Name(n):

Dozent: Jun.-Prof. Dr. Klaus Kröncke

Übungsleiter: Christian Gloy, BSc

Übungsgruppe:

Jun.-Prof. Dr. Klaus Kröncke Dr. Immanuel van Santen

Höhere Analysis Wintersemester 2016/17

Übungsblatt 8

Do, 1. Dezember 2016

Aufgabe 1 (2+2 Punkte)

a) Sei $[a,b] \in \mathbb{R}$ ein Intervall, $f:[a,b] \to R$ eine stetige Funktion und K ein Rotationskörper, gegeben durch

$$K := \{(x, y, z) \in [a, b] \times \mathbb{R}^2 \mid y^2 + z^2 \le f^2(x)\}$$

Beweisen Sie, dass das Volumen (d.h. das Borel-Lebesgue'sche Maß) von K durch die Formel $\lambda(K) = \pi \int_a^b f^2(x) dx$ gegeben ist.

b) Berechnen Sie das Volumen des Ellipsoids

$$E := \{(x, y, z) \in \mathbb{R}^3 \mid (ax)^2 + (by)^2 + (cz)^2 \le r^2 \}.$$

wobei a, b, c, r > 0.

Aufgabe 2 (2+2 Punkte)

In dieser Aufgabe sei die Norm von $x \in \mathbb{R}^n$ gegeben durch $||x||^2 = \sum_{i=1}^n x_i^2$

a) Berechnen Sie das Gauß'sche Integral

$$\int_{\mathbb{R}^n} e^{-\|x\|^2} dx.$$

Hinweis: Betrachten Sie zunächst den Fall n = 2.

b) Sei k > 0, $n \in \mathbb{N}$ und $p \in [1, \infty)$. Wir definieren Funktionen $f_k, g_k : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ durch $f_k(x) = \|x\|^{-k} \chi_{B_1(0)}$ bzw. $g_k(x) = \|x\|^{-k} \chi_{\mathbb{R}^n \setminus B_1(0)}$, wobei die Menge $B_1(0)$ durch $B_1(0) = \{x \in \mathbb{R}^n \mid 0 < \|x\| < 1\}$ gegeben ist. Geben Sie Bedingungen an n, k und p an, die die Eigenschaften $[f_k] \in L^p(\mathbb{R}^n \setminus \{0\})$ und $[g_k] \in L^p(\mathbb{R}^n \setminus \{0\})$ charakterisieren.

Aufgabe 3 (4 Punkte)

Beweisen Sie folgende Aussage (Satz 2.3.2):

Sei (Ω, λ, μ) ein Maßraum, $X \subset \mathbb{R}^n$ offen und $f: X \times \mathbb{R}^n \to \mathbb{R}$ eine Abbildung. Sei $f_x: \Omega \to \mathbb{R}$ für jedes $x \in X$ integrierbar und $F: X \to \mathbb{R}$ definiert über $F(x) = \int_{\Omega} f_x \, \mathrm{d}\mu$. Sei N eine Nullmenge sodass für jedes $y \in \Omega \setminus N$ die Funktion $f^y: X \to \mathbb{R}$ stetig partiell nach x_i differenzierbar ist und sei $g: \Omega \to \mathbb{R}$ eine integrierbare Funktion mit

$$|\frac{\partial f}{\partial x_i}(x,y)| \leq g(y) \text{ für alle } x \text{ und alle } y \in \Omega \setminus N.$$

Dann ist F stetig partiell nach x_i differenzierbar und es gilt

$$\frac{\partial}{\partial x_i} F(x) = \int_{\Omega} \left(\frac{\partial f}{\partial x_i} \right)_x d\mu.$$

Aufgabe 4 (2+2 Punkte)

Die Koordinaten des Schwerpunktes
s eines Körpers $K\subset\mathbb{R}^n$ mit stetiger Massendichte $m:K\to\mathbb{R}$ sind gegeben durch

$$s_i = \frac{1}{M} \int_K x_i \cdot m \, d\lambda, \quad i = 1, \dots, n,$$

wobei $x_i: \mathbb{R}^n \to \mathbb{R}$ die *i*-te Koordinatenfunktion bezeichnet und

$$M = \int_{K} m \, \mathrm{d}\lambda.$$

Berechnen Sie die Schwerpunkte bei homogener Massenverteilung (d.h. für eine konstante Funktion m) für

- a) den Viertelkreis $K:=\left\{(x,y)\in\mathbb{R}^2\mid x>0,y>0,x^2+y^2\leq r^2\right\}\subset\mathbb{R}^2$ bzw.
- b) den Zylinder $K := \{(x, y, z) \in \mathbb{R}^3 \mid z \in [0, h], x^2 + y^2 \le r^2\} \subset \mathbb{R}^3$.