Name(n):

Dozent: Jun.-Prof. Dr. Klaus Kröncke

Übungsleiter: Christian Gloy, BSc

Übungsgruppe:

Jun.-Prof. Dr. Klaus Kröncke Dr. Immanuel van Santen

Höhere Analysis

Wintersemester 2016/17

Übungsblatt 4

Do, 3. November 2016

Aufgabe 1 (4 Punkte)

Es seien $\{\alpha_1, \ldots, \alpha_s\}$, $\{\beta_1, \ldots, \beta_t\}$ zwei endliche Mengen reeller Zahlen, $\{X_i \mid i = 1, \ldots, s\}$, $\{Y_j \mid j = 1, \ldots, t\}$ zwei Mengen von messbaren, paarweise disjunkten Mengen im Maßraum $(\Omega, \mathfrak{A}, \mu)$ mit $\mu(X_i) = \infty$ impliziert $\alpha_i = 0$ und $\mu(Y_j) = \infty$ impliziert $\beta_j = 0$ und mit $\Omega = \bigcup_{i=1}^s X_i = \bigcup_{j=1}^t Y_j$. Sind die beiden Funktionen

$$\sum_{i=1}^{s} \alpha_i \chi_{X_i} = \sum_{j=1}^{t} \beta_j \chi_{Y_j}$$

gleich, so gilt

$$\sum_{i=1}^{s} \alpha_i \mu(X_i) = \sum_{j=1}^{t} \beta_j \mu(Y_j).$$

Aufgabe 2 (4 Punkte)

Für $\mathbf{a} \in \mathbb{R}^n$ seien

$$(-\infty, \mathbf{a}) = \{x \in \mathbb{R}^n \mid x_i < a_i, \text{ für } 1 \le i \le n\}$$

$$(-\infty, \mathbf{a}] = \{x \in \mathbb{R}^n \mid x_i \le a_i, \text{ für } 1 \le i \le n\}$$

$$(\mathbf{a}, \infty) = \{x \in \mathbb{R}^n \mid x_i > a_i, \text{ für } 1 \le i \le n\}$$

$$[\mathbf{a}, \infty) = \{x \in \mathbb{R}^n \mid x_i \ge a_i, \text{ für } 1 \le i \le n\}$$

Sei (Ω, \mathfrak{A}) ein Messraum und $f: \Omega \to \mathbb{R}^n$ eine Abbildung. Zeigen Sie die Äquivalenz folgender Aussagen:

- (i) f ist $\mathfrak{A} \mathfrak{B}^n$ -messbar.
- (ii) $f^{-1}((-\infty, \mathbf{a})) \in \mathfrak{A}$ für alle $\mathbf{a} \in \mathbb{R}^n$.
- (iii) $f^{-1}((-\infty, \mathbf{a}]) \in \mathfrak{A}$ für alle $\mathbf{a} \in \mathbb{R}^n$.
- (iv) $f^{-1}((\mathbf{a}, \infty)) \in \mathfrak{A}$ für alle $\mathbf{a} \in \mathbb{R}^n$.
- (v) $f^{-1}([\mathbf{a}, \infty)) \in \mathfrak{A}$ für alle $\mathbf{a} \in \mathbb{R}^n$.

Aufgabe 3 (4 Punkte)

Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum mit $\mu(\Omega) < \infty$ und $f : \Omega \to \mathbb{R}$ eine messbare Funktion und es gebe $\alpha, \beta \in \mathbb{R}$ mit $\alpha < \beta$ sodass $\alpha \le f(x) < \beta$ für alle $x \in \Omega$. Sei $\alpha = t_0 < t_1 < \dots t_m = \beta$ eine Unterteilung des Intervalls $[\alpha, \beta]$ und $\xi_k \in [t_{k-1}, t_k]$ eine beliebige Zwischenstelle. Das Symbol

$$\mathcal{Z} := ((t_k)_{0 \le k \le m}, (\xi_k)_{1 \le k \le m})$$

bezeichne die Zusammenfassung der Teilpunkte und Zwischenstellen. Dann heißt

$$S(\mathcal{Z}, f) := \sum_{k=1}^{m} \xi_k \cdot \mu(f^{-1}([t_{k-1}, t_k)))$$

Lebesgue'sche Summe der Funktion f bezüglich \mathcal{Z} . Die Feinheit (oder Maschenweite) von \mathcal{Z} ist definiert als

$$\mu(\mathcal{Z}) := \max_{1 \le k \le m} (t_k - t_{k-1})$$

Zeigen Sie, dass

$$\int_{\Omega} f \ d\mu = \lim_{\mu(\mathcal{Z}) \to 0} S(\mathcal{Z}, f).$$

Aufgabe 4 (2+2) Punkte

a) Sei r>0 und $f:[0,r]\times[-r,r]\to\mathbb{R}$ die wie folgt definierte Funktion:

$$f(x,y) := \begin{cases} \sqrt{x^2 - y^2} & \text{für } |y| \le x, \\ 0 & \text{sonst.} \end{cases}$$

Berechnen Sie das Doppelintegral

$$V := \int_{-r}^{r} \int_{0}^{r} f(x, y) dx dy.$$

b) Sei r>0 und $f:[-r,r]^3\to\mathbb{R}$ die wie folgt definierte Funktion:

$$f(x, y, z) := \begin{cases} \sqrt{r^2 - x^2 - y^2 - z^2} & \text{falls } x^2 + y^2 + z^2 \le r^2, \\ 0 & \text{sonst.} \end{cases}$$

Berechnen Sie das dreifache Integral

$$W := \int_{-r}^{r} \int_{-r}^{r} \int_{-r}^{r} f(x, y, z) dx dy dz.$$

Bemerkung: V ist das Volumen eines Kegels der Höhe r und 2W ist das Volumen der 4-dimensionalen Kugel von Radius r.