Name(n):

Dozent: Jun.-Prof. Dr. Klaus Kröncke

Übungsleiter: Christian Gloy, BSc

Übungsgruppe:

Jun.-Prof. Dr. Klaus Kröncke Dr. Immanuel van Santen

Höhere Analysis

Wintersemester 2016/17

Übungsblatt 11

Do, 22. Dezember 2016

Aufgabe 1 (2+2 Punkte)

- a) Auf der 2-Sphäre $S^2\subset\mathbb{R}^3$ sei die Funktion $f:S^2\to\mathbb{R}$ gegeben als $f(x,y,z)=z^2$. Berechnen Sie $\int_{S^2}fdS$.
- b) Seien $M_1, M_2 \subset \mathbb{R}^n$ Untermannigfaltigkeiten des \mathbb{R}^n der Dimensionen k bzw. l mit mit $M_1 \cap M_2 \neq \emptyset$. Zeigen Sie: Ist $k+l \geq n$ und $N_x M_1 \cap N_x M_2 = \{0\}$ für alle $x \in M_1 \cap M_2$ (man sagt: M_1 und M_2 schneiden sich transversal), dann ist $M_1 \cap M_2$ eine Untermannigfaltigkeit des \mathbb{R}^n . Bestimmen Sie die Dimension.

Aufgabe 2 (4 Punkte)

Sei $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$. Betrachten Sie die Mengen $K_r^p = \{x \in \mathbb{R}^n \mid ||x||_p \le r\}$. Zeigen Sie, dass K_r^p für jedes r > 0 und p > 1 ein Kompaktum mit glattem Rand ist und bestimmen Sie für jedes $x \in \partial K_r^p$ Tangentialraum, Normalenraum und äußere Normale von ∂K_r^p in x.

Aufgabe 3 (2+2 Punkte)

a) Man zeige, dass die Funktion

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} e^{1-\frac{1}{1-x^2}}, & \text{falls } |x| < 1\\ 0 & \text{sonst} \end{cases}$$

aus $C_0^{\infty}(\mathbb{R})$ ist, d. h. f ist une
ndlich oft differenzierbar und hat kompakten Träger.

b) Die Funktion $G(x) = \sum_{k \in \mathbb{Z}} f(x-k)$ ist unendlich oft differenzierbar und für alle $x \in \mathbb{R}$ gilt $G(x) \neq 0$, genauer gilt G(n) = 1 für alle $n \in \mathbb{N}$ und $e^{-\frac{1}{3}} \leq G \leq 2$.

Aufgabe 4 (1+1+1+1) Punkte

- a) Für $x \in \mathbb{R}$ setzen wir $g(x) = \frac{f(x)}{G(x)}$. Zeigen Sie: $g \in C_0^{\infty}(\mathbb{R})$, $0 \le g \le 1$ und $\sup g = [-1, 1]$.
- b) Zeigen Sie, dass $\sum_{k \in \mathbb{Z}} g(x-k) = 1$.
- c) Für $\epsilon > 0$ und $b \in \epsilon \mathbb{Z}^n$ setzen wir

$$\sigma_{b,\epsilon} = \prod_{\nu=1}^{n} g\left(\frac{x_{\nu} - b_{\nu}}{\epsilon}\right).$$

Dann gilt $0 \le \sigma_{b,\epsilon} \le 1$ und supp $\sigma_{b,\epsilon} = \{x \in \mathbb{R}^n \mid ||x - b||_{\infty} \le \epsilon\}.$

d) Zeigen Sie, dass $\sum_{b \in \epsilon \mathbb{Z}^n} \sigma_{b,\epsilon}(x) = 1$ für alle $x \in \mathbb{R}^n$ und dass jede kompakte Menge $K \subset \mathbb{R}^n$ gilt, dass supp $\sigma_{b,\epsilon} \cap K \neq \emptyset$ für höchstens endlich viele $b \in \epsilon \mathbb{Z}$.

