Name(n):

Dozent: Jun.-Prof. Dr. Klaus Kröncke

Übungsleiter: Christian Gloy, BSc

Übungsgruppe:

Jun.-Prof. Dr. Klaus Kröncke Dr. Immanuel van Santen

Höhere Analysis

Wintersemester 2016/17

Übungsblatt 14

Do, 26. Januar 2017

Aufgabe 1 (2+2 Punkte)

a) Sei $M \subset \mathbb{R}^n$ eine Untermannigfaltigkeit des \mathbb{R}^n , ω_i eine stetig differenzierbare k_i -Form auf M (mit i=1,2) und $f:M\to\mathbb{R}$ eine stetig differenzierbare Funktion, dann gelten

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{k_1} \omega_1 \wedge d\omega_2 \qquad d(f \cdot \omega_1) = df \wedge \omega_1 + f \cdot d\omega_1$$

b) Betrachten Sie auf \mathbb{R}^{2n} die 2-Form $\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$ wobei hier $(x_1, \dots, x_n, y_1, \dots, y_n)$ die Koordinaten auf \mathbb{R}^{2n} bezeichnen. Bestimmen Sie eine 1-form η mit $d\eta = \omega$ und berechnen Sie das n-fache Dachprodukt $\omega \wedge \dots \wedge \omega$.

Aufgabe 2 (4 Punkte)

Wir betrachten $S^2 \subset \mathbb{R}^3$ und den Zylinder $Z \subset \mathbb{R}^3$, gegeben durch

$$Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}.$$

Zeigen Sie, dass die Abbildung $f: S^2 \to Z$, $(x, y, z) \mapsto (x^2 + y^2 + z^2, 0, xy)$ als Abbildung zwischen Untermannigfaltigkeiten beliebig oft differenzierbar ist. Berechnen Sie die lokale Darstellung von f in allen Karten von S^2 und Z, die Sie verwenden.

Aufgabe 3 (2+2 Punkte)

a) Es sei $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch

$$\Phi(r, \theta, \varphi) = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta).$$

Wir schreiben $(x_1, x_2, x_3) = \Phi(r, \theta, \varphi)$ und betrachten auf einer offenen Menge $U \subset \mathbb{R}^3$ die Differentialformen $\omega_1 = f_1 dx_1 + f_2 dx_2 + f_3 dx_3$ und $\omega_2 = F_1 dx_2 \wedge dx_3 + F_2 dx_3 \wedge dx_1 + F_3 dx_1 \wedge dx_2$. Sei $V = \Phi^{-1}(U)$, $\Phi^* \omega_1 = g_1 dr + g_2 d\varphi + g_3 d\theta$ und $\Phi^* \omega_2 = G_1 d\theta \wedge d\varphi + G_2 d\varphi \wedge dr + G_3 dr \wedge d\theta$. Berechnen Sie g_j und G_j für j = 1, 2, 3.

b) Im \mathbb{R}^3 betrachten wir die Differentialform

$$\omega = 2x_1x_3dx_2 \wedge dx_3 + dx_3 \wedge dx_1 - (x_3^2 + e^{x_1})dx_1 \wedge dx_2.$$

Zeigen Sie, $d\omega = 0$, und bestimmen Sie eine 1-Form η mit $d\eta = \omega$.

Aufgabe 4 (2+2) Punkte)

- a) Seien $U \subset \mathbb{R}^n$ eine offene Menge und $G \subset \mathbb{R}^n$ ein sternförmiges Gebiet. Zeigen Sie: Gibt es einen C^1 -Diffeomorphismus $\varphi: U \to G$, dann ist jede stetig differenzierbare geschlossene k-Form auf U exakt.
- b) Auf $U = \mathbb{R}^2 \setminus \{0\}$ sei die 1-Form ω durch

$$\omega = \frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$$

gegeben. Zeigen Sie, dass ω auf U keine Stammfunktion besitzt, die Einschränkung von ω auf $W = \mathbb{R}^2 \setminus \{(x,0) \mid x \leq 0\}$ hingegen schon.