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What is Light?

“There are phenomena which can be explained by the
quantum theory but not by the wave theory. Photo-electric
effect furnishes an example... There are phenomena which
can be explained by the wave theory but not by the quantum
theory. The bending of light around obstacles is a typical
example. Finally, there are phenomena, such as the
rectilinear propagation of light, which can be equally well
explained by the quantum and the wave theory of light. But
what is light really? Is it a wave or a shower of photons? It
seems as though we must use sometimes the one theory and
sometimes the other, while at times we may use either. We
are faced with a new kind of difficulty. We have two
contradictory pictures of reality; separately neither of them
fully explains the phenomena of light, but together they do."

A. Einstein & L. Infeld, "The Evolution of Physics" (1938).
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Motivation Photons: A Brief History

Light: Particle or Wave?
Democritus (3rd Cent. B.C.): Light is made of particles...because
everything is made of particles.
Ibn-al Haytham (11th Cent.): Light is made of particles that move
on straight lines.
Descartes, Hooke, Huygens (17th Cent.): Light is made of waves.
Newton (17th Cent.): Nope, It’s made of particles.
Young, Fresnel, ... (early 19th Cent.): Sorry Newton, it’s waves:
Interference, Diffraction.
Maxwell (mid.-19th Cent.): It’s waves. Electromagnetic waves, to
be precise, and I have the equations.
H. Hertz (late 19th Cent.): I can send and receive EM waves.
They travel with the speed of light. They diffract, and reflect, just
like light. They are transverse, not longitudinal.
Problems with the wave theory of light: photochemistry,
photoelectric effect. Energy imparted on matter by light depends
on its frequency, not amplitude.
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Motivation Photons: A Brief History

Particle or Wave: The Debate Rages On

Planck (1900) Black-body radiation: The energy of radiation is
absorbed or emitted in quantized units of E = hν.
Einstein (1905) Light itself carries energy and momentum in
quantized units: E = hν and p = h

λ , just like a particle: Lichtquant.
Einstein (1909): Light quanta are conceivably singularities in the
electromagnetic field.
Compton (1923): What scatters like a particle and transfers
momentum like a particle, is a particle.
Bose (1924) Light quanta as quantum particles are
indistinguishable from one another, and they satisfy some weird
statistics, which can be used to explain black-body radiation
purely quantum mechanically. (Translation: they are bosons.)
G. Lewis (1926): How about we call them photons instead of
Lichtquant?
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Motivation Photons: A Brief History

Particle AND Wave? (or is it a Quantized Field?)
Einstein (ca 1920): Light quanta are guided by a "ghost field".
de Broglie (1922-27): All particles, not just light, are guided by a
wave defined on the configuration space of the particle.
Schrödinger (1926): There are no particles. Everything is a matter
wave, and I have the (non-relativistic) equation for it. (To which de
Broglie replied: "Don’t you think it’s strange to construct a wave on
a space of N points that one claims don’t exist?")
Born (1926): The modulus-squared of the wave function of a
system of particles at a point in its configuration space is the
probability density of detecting that configuration.
Born, Heisenberg, Jordan (1926): Photons are the quanta of the
quantized classical electromagnetic field
Dirac (1928): Here is the relativistic wave equation for the electron.
Oppenheimer (1931): Here is the relativistic wave equation for the
photon, and here are ten reasons why the quantum mechanics of
light quanta has grave problems.
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Motivation Photons: A Brief History

Are Quantum Fields the Last Word?

Jordan, Wigner, Heisenberg, Pauli, ... (1928-1934): Particles and
waves are not fundamental. Everything is a quantum field!
C. G. Darwin (1932): "The Compton effect, at its discovery, was
regarded as a simple collision of two bodies, and yet the detailed
discussion at the present time involves the idea of the annihilation of one
photon and the simultaneous creation of one among an infinity of other
possible ones. We would like to be able to treat the effect as a two-body
problem, with the scattered photon regarded as the same individual as
the incident, in just the way we treat the collisions of electrons."
Bohm (1952): Fermions are particles guided by waves, but
Bosons are fields.
Weinberg (1995): Relativistic wave mechanics, in the sense of a
relativistic quantum theory of a fixed number of particles, is an
impossibility!
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Motivation Our Ultimate Goal

Our Ultimate Goal

Inspired by Einstein’s ideas and J. S. Bell’s writings, we ultimately
want to know whether empirical electromagnetism can be
accurately accounted for in terms of a relativistic N-body quantum
theory of electrons, photons, and their anti-particles, formulated
as a generalization of the non-relativistic theory of de Broglie and
Bohm, in which the quantum-mechanical wave function guides the
actual motion of these particles.
So, both electrons and photons are point-particles guided by a
quantum-mechanical wave function
This is similar in spirit to Einstein’s earlier speculations about the
light quanta being guided by a “ghost" field...
...and to the deBroglie-Bohm theory of electrons guided by their
quantum-mechanical wave function.
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Motivation Our Ultimate Goal

How are we going to get there?

We envision the following steps towards accomplishing our goal:
1 Study the N = 2 case of one photon and one electron.

This further divides into several sub-problems:
1 Analyze the wave function and wave equation of a single electron,

in order to solve the various puzzles surrounding it (negative
energies, electron vs. positron, ...)

2 Find and analyze the wave function and wave equation of a single
photon.

3 Formulate and solve the two-body quantum-mechanical problem of
a photon interacting with an electron.

2 Solve the N > 2 problem by reducing it to the study of pair-wise
interactions of the type studied in Problem 1.3

3 Prove the emergence of empirical phenomena from N-body
dynamics (e.g. Compton scattering, emission/absorption of
photons by atoms, Coulomb interaction of electrons, the
Positronium spectrum, ...)
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Motivation Our Ultimate Goal

Bracing Ourselves for the Waves of Criticism

(Inspired by Dyson’s “Three Waves" Theory of Reception)
There are three prevailing attitudes in the physics community regarding
the existence of a photon wave function and a photon wave equation:

1 This is nonsense. There is no such thing, because:
1 Photons don’t have a position.
2 Photons don’t even exist.
3 Weinberg and Witten proved that this is impossible
4 “Many other reasons"

2 This is trivial. And, it won’t change anything: The electromagnetic
field is the photon wave function, and the wave equation it
satisfies is equivalent to Maxwell’s equations. So, photons will still
be quantized electromagnetic fields: QED!

3 This is actually nontrivial and important, which is why we did it
before you did.

Shadi Tahvildar-Zadeh (Rutgers) QM of a Photon March 22, 2018 10 / 36



Our Results

Michael Kiessling and I have formulated a relativistic
quantum-mechanical wave function and wave equation for a
single photon in 1 + d-dimensional Minkowski spacetime.
It is a direct analog of the Dirac equation for the electron, and it
furnishes a conserved quantum probability current that transforms
correctly under Lorentz transformations.
Together with Matthias Lienert, we have formulated and studied a
fully covariant interacting 2-body problem for an electron and a
photon in 1+1-dimensional Minkowski spacetime!
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Our Results THEOREM I (Photon Wave Function & Wave Equation)

THEOREM I (Kiessling & T.-Z., 2017)

Let A := Cl(1,d)C denote the complexified Clifford algebra associated
with the Minkowski spacetime R1,d . (Note: For odd d , A ∼= Mn(C) with
n = 2(d+1)/2.) Then,

In d space dimensions, the wave function ψPH for a single photon
(massless, chargless, spin-1 boson with no longitudinal modes) is
a section of the A-bundle over R1,d , with the property that the two
main diagonal n

2 ×
n
2 blocks of ψPH are trace-free.

The wave equation satisfied by ψPH is a Dirac-type equation (with
modifications inspired by M. Riesz (1946) and Harish-Chandra
(1946)):

− i~DψPH + mEΠψPH = 0, (1)

where D = γµ∂µ is the Dirac operator on R1,d , Π is the projection
onto the said diagonal blocks, and mE > 0 is a parameter to be
determined.
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Our Results THEOREM I (Photon Wave Function & Wave Equation)

THEOREM I (cont’d.)

Equation (1) is fully Lorentz covariant.
Equation (1) is invariant under gauge transformations

ψPH → ψPH + (1− Π)Υ, ∀Υ s.t. DΥ = 0.

Every component of ψPH satisfies the massless Klein-Gordon
(classical wave) equation

ψPH = ∂µ∂µψPH = 0.

As a result, the plane-wave solutions ψ(t ,x) = aei(ωt+k·x) of (1)
satisfy the zero-mass dispersion relation

ω2 = |k|2.
The diagonal part of the wave function ΠψPH satisfies the massless
Dirac equation

− i~DΠψPH = 0. (2)

As a result, there are no longitudinal modes.
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Our Results THEOREM I (Photon Wave Function & Wave Equation)

THEOREM I (cont’d.)

The photon wave equation (1) is derivable from a Lorentz-scalar
Lagrangian. Thus the solutions of (1) enjoy the full set of
Noetherian conservation laws associated with the continuous
isometries of the Minkowski space.
Equation (2) for the diagonal part of the photon wave function can
be cast into the Hamiltonian form, with a Hamiltonian H that is
essentially self-adjoint with respect to the L2 innerproduct. The
spectrum of H is all of R, with generalized eigenvectors being
plane waves satisfying the Einstein relations

E = ~ω, p = ~k.

Equation (2) has a conserved timelike probability current that
transforms correctly under Lorentz transformations, has a
non-negative time-component, and is compatible with the Born
Rule associated with the same Hilbert space structure as that of
the Hamiltonian H.
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Our Results THEOREM II (Interacting Photon-Electron System)

The Multi-time Evolution for 2-Body Wave Functions

A fully covariant notion of a many-body wave function requires
treating each particle as a space-time event.
Thus the configuration space(time) of two particles in Minkowski
space R1,d is in fact a domain S inM := R1,d × R1,d .
Coordinates onM: x = (xp, xe) = (tp,sp, te,se).
It turns out that the natural domain S to consider is the set of
space-like configurations S = {(xp, xe) ∈M | |tp − te| < |sp − se|}
One can pose a Cauchy problem in S for the multi-time evolution
of a 2-body wave function ψ(xp, xe), by specifying initial values for
ψ on the initial surface I := {(xp, xe) ∈M | tp = te = 0} ⊂ S.
Since S has a boundary inM, one may also need to impose
boundary conditions.
Boundary conditions in particular need to be specified on the
coincidence set C := {(xp, xe) ∈M | tp = sp,sp = se} ⊂ ∂S.
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Our Results THEOREM II (Interacting Photon-Electron System)

The Two-Body Wave Function and its Wave
Equation(s)

Recall the one-body wave functions for d = 1:

ψPH =

(
0 χ−
χ+ 0

)
∈ V2 ⊂ C2×2 and ψEL =

(
φ−
φ+

)
∈ C2

The 2-body WF belongs to a 4-dim. tensor product space V2⊗C2.
ψ = (ψ−−, ψ−+, ψ+−, ψ++) : S → C4, so ψ = ψ(tp, sp, te, se)
Let γµp := γµ ⊗ 1, γνe := 1⊗ γν , Dp := γµp ∂xµ

p
, De := γνe∂xν

e .
The (free) multi-time equations are:{

−i~Dpψ = 0
−i~Deψ + meψ = 0

(3)

Note: this is ok because [Dp,De] = 0.
We need to specify initial data: ψ(0, sp,0, se) =

◦
ψ(sp, se).

We also need boundary conditions on C. Otherwise the dynamics
will only be defined in the complement of the future of C.
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Our Results THEOREM II (Interacting Photon-Electron System)

THEOREM II (Lienert, Kiessling, & T.-Z., 2018)

Let S1 := {(tp, sp, te, se) ∈ S | sp < se} and X = (X 0,X 1) any
constant timelike vector in R1,1. The following IBVP for the 2-body
photon-electron multi-time wave function ψ : S1 → C4,

−i~Dpψ = 0
−i~Deψ + meψ = 0 in S1

ψ =
◦
ψ on I

ψ+− = ±i
√

X 0−X 1

X 0+X 1ψ−+ on C

(4)

has a unique global solution that is supported in S1, depends
continuously on the initial data

◦
ψ, and is continuous everywhere

for all times.
(PRELIMINARY) ∃T > 0 such that Bohmian trajectories Qp(t) and
Qe(t) for the photon and the electron exist, are unique, and
Qp(t) ≤ Qe(t) for 0 ≤ t < T . (See Figure 1.)

Shadi Tahvildar-Zadeh (Rutgers) QM of a Photon March 22, 2018 17 / 36



Proofs Proof of Theorem I

List of Requirements for PWF and PWE

To come up with a quantum-mechanical wave function and wave
equation for a single photon in position-space representation, we first
list the key properties that these should have:

Photon Wave Function needs to
1 correspond to a spin-1 particle
2 allow for superposition of left- and right-handed photons
3 belong to a Hilbert space over C

Photon Wave Equation (for the above PWF) needs to
1 be fully Lorentz-covariant
2 be first order in time- and space-derivatives
3 have zero-mass dispersion relation
4 have only transverse modes
5 be derivable from a Lorentz-scalar Lagrangian
6 have a conserved Lorentz-covariant vector current, with a

non-negative time-component, that is compatible with Born’s Rule.
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Proofs Proof of Theorem I

Constructing PWF

To find the photon wave function, recall that, for d = 3, the wave
function of an electron, which is a spin-1

2 particle, is a rank-one
bispinor.
That is to say, ψEL : R1,3 → C4, such that, for all Λ ∈ O(1,3), we
have

ψEL(Λx) = LΛψEL(x)

where LΛ is the spinorial (projective) representation of Λ, given by
the usual SL(2,C)⊕ SL(2,C) construction.
By analogy, the wave function of a spin-1 particle needs to be a
rank-two bispinor, i.e. an endomorphism of rank-one bispinors:
ψPH : R1,3 → M4(C), with transformation rule

ψPH(Λx) = LΛψPH(x)L−1
Λ
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Proofs Proof of Theorem I

Constructing PWF (cont’d.)

Thus, ψPH =

(
ψ+ χ−
χ+ ψ−

)
, with ψ±, χ± ∈ M2(C) being rank-two

spinors of four different types:

(ψ+)a
b, (χ−)a

ḃ
, (χ+)ȧ

b, (ψ−)ȧ
ḃ
.

Spinors of even rank are equivalent to ordinary vectors and
tensors.
in particular, there exist (complex-valued) vectors a± and
2-tensors f±, such that

χ+ = aµ+σ
′
µ, ψ+ =

i
4

fµν+ σµσ
′
ν , χ− = aµ−σµ, ψ− =

i
4

fµν− σ
′
µσν ,

Here, (σµ) = (12×2, σx , σy , σz) and (σ′µ) = (12×2,−σx ,−σy ,−σz).
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Proofs Proof of Theorem I

Constructing PWE

To find the right photon wave equation, we first note that Maxwell’s
equations satisfy at least some of the requirements we have listed.
Moreover, it is possible to write Maxwell’s equations in spinor form:
Let a be a 1-form and f a 2-form on R1,3. The source-free
Maxwell’s equations for an EM field tensor f and 4-potential a (in
Lorentz gauge,) are

da = f, δa = 0, df = 0, δf = 0. (5)

To put these in spinor form, define

χ+ := aµσ′µ, ψ+ :=
i
4

fµνσµσ′ν .
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Proofs Proof of Theorem I

Constructing PWE (cont’d.)

Then the above Maxwell’s equations (5) are almost equivalent to

σµ∂µχ+ = ψ+, σ′µ∂µψ+ = 0. (6)

The only difference being their behavior under parity
(5) is invariant under parity, while (6) under parity goes to

σ′µ∂µχ− = ψ−, σµ∂µψ− = 0. (7)

Putting (6) and (7) together seems to yield our PWE (1).
But, we are not done yet!
So far, ψ+ and ψ− correspond to the same 2-form f.
This implies that ψ†+ = ψ−. This PWF is self-dual.
Self-duality is not preserved under multiplication by a complex
scalar! =⇒ We will not get a Hilbert space over C!
Remedy: use two different f’s: f+ for ψ+ and f− for ψ−.
Now we can have superposition of LH and RH photons!
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Proofs Proof of Theorem I

Lagrangian Formulation and Conservation Laws
Our PWE (1) is derivable from a Lorentz-scalar Lagrangian:

L =
~

16πi
tr
(
ψPHγ

µ∂µψPH − ∂µψPHγ
µψPH

)
+

mE
8π

tr
(
ψPHΠψPH

)
, (8)

Here, ψ = γ0ψ†γ0 is the Dirac adjoint for rank-2 bispinors, and tr is
the (matrix) trace operator.
The associated (symmetrized) canonical stress for (8) is

Θµν =
~

32πi
tr
{
ψPHγν∂µψPH + ψPHγµ∂νψPH − adj.

}
It satisfies ∇µΘµν = 0. Thus it can be used to generate all the
Noetherian domain conservation laws of the PWE associated with
the continuous symmetries of R1,d : Energy, Linear Momentum,
Angular Momentum, and Centroid position.
There are also (previously unknown) integral conservation laws
associated with symmetries of the fiber, e.g. the cross-linkage
integral.
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Proofs Proof of Theorem I

Relationship to Maxwell Fields

Recall the 1-forms a± and 2-forms f± that appeared inside PWF ψPH.
Choosing a frame, we can re-name the components of these
forms: a0

± = φ±, ak
± = Ak

±, −f 0k
± = ek

±, − ∗ f 0k
± = bk

±.

It will then follow that χ± = φ±1∓σ ·A±, ψ± = ±iσ · (e±± ib±).
As a consequence of PWE (1), the pairs (e+,b+) and (e−,b−)
satisfy Maxwell’s equations for classical E and B fields.
Via a gauge transformation, (φ±,A±) can be made real, and can
be viewed as "scalar and vector potentials" (in Lorenz gauge) for
those E and B fields.
The conserved quantities we found can be re-expressed in terms
of these "electromagnetic" quantities. In particular:

Energy =
mEc2

8π

∫
R3 [e+ · e− + b+ · b−] d3x

Cross Linkage = ~
8πmEc limr→∞

∫
Sr

(a− × a+) · ndS.
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Proofs Proof of Theorem I

Hamiltonian Formulation

Recall that the diagonal part of the PWF satisfies the massless Dirac
eq. (2): −i~γµ∂µφPH = 0, where φPH := ΠψPH.

Choosing a time function t for R1,d , the above has a Hamiltonian
reformulation: i~ ∂

∂tφt = Hφt , where φt (x) := φPH(t ,x), and

H := −i~cγ0γk∂k = −i~c
(
σ · ∇ 0

0 −σ · ∇

)
H is easily seen to be symmetric and essentially self-adjoint with
respect to the Hilbert space innerproduct

〈φt |ζt〉 :=

∫
R3

tr
(
φ†t ζt

)
d3x ,

It follows that Spec(H) = R, and the generalized energy and
momentum eigenvalues of H satisfy the Einstein (deBroglie)
energy-frequency relations: E = ~ω, p = ~k.

Shadi Tahvildar-Zadeh (Rutgers) QM of a Photon March 22, 2018 25 / 36



Proofs Proof of Theorem I

Existence of a Photon Particle Current

None of the conserved quantities mentioned so far can play the
role of a particle current for photons.
That is, a future-directed causal Lorentz-vector jµ, constructed
only from the PWF, such that ∂µjµ = 0.
If such a vector can be found, then upon choosing a Lorentz frame
and setting ρ := j0 ≥ 0, vk := jk/ρ, we obtain the continuity
equation ∂tρ+∇ · (ρv) = 0, which impliest that d

dt

∫
ρ(t ,x)dx = 0.

Assuming
∫

R3 ρ(0,x)dx <∞, by normalizing the PWF we can
interpret ρ(t ,x) as the probability density of detecting the photon
at time t at position x in space. (When ρ is quadratic in the
normalized WF, this is called Born’s Rule.)
We can further identify v as the (deBroglie-Bohm) velocity field of
the actual photon trajectories x = Q(t)
Thus the actual particle trajectories can be found by solving the
ODE dQ

dt = v (t ,Q(t))
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Proofs Proof of Theorem I

Constructing the Photon Particle Current

1 We show that given any (non-null) Killing field X of R1,d , there is a
conserved current jµX that depends only on X and φPH = ΠψPH.

2 We show how to construct a constant (and therefore Killing)
vectorfield X that depends only on φPH

To do this, we first define the Riesz tensor: τµν = 1
4 tr
(
φPHγ

µφPHγ
ν
)

We prove that τ is symmetric, and ∇µτµν = 0 when φPH satisfies
the massless Dirac eq. (2)
We prove that τ satisfies the Dominant Energy Condition, i.e.

1 τµν Y ν is future directed causal whenever Y is so.
2 τµνYµZ ν ≥ 0 whenever Y and Z are future-directed and causal.

We now set jµX := τµν X ν for X the given Killing field.
This completes Step 1.

Shadi Tahvildar-Zadeh (Rutgers) QM of a Photon March 22, 2018 27 / 36



Proofs Proof of Theorem I

Constructing the Photon Particle Current, Step 2

Let {e(µ)} be any fixed Lorentz-orthogonal frame of constant unit
vectorfields for R1,d .
By Step 1, to every Killing field Y of the Minkowski space, there
corresponds a number πY :=

∫
Rd j0Y (t ,x)dx. (Note: since jY is a

conserved current this is independent of t).
Since each of the constant vectors e(µ) is itself a Killing field of
Minkowski space, we can define πµ := πe(µ)

.

It’s easy to see that under a Lorentz transformation, (πµ)
transform like the components of a Lorentz vector π.
Moreover, π is future-directed and causal.
If π is not null, we set X := 1

πµπµπ.
We define the photon probability current to be

jµPH = jµX =
1
4

tr
(
φPHγ

µφPHγνX ν
)

with X as defined in the above.
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Proofs Proof of Theorem II

The Two-Particle Probability Current

Recall the currents jµEL := ψELγ
µψEL and jµPH := 1

4 tr
(
ψPHγ

µψPHγνX ν
PH

)
.

We can define a 2-particle current by taking their tensor product:

jµν :=
1
4

trp
(
ψγµp γ

ν
eψγ

α
p Xα

)
The constant timelike vector X is constructed from the initial data
◦
ψ of the 2-body wave function in a similar way to XPH

Eq. (3) implies that jµν is mutually conserved:

∂xµ
p

jµν = 0, for ν = 0,1, and ∂xν
e jµν = 0, for µ = 0,1.

Since ∂S 6= ∅, in order to obtain probability conservation (i.e., the
integral form of the current conservation law) we need to know
something about the boundary values of jµν on C.
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Proofs Proof of Theorem II

Particle Interaction Via Boundary Conditions
One BC compatible with probability conservation is

lim
ε→0

εµν jµνX (t , s − ε, t , s + ε) = 0 = lim
ε→0

εµν jµνX (t , s + ε, t , s − ε). (9)

It corresponds to no current crossing the boundary, i.e. the
electron and the photon not "going through" each other.
Recall Compton Scattering: electron and photon seemed to
"bounce off" of one another.
Since the joint wave function satisfies a free evolution in each set
of particle coordinates, the particles are interacting solely via (9).
The requirement of Lorentz-invariance greatly restricts the
possible choices for the boundary values of ψ:
THEOREM: The only Lorentz-invariant BCs that yield (9) are

lim
ε→0

ψ+−(t , s∓ε, t , s±ε) = ±ς i

√
X 0 − X 1

X 0 + X 1 lim
ε→0

ψ−+(t , s∓ε, t , s±ε)

with ς = 1 or − 1.
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Proofs Proof of Theorem II

Solving the Initial-Boundary Value Problem

Recall that ψ satisfies two equations:
1 The massless Dirac eq., in the photon variables (tp, sp)
2 The massive Dirac eq., in the electron variables (te, se)

For d = 1, the photonic Dirac eq. says that each component of ψ
satisfies a transport equation, so that it is either a function of
sp + tp or a function of sp − tp.
The electronic Dirac eq. implies that each component of ψ
satisfies a Klein-Gordon equation in the (te, se) variables.
Both of the above equations are exactly solvable, at least in the
non-interacting case, i.e. so long as no waves have reached the
boundary C.
Let R denote the complement of the future of C (see figure).
Existence and uniqueness of ψ at points in R is thus guaranteed.
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Proofs Proof of Theorem II

Solving the IBVP (cont’d)

For two of the components, ψ−− and ψ−+, the backwards
characteristics emanating from a point in S1 do not intersect the
boundary C, hence these two components are completely
determined everywhere in S1, not just in R.
For ψ+−, one of the backward characteristics hits the boundary C,
where the boundary condition can be used to find the values for
ψ+− from the known values for ψ−+.
The other backward characteristic for ψ+− hits ∂R (which is itself
a characteristic surface), where ψ+− is known by continuity.
The component ψ+− thus satisfies a Goursat (characteristic
Cauchy) problem, which is again exactly solvable.
Finally, ψ++ can be found from ψ+− by integration along a
characteristic.
Joint probability density ρ = |ψ−−|2 + |ψ−+|2 + |ψ+−|2 + |ψ++|2.
(See Movie 1.)
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Proofs Proof of Theorem II

Existence and Uniqueness of Particle Trajectories

The Hypersurface Bohm-Dirac model is a relativistic multi-particle
extension of the deBroglie-Bohm guiding law. It requires:

1 A relativistic current that is a tensor product of 1-body currents
2 A spacelike foliation of Minkowski spacetime.

Both of these are available to us, thanks to the current jµν and the
constant timelike vector X built out of the initial wave function.
Let us go into a frame in which X̂ = e(0), and denote by Σt the
leaves of the foliation induced by X̂
Let Qp(t) and Qe(t) denote the space coordinate of the
intersections of the actual photon, resp. electron, trajectory with
the Cauchy surface Σt . These satisfy the ODE system

dQp(t)
dt

=
j10(Qp(t),Qe(t))

j00(Qp(t),Qe(t))
,

dQ1
e(t)

dt
=

j01(Qp(t),Qe(t))

j00(Qp(t),Qe(t))
.

It is standard that a Lipschitz right-hand-side will imply local
existence and uniqueness of solutions to this ODE system.
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Summary & Outlook

Summary

In this talk we have shown that
Despite previous claims to the contrary (made by some prominent
physicists), a relativistic quantum-mechanical wave function and
wave equation for a single photon exists, and has all the
properties needed in order to treat the photon just like the
electron, i.e. as a point-particle guided by its wave function
defined on its configuration spacetime.
At least in one space dimension, one can formulate and solve a
fully relativistic interacting 2-body quantum-mechanical system of
one photon and one electron, obtaining results that are compatible
with the Compton Scattering of electrons by photons.
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Summary & Outlook

Outlook

We are currently working on the following extensions of the above
results:

Formulate the PWF and PWE on spacetimes that are curved
and/or have non-trivial topology.
Study the emergence of classical electromagnetic field in the limit
when the number of photons goes to infinity.
Study the emission/absorption phenomena for d = 1.
Study the interaction of two electrons mediated by a photon, for
d = 1.
Find a way to model the interaction of photons and electrons in
d = 3 space dimensions.

Shadi Tahvildar-Zadeh (Rutgers) QM of a Photon March 22, 2018 35 / 36



Summary & Outlook

THANK YOU FOR LISTENING!
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