimize
J[a] =z (1)
subject to the constrainis
3 = La? 2(0) = 0
v =2a ’ V(O) = —V(].) = 17
X =v , x(0) = x(1) = 0,

x() € £ for0<t<1




5.2 Necessary Conditions

In the following let y :=(x, v, z)T and A := 0\‘(, lv, XZ)T denote the state and Lagrange
multiplier vectors, respectively.
The constraint S(y) = x —¢ < 0 is of order g = 2:

2
Vo -f=v. P05 -u.
>

The conditions at the beginning of a constrained arc are

;
@
N(y) 1= S| - |x=¢ _ |0

sy J v 0
According to 2.2.3, Equ.(14), the Hamiltonian is given by

H(y, A, a) = ).‘(v+lva+% kza?‘.

According to chapter 2.2.3, Equ.(15), the adjoint differential equations are given by

0
5 T
= —H' =

y - A,

0

a and u are computed from
o-n|

a a=-xl,u-0
O=uJ z
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on unconstrained arcs and from

_ (2)
0= Ha+;,LSa

0= s ’

on constrained arcs (see chapter 2.2.3, Equ.(17)).
The tansversality condition on A is as given in chapter 2.1.5:

oJ
lz(l) = am) = 1.

The jump conditions at the entry point 3 of the constrained arc are described in chapter
2.2.4, Equ.(20):

AhT = AT - oF N, = AT - [0,.0,,0]
According to chapter 2.2.4, Equ. (28), the jump conditions at a touch point tb' are
+T -7 -7
}\(tb) = ).(tb) - & Sy = l(tb) - [t’o, 0,0} .

At a point t which is either a touch point or a junction between a constrained and uncon-
strained arc, the continuity of the Hamiltonian is a further switching condition (see chapter
2.2.4, Equs. (22), 27)):

0 = Ht") — H()
Using conditions stated earlier this can be reduced to

v([b) =0
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at a touch point ty » Or

A () =0

vl

at a switching point t matching constrained and unconstrained arcs.

5.3 Formulaton of Multd Point Boundary Value Problems (MPBVP)

Starting from the necessary conditions stated in chapter 5.2 MPBVPs are formulated for
the three most simple switching stuctures (see also chapters 2.1.4 and 2.2.6).

As shown in chapter 5.2 )‘z is continuous in all possible switching points. Hence, to-

gether with A (1) =1 and A, =0 wefind A =1

Furthermore we note that variable z does not appear in any of the necessary conditions,
so that the optimal trajectory can be determined independently of z. Hence z and KZ will
be left out in the remainder.

1 TPBVP for the Unconstrai 1

If >0 ischosen such that the constraint x — £ < O is never violated, then the optimal
rajectory solves the following TPBVP:

differential equations boundary conditions
X =v x(@ =0
v = —kv x(1) = 0
A, =0 v(0) = 1
A, == v(l) = —1

49




3.3.2 VP i f h Poin

differential equations boundary conditions
X = v x(0) = 0
\ = —kv x(1) = 0
A, =0 v(0) = 1
A, = —A, v(l) = —1
ZO =0

Switching and jump condition at touch point ty:

x(tb) =/ , v(tb) =0,
+ — - —

lx(tb) -lx(tb) fo )

5 h i in I

differential equations boundary conditions

X =v x0) =0
v = a x(1) = 0
A, =0 v(0) = 1
xv = —A, v(l) = -1
6, = 0
G, =0

0 for t,<tg
[P sy
- A, otherwise




Switching and jump conditions at 4y

x(t) = ¢, vity) = 0, Kv(t;) =0,

xx(z’{)= NOET A kv(t‘i) = 3,0 - o, .

Switching conditions at t.:

M) = 0

5.4 Solution of the Multi Point Boundary Value Problems

The MPBVPs in chapter 5.3 can be solved analytically as shown in Bryson, Ho [3]

»

pp. 121-123. The equations also have been implemented in subroutine LSG (see chapter
5.5). Depending on parameter / the following switching stuctures are found 1o soive the

problem:

N
v
B

v

21{>Z

0<€<é:

1.
6-

no touch points or constrained arcs. The optimal trajectory is a
solution of 5.3.1.

touch point att = ,17 ; the optimal trajectory is a solution of
532
constrained arc [3 £, 1 -3 f] ; the optimal trajectory is a

solution of 5.3.3.

In all cases state x(t) is axis symmetric with respect to t = % . The time histories of x(t) for
{= 0.4 (solid line), ¢ = 0.2 (dashed line) and ¢ = 0.1 (dashed—dotted line)are given in the

following figure.




5.5 FORTRAN Programs to Solve the Example Problem Using BNDSCO

The following main program subsequently solves the BVPs 5.3.1 (for {=04), 5.3.2 (for
£=0.2) and 5.3.3 (for £ = 0.1). The components PAR(1) and IPAR(1) serve to distinguish
the thres cases: PAR(1) contains the value of ¢, IPAR(1) takes the values 1, 2 and 3 to
distinguish the different switching structures. In each case subroutine LSG first computes
the arrays Y and XS as the exact solutions of the respective problem (The solution formu-
lae are given in Bryson, Ho [3], pp. 120 — 123.). Then all components are multplied by a
"perturbation factor" DEVIAT = .97. The printout of the run can be found at the end of the
appendix and contains further comments. ‘

Note the dimension statements at the beginning of the main program. All dimensions only
depend on three problem dependent parameters: the maximum number of ncdes, the
maximurm nember of switching points and the maximum dimension of the ODE—syvstem.
This is the way how to minimize the numter of problem cdependent consiants in the decla-

radon of arrays.




PROGRAM MAIN

2lalsinln

MAIN PROGRAM CALLING BNDSCO. EXAMPLE TAKEN FROM:
BRYSON, A.E.JR., HO, Y.-C.: APPLIED OPTIMAL CONTROL. FALTHAM,
MASS. . GINN & CO. (1969), PP. 120 - i23.

(XX OO

OO (O XS AP

(IS N®P]

IMPLICIT LOGICAL(A-Z)
INTEGER MMAK, MSMAX, MMS, NMAX, NDW. NDIW, NMS. NY

BASTC DIMENSION STATEMENTS:

MMAX  MAXTIMUM NUMBER OF NODES

MSMAX: MAXTMUM NUMBER OF SYITCHING POINTS
NMAX - MAXTMUM DIMENSION OF THE ODE-SYSTEM

PARAMETER ( MMAX = 10, MSMAX = 2. NMAX = 6)

DERIVATION OF FURHTER DIMENSIONS

o~

fo o foe £

P

PARAMETER (  NMS NMAX + MSMAX,

NY = NMS * MMAX.

MMS = MMAX + MSMAX.

NDW = NMS * (8 = MMAX*(10+6*NMS)) ,
NDIW = 5 * NMS )

ARRAYS IN THE BNDSCO-LIST

DOUBLE PRECISION X(MMAX), Y(NY), XS(MSMAX). WORK(NDW) ., PAR(1)
INTECER WORK(NDIW) , JS(MMS MSMAX), IPAR(1)

SIMPLE VARIABLES IN THE BNDSCO-LIST

DOUBLE PRECISION TOL
INTEGER N, M, MS, KS, ITMAX. KP, NFILE

FURHTER VARIABLES

DOUBLE PRECISION DEVIAT
INTECER I

EXTERNAL SUBROUTINES

EXTERNAL F, R, DIFSYB

Y ISP E®]

VARICUS INTITIAL VALUES

DATA M | KS | TOL , ITMAX , NFILE , DEVIAT
10,0 , 1.D-5, 30 .6 . 9700

N N

PEFINE THE NODES

LO 50 I=1. M
(1) = DBLE(I-1) / DBLE(M-1)

30 CONTINUE

U
(U9




BNDSCO-CALL FOR THREE DIFFERENT CASES:

I = IPAR(1) = 1: UNCONSTRAINED CASE FOR L=.4 IN BRYSON/HO

I = TPAR(1) = 2: CONSTRAINED CASE WITH A TOUCH POINT FOR L=.2
I = IPAR(1) = 3: TRAJECTORY WITH A CONSTRAINED SUBARC FOR L=.1
PAR(1) IS THE VALUE OF THE PARAMETER L IN THE
BRYSON/HO-EXAMPLE.

SUBR. LSG COMPUTES THE SOLUTION OF THE PROBLEM AND PERTURBS IT
WITH THE FACTOR DEVIAT (DEVIAT=1: NO PERTURBATION).

I IPIPISIPICIPEe P!

PAR(1) =
DO 100 I=
KP

N

MS
IPAR(1)
PAR(1) = PAR(1) * .5DO

CALL LSG(X,XS,Y,NMS,N,M,MS, PAR(1), IPAR(1) ,DEVIAT)

CALL BNDSCO(F,R,DIFSYB,X,XS,Y,%ORK, INORK, JS,N,M,\S XS, TOL

.8D0

k]

|1 T [

I —WLWOW

+ 1
-1
i

& ITMAX, KP, MMAX , MSMAX , MMS , NMS ,NDW , NDIW , NFILE,
& PAR, IPAR)
100 CONTINUE
C
STOP
END
C

C**********************************************************************

SUBROUTINE F(X,Y,DY,J,L,JS,MMS,PAR, IPAR)

C**********************************************************************

INPUT:

X INDEPENDENT VARIABLE

Y ARRAY OF MAXIMUM DIMENSION 6. (Y(I),I=1.4) IS THE VECTOR
(X,V,LAMBDA-X,LAMBDA-V) IN THE BRYSON/HO-EXAMPLE. Y(5)
AND Y(6) ARE THE JUMPS IN LAMBDA-X AND LAMBDA-V,
RESPECTIVELY.

J, L, JS, MMS : SEE DESCRIPTION OF BNDSCO.

PAR PAR(1) IS THE PARAMETER L IN THE BRYSON/HO—EXAMPLE.

IPAR IPAR(1) IS THE CODE FOR THE SWITCHING STRUCTURE:

IPAR(1) = 1: UNCONSTRAINED CASE

IPAR(1) = 2: TOUCH POINT

IPAR(1) = 3: CONSTRAINED SUBARC
OUTPUT:

DY ~ ARRAY OF MAXIMUM DIMENSION 6. TIME DERIVATIVES OF Y.
IMPLICIT LCGICAL (A-Z)

FORMAL PARAMETERS

o Xe o] A0 NNONN

DOUBLE PRECISION X, Y(*), DY(*), PAR(*)
INTEGER J, L, MMS, JS(MMS,*), IPAR(*)

LOCAL VARIABLES

cCIM Ty

DOUBLE PRECISION A

tn
J N




()(3?3

A IS THE OPTIMAL CONTROL

A=-Y(4)
IF ((TPAR(1).EQ.3) .AND. (JS(J,1)*JS(J,2).EQ.-1)) A = 0.D0

O,

STATE AND ADJOINT EQUATIONS

DY(1) = Y(2)
DY(2) = A
DY(3) = 0.D0
DY(4) = — Y(3)

IF (IPAR(1).GT.1) DY(5) = 0.B0
IF (IPAR(1).GT.2) DY(6) =

C
C

RETURN
END

C**********************************************************************

SUBROUTINE R(YA,YB,ZZ,W,NYA,NSK,J,L,LS,JS,MMS,PAR, IPAR)

C**********************************************************************

C BOUNDARY, SWITCHING AND JUMP CONDITIONS FOR THE
C BRYSON/HO-EXAMPLE
C
C YA, ZZ AND YB ARE THE INITIAL, INTERMEDIATE AND FINAL VALUES OF
C THE VECTOR (X,V,LAMBDA-X,LAMBDA-V) IN THE BRYSON/HO-EXAMPLE.
C THE 5TH AND 6TH COMPONENT ARE THE JUMPS IN LAMBDA-X AND
C LAMBDA-V, RESPECTIVELY.
C FURTHER DESCRIPTION OF THE PARAMETERS: SEE DOCUMENTATION
C MEANING OF PAR AND IPAR: SEE SUBR. F
C
IMPLICIT LOGICAL (A-2Z)
C
C FORVAL PARAMETERS
C
DOUBLE PRECISION YA(*), YB(*), ZZ(*), W(*), PAR(¥)
INTEGER J, L, WS, JS(WMS,*), LS, NYA(*), NSK(*), IPAR(*)
C
C LOCAL VARIABLES: ICASE WILL TAKE THE VALUE OF IPAR(1).
C
INTEGER ICASE
C
C INITIAL VALUES FOR NYA AND NSK
C
ICASE = IPAR(1)
IF (LS.EQ.-1) THEN
GOTO (100, 200, 300), ICASE
300 NSK(7) = 1
NSK(8) = 2
200 NSK(5) = 1
NSK(6) = 1
100 NYA(1) = 1
NYA(2) = 2
ENDIF
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(XS X®)

EVALUATION OF THE TWO-POINT BOUNDARY CONDITIONS

IF (LS.LE.O) THEN

W(1l) = YA(1)

W(2) = YA(2) - 1.DO

W(3) = YB(1)

W(4) = YB(2) + 1.DO
ENDIF

SIS X®]

JUMPS AND SWITCHING CONDITIONS AT THE FIRST SWITCHING POINT

IF (LS.EQ.1) THEN
IF (ICASE.GT.1) THEN

W(5) = 7Z(1) / PAR(1) — 1.DO
W(6) = 7Z(2)
72(3) = 72(3) - ZZ(5)
ENDIF
IF (ICASE.EQ.3) THEN
W(7) = ZZ(4)
72(4) = 7Z(4) - 72(6)
ENDIF

ENDIF

SWITCHING CONDITION AT THE SECOND SWITCHING POINT

(! ([ XPX®]

IF ((LS.EQ.2) .AND. (ICASE.EQ.3)) W(8) = ZZ(4)

C
C

RETURN
END

C**********************************************************************

SUBROUTINE LSG(X,XS,Y,NMS,N,M,MS AL, ICASE,DEVIAT)

C**********************************************************************

QOO0 OOONn

SOLUTION OF THE BRYSON/HO-EXAMPLE AND SUBSEQUENT
PERTURBATION

INPUT (READ ONLY):

X ARRAY OF DIMENSION M. MULTIPLE SHOOTING NODES IN
ASCENDING ORDER

NMS FIRST DIMENSION OF Y, NMS.GE.N+MS REQUIRED

N NUMBER OF THE DEPENDENT VARIABLES

M NUMBER OF MULTIPLE SHOOTING NCDES = FIRST DIMENSION
OF X = SECOND DIMENSION OF Y

MS NUMBER OF SWITCHING POINTS

AL PARAMETER L IN THE BRYSON/HO-EXAMPLE

ICASE CODE FOR THE SWITCHING STRUCTURE:
=1: UNCONSTRAINED CASE (L > 1/4)
=2: CONSTRAINED CASE WITH A TOUCH POINT (1/6 <= L <= 1/4)
=3: TRAJECTORY WITH A CONSTRAINED SUBARC (0 < L <= 1/6)
DEVIAT THE SOLUTION IS PERTURBED WITH THE FACTOR DEVIAT:
THE EXACT VALUE OF Y(I.J) IS REPLACED BY Y(I,J)*DEVIAT
FOR ALL I,J EXCEPT FOR THE FIRST TWO INITIAL VALUES.
THE EXACT VALUE OF XS(I) IS REPLACED BY XS(I)*DEVIAT
FOR 1 <= T <= MS.
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OUTPUT:

Y ARRAY OF DIMENSION (NMS,M). SOLUTION MATRIX OF
BNDSCO
PERTURBED WITH THE FACTOR DEVIAT. Y(*,J) SERVES AS AN
INITIAL GUESS FOR THE VECTOR (X,V,LAMBDA-X,LAMBDA-V)
IN THE BRYSON/HO-EXAMPLE AT THE NODE X(J). Y(5.J) AND
Y(6,J) TAKE THE ROLE OF THE JUMPS IN LAMBDA-X AND
LAMBDA-Y, RESPECTIVELY.

XS ARRAY OF DIMENSION MS. SWITCHING POINTS PERTURBED
WITH THE FACTOR DEVIAT.

IMPLICIT LOGICAL (A-Z)

(S X AP] QOO0

FORMAL PARAMETERS

INTEGER NMS, N, M, MS, ICASE
DOUBLE PRECISION X(M), XS(*), Y(NMS,M), DEVIAT, AL

[ X X®p]

LOCAL VARIABLES

DOUBLE PRECISION AL3, T, B3, B4, AL31
INTEGER I,J

eleIeXe!

SWITCHING POINTS AND AUXILIARY VARIABLES DEPENDENT ON AL AND
ICASE

IF (ICASE.EQ.2) THEN
B3 = 1.D0 - 3.D0 * AL
B4 = 1.D0 - 4.D0 * AL
XS(1) = .5D0

ENDIF

IF (ICASE.EQ.3) THEN
AL3 = 3.D0 * AL

£5(1) = AL3
XS(2) = 1.DO - AL3
ENDIF

LOOP FOR THE NODES

DO 100 I=1.,M

[P E®] (D XP P!

SOLUTION FOR ICASE=1

IF (ICASE.EQ.1) THEN

Y(1,I) = X(1) * (1.D0 - X(I))
Y(2,I) = 1.D0 - 2.0C * X(I)
Y(3,1) = 0.D0
Y(4,1) = 2.D0

ENDIF

TP Xp

SOLUTION FOR ICASE=2

ir (ICASE.EQ.2) THEN
IF (X(I).LE.XS(1)) THEN
T = X(I)
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ELSE

T =
ENDIF
Y(1,I)
Y(2,1)
Y(3,1)

—

DO - X(D)

((B4 * T -B3) *4.D0O*T+ 1.D0) *T
(12.D0 * B4 * T - 8.D0 * B3) * T + 1.D0
24.D0 * B4
Y(4,1) = 8.D0 * (B3 - 3.D0 * B4 * T)
Y(5,1) = 43.D0 * B4
IF (X(I).GT.XS(1)) THEN
Y(2,I) = - Y(2,1)
Y(3,I) = - Y(3,I)
ENDIF

[ | I | B 1 B

ENDIF

C SOLUTION FOR ICASE=3

IF

(ICASE.EQ.3) THEN
IF (X(I).LE.XS(1)) THEN
T = X(I)

ELSE
T =1.D0 - X(I)

ENDIF

AL31 = 1.D0 — T / AL3

IF ((X(I).LE.XS(1)) .OR. (X(I).GE.XS(2))) THEN
Y(1,1) = AL * (1.D0 — AL31%*3)

Y(2,1) = AL31%%2
IF (X(I).GE.XS(2)) Y(2,1) = - Y(2,1)

ELSE
Y(1,1)
Y(2,1)

ENDIF

Y(3,1)

IF (X(I

Y(4,1)

)
)

s

/ AL3**2
S(l)) Y(3,I) = - Y(3,1)
* AL31 / AL3
AL3**2
* Y(5,1) * (1.D0 / 6.D0 — AL)

Y(5,1
Y(6,]1

it llvll
L»)AI\JQN
888xo S
¥~

ENDIF

100 CONTINUE

(AP EP! (op!

THE SOLUTION IS PERTURBED ¥ITH DEVIAT

IF (DEVIAT.NE.1.DO) THEN

DO

220

210 I=1,M
LO 220 J=1,N
IF ((I.GT.1).0R.(J.GT.2)) Y(J,I) = Y(J,I) * DEVIAT

CONTINUE

210 CONTINUE

IF
IF
ENDIF

(MS.CE.1) XS(1)
(MS.GE.2) XS(2)

XS(1) * DEVIAT
XS(2) * DEVIAT

RETURN
END
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SUBROUTINE BNDSCO(F R METHOD,X,XS,Y, WORK,IWORK.JS N, M,MS KS,TOL,
+ ITMAX KP,.\/[MAX MSMAX MMS,NMS NDW,NDIW ,NFILE,
+ PAR.IPAR)
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BOUNDSCO
REALIZATION OF THE MULTIPLE SHOOTING METHOD

SPECIAL VERSION OF THE PROGRAM B OUNDSOL
FOR THE SOLUTION OF MULTI-POINT BOUNDARY-VALUE PROBLEMS
WITH SWITCHING CONDITIONS

WRITTEN BY
H.J. OBERLE
UNIVERSITY OF HAMBURG
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UPDATE : MARCH 1989

************************************************************

F(X,Y,DYJ,LJS,MMS,PAR,IPAR) ...:
RIGHT-HAND SIDE OF SYSTEM OF FIRST-ORDER
DIFFERENTIAL EQUATIONS
X, Y(N) : ACTUAL INTEGRATION NODE
DY(N) : VALUES OF THE DERIVATIVES AT X
J : NUMBER OF SHOOTING INTERVAL (INCLUDING THE
SWITCHING POINTS)
L : NUMBER OF SHOOTING INTERVAL (WITHOUT THE
SWITCHING POINTS)
JS : INDICATES THE POSITION OF THE
ACTUAL INTEGRATION POINT WITH RESPECT TO THE

OO00000000000O0000NOOOONOQOOOOOOOOOO0OONNONOOCONO0O0ONO0N0N
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SWITCHING POINTS

JS(J,K)= 1, [F X.GTXS() , K=1,.,MS

JISUJ.K)=-1, IF XLT.XS(K) , K=1,..,. MS

MMS : DIMENSION PARAMETER

PAR(*) : DOUBLE PRECISION ARRAY FOR MODEL
PARAMETERS OF THE USER

IPAR(*) : INTEGER ARRAY FOR MODEL
PARAMETERS OF THE USER

R(YA,YB.ZZ,W ,NYA NSK,J,L,LS,JS,MMS PAR,IPAR) ...:

TWO-POINT BOUNDARY CONDITIONS AND
SWITCHING CONDITIONS

YA, YB: VALUES OF Y(A), Y(B)

ZZ : VALUE OF Y(X) AT THE ACTUAL SWITCHING POINT
W(NMS) : BOUNDARY- AND SWITCHING CONDITIONS
NYA(NMS) : INTEGER ARRAY INDICATING THE STATE
VARIABLES FIXED AT THE INITIAL POINT X=A :
NYA(D=K , IF W(K)=YA(I)-PRESCIBED VALUE
NSK(NMS) : INTEGER ARRAY INDICATING THE
SWITCHING CONDITIONS :

NSK(K)=L , IF W(K) DESCRIBES A SWITCHING CONDI-
TION, WHICH HAS TO BE SATISFIED AT XS(L).

LS : INTEGER PARAMETER

LS<=0, IF SUBROUTINE R IS CALLED AT X=A, X=B
LS=L, IF SUBROUTINE R IS CALLED AT THE SWIT—
CHING POINT XS(L), L=1,.MS

PAR(*) : DOUBLE PRECISION ARRAY FOR MODEL
PARAMETERS OF THE USER

[PAR(*) : INTEGER ARRAY FOR MODEL

PARAMETERS OF THE USER -

METHOD(N,F,X,Y, XEND,TOL, HMAX H.J,L,JS,MMS ,PAR,IPAR)....

SUBROUTINE FOR THE SOLUTION OF INITIAL—
VALUE PROBLEMS

METHOD SOLVES THE INITIAL VALUE PROBLEM WITHIN
THE INTERVAL (X, XEND) WITH THE (RELATIVE)
TOLERANCE TOL.

H IS THE INITIAL STEPSIZE, AND THE LAST SUCCESS—
FUL STEPSIZE, RESPECTIVELY.

FAILURE IS INDICATED BY H=0.0

PAR(*) : DOUBLE PRECISION ARRAY FOR MODEL
PARAMETERS OF THE USER

IPAR(*) : INTEGER ARRAY FOR MODEL

PARAMETERS OF THE USER

************************************************************

— INPUT PARAMETERS :

X(M),Y(N,M) INITIAL DATA

XS(MS) INITIAL GUESS OF SWITCHING POINTS
WORK(NDW) REAL ARRAY USED FOR INTERNAL STORAGE
IWORK(NDIW)  INTEGER ARRAY USED FOR INTERNAL STORAGE
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JSIMMS MSMAX) INTEGER ARRAY USED FOR THE POSITION OF THE
ACTUAL INTEGRATION POINT WITH RESPECT TO
SWITCHING POINTS
JSJ.K)= 1, IF X.GT.XS(K) , K=1,..,MS
JS(J,K)=-1, IF X.LT.XS(X) , K=1,..,.MS
J : SHOOTING INTERVAL (INCLUDING THE

SWITCHING POINTS)
N NUMBER OF FIRST-ORDER DIFFERENTIAL EQUATIONS
M NUMBER OF NODES )
MS NUMBER OF SWITCHING POINTS
MMAX DIMENSION PARAMETER; M.LE MMAX
MSMAX DIMENSION PARAMETER; MS.LE. MSMAX
MMS DIMENSION PARAMETER; M+MS.LE.MMS
NMS DIMENSION PARAMETER; N+MS.LE.NMS
NDW DIMENSION PARAMETER,;
NDW.GE.NMS*(8+MMAX*(10+6¥NMS))
NDIW DIMENSION PARAMETER; NDIW.GE.5*NMS
NFILE FILE NUMBER FOR OUTPUT
KS 0 NUMBER OF NODES UNCHANGED
1 SWITCHING POINTS INSERTED
TOL REQUIRED RELATIVE PRECISION OF SOLUTION
ITMAX MAXIMUM PERMITTED NUMBER OF ITERATIONS

ITMAX=0 COMPUTATION OF ONE BASIC TRAJECTORY
(MULTIPLE SHOOTING)
ITMAX=-1 COMPUTATION OF ONE BASIC TRAJECTORY
(SIMPLE SHOOTING)
KP PRINT PARAMETER
KP=-1 NO PRINT
KP=0 INITIAL DATA
ITERATIVE VALUES OF LEVEL FUNCTIONS
SOLUTION DATA
KP=+1 ADDITIONALLY
ITERATES X(0),Y(1,)),XS(K)
ITERATIVE VALUES AT SWITCHING POINTS
PAR DOUBLE PRECISION ARRAY FOR MODEL PARAMETERS
OF THE USER. PAR IS NOT CHANGED BY BNDSCO AND
ITS SUBPROGRAMS. THE DIMENSION MUST BE FIXED BY
THE USER.
IPAR INTEGER ARRAY FOR MODEL PARAMETERS OF THE
USER. IPAR IS NOT CHANGED BY BNDSCO AND ITS SUB—
PROGRAMS. THE DIMENSION MUST BE FIXED BY THE
USER.

— OUTPUT PARAMETERS :
M LIKE INPUT M, IF KS=0

NUMBER OF NODES AND SWITCHING POINTS, IF KS=1
X(M),Y(N.M) SOLUTION DATA (OR FINAL DATA, RESPECTIVELY)

XSMS) SWITCHING POINTS
KP .GT.0 NUMBER OF ITERATIONS PERFORMED
TO OBTAIN THE SOLUTION
.LT.O0 TERMINATION OF THE ITERATION
KP=-2 ITERATION TERMINATES AFTER ITMAX
ITERATIONS

KP=-3 INTEGRATION CF AN INITIAL VALUE
PROBLEM TERMINATES
KP=—4 NEWTON METHOD FAILS TO CONVERGE
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KP=-3 NUMERICAL DIFFERENTIATION IS
TERMINATED DUE TO NEIGHBOURING
SINGULAR TRAJECTORIES

KP=-6 SINGULAER ITERATION MATRIX

KP=-7 INCONSISTENT ESTIMATION OF THE
SWITCHING POINTS

KP=-8 INCONSISTENT ESTIMATION OF THE INITIAL

DATA
o 3k ¢ ok ok 3 ke sk 3k sk o S Sk ke e 3k Sk e e ¢ sl ke Sk dle e e He DR 3¢ ¢ e vk e He ke vk le e ke i 3 Sk e ke Sk e Sk ade e ok ke i 3k ke 3¢ e e ik ke ke
— INTERNAL PARAMETERS :
EPMACH RELATIVE MACHINE PRECISION
EPMIN MINIMUM PRECISION PARAMETER FOR THE IVP SOLVER
ETA RELATIVE DEVIATION FOR NUMERICAL
DIFFERENTIATION
FCMIN MINIMUM VALUE FOR THE RELAXATION FACTOR
COND MAXIMUM LOWER BOUND OF CONDITION NUMBER FOR
THE MULTIPLE SHOOTING MATRIX
KBROY PARAMETER FOR BROYDEN APPROXIMATIONS
0 : ITERATION WITHOUT BROYDEN UPDATING
1 : BROYDEN UPDATING

e sk 3¢ sk st s 3k ke 2k sk 3 3 3k 2k e 3K 3 ke ok Sk 3k ok ke e ok Sk e e e dde sfe e e e 2k She ok 3k ke Sk ke o 3 3¢ e B ke 3¢ k¢ S e ke 3¢ ok ke ke ke e e ke

.. SCALAR ARGUMENTS ..
DOUBLE PRECISION TOL

INTEGER ITMAX KP,KS,M,MMAX ,MMS MS MSMAX,N,NDIW ,NDW NFILE,NMS

. ARRAY ARGUMENTS ..
DOUBLE PRECISION WORK(NDW),X(*),XS(¥),Y(NMS,*),PAR(*)
INTEGER IWORK(NDIW),JS(MMS, *),IPAR(*)

. SUBROUTINE ARGUMENTS ..
EXTERNAL FMETHOD R

. LOCAL SCALARS ..
DOUBLE PRECISION COND LEPMACH,EPMIN ETA FC,FCMIN H,H1,S,SABS,SK,
SUMIA,SUM2A ,SUM3A,T.TD.X1,XX1, XXM
INTEGER II1,12,13,14,15 IFAIL,IK ITER K,K1,K10,K11,K12.K13 K14,
+ K15, K16 K17 K18,K19,K2K20,K21,K22,K23 K24 K3,K4,K5 K6 K7,
+ K8,K9,KBROY,NEW

 EXTERNAL SUBROUTINES ..
EXTERNAL EXIT,NEWTON

. DATA STATEMENTS ..

DATA EPMACH/1.0D-14/ EPMIN/1.0D~-10/,ETA/1.0D-7/ FCMIN/1.0D-2/,
+  COND/1.0D20/,KBROY/1/
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