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Motivation
Linear perturbations of the Kerr spacetime

@ Black hole stability problem.
@ Uniqueness problem.

@ Self force problem.
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Methods and motivation

@ Covariant geometric methods based on a conformal Killing-Yano tensor or Killing
spinor.

@ Don't have to care much about coordinates.

@ Much works for a larger class than just Kerr. Vacuum Petrov type D or
Kerr-NUT. (Focus on Kerr)

@ The Killing spinor can be approximated on general backgrounds.




e Spinor notation, linearized curvature notation.

o Symmetries and structure of the Kerr black hole (Petrov type D)
o Gauge invariant quantities

o Hyperbolic evolution equations for some gauge invariants

o Symmetry operators. (briefly)

e Summary and concluding remarks



Will use abstract tensor notation and 2-spinor notation.

Tensors Spinors
4D real bundles 2D complex bundles
T, Tan
V, Vaa

Symmetric metric g,p

Antisymmetric metric eag

Symmetric trace-free tensors

Symmetric spinors

Ricci scalar R

24N

Trace-free Ricci S,p

—2® ppa B/

Weyl tensor C,peq

Vagcpéaséc'pr +Vap crpreaBeco

Conformal Killing-Yano Yap = Yap)
v(a Yb)c = %gc(avd Yb) - %gabvd ch-

Killing spinor kag = K(aB)

VA’(A'V”'BC) = 0

Irreducible decompositions = Symmetric spinors times ¢ = Use symmetric spinors.



Linearized curvature

Covariant metric perturbations around a background g,, metric (vacuum)

gab = gab + 6hab + 0(62)

@ Linearized metric hg,p.

@ Linearized Riemann in tensor form

Rabed = 2871aV Viahs)" + 3Riat) (chayr — 3R (asjichayrs

@ Linearized Weyl, tracefree Ricci and Ricci scalar in spinor form
g Ag B 1 F A
UWagcp = 5V(a" Ve~ hepyas — 3Vascoh™ F7 av,
AB _ 1oC(A c’ B) 1 Dy, A'B
902" E" = VAV LI “hgy e B) + 3WapPhep™E

N = £V gV E4hOgAE



Special spacetimes

Vacuum Petrov type D

@ A Petrov type D spacetime has two repeated principal spinors oa,t4, and we can
write

1
Vagcp = 6W20(AOBLCLD)-

o (Walker & Penrose 1970) Vacuum type D = existence of
a Killing spinor kag, Vaakpc)y =0
or a conformal Killing-Yano tensor Yap, V(,Yp)c = %gc(avd Ybyd — %gabvd i
@ Will study such spacetimes (or more special) and build all structures from kag or
W o




Symmetries vacuum Petrov type D
Vacuum Petrov type D

Let Vap = %(Yab + i*xY,p) be anti-self dual conformal Killing-Yano tensor related to
the Killing spinor kg via

Vab = 3iEap ka8, and let p =/ Vpa 7.
From the 2-form ),5, we can construct a Killing vector
é-c — %ivayca _ VBCIHJCB.

If £ is real, we can also construct
e a Killing tensor Kyp = — Y5 Y, V(aKbc) = 0.

@ a second Killing vector

(° = K¢y = 2V Vet — (7 +P)E%.




Kerr black holes

The Kerr metric

(a?sin® 0 — A)dt,dt,  Xdr,dry
= = — — >db,do
8ab T A b
sin? 0(a? sin2 A — (a® + r?)?)dg,doy
_|_
>
2asin® 0(a% + r2 — A)dt,d¢y)
+ :
>
where A = a°> — 2Mr + r? and ¥ = a?cos? 6 + r?.

@ Vacuum Petrov type D spacetime describing a rotating black hole.
@ M is mass and a angular momentum parameter with |a] < M.

@ Will not use coordinate formulation.



Symmetries of Kerr

@ We can normalize the Killing spinor so that £? is the real Killing vector (9;)2.
@ p=r—iacosf in B-L coordinates.

Vopd = Uypd = —M.

(2 = a%(0)? + a(d4)?. (Vanish for Schwarzschild)

Rotating case: Killing spinor = All symmetries (0, 04 and Kjp).

Geodesic equation integrable. (Carter constant. Q = 523°K.p)

The Killing spinor can also be used for characterization of Kerr.

e 6 6 o6 o o

Use covariant Killing spinor instead of coordinates for calculations.

Focus on Kerr but many results are valid for larger classes of spacetimes (Kerr-NUT).



Projectors from the Killing spinor

@ [C operators:

(K2,1¢)A1...Ak+2 = - 6p_1K(A1A290A3...Ak+2) "spin raising”
(Kllnl‘:@)Al...Ak = - 3P_1H(AlB<PA2.,.Ak)B "sign flip”
(’Ci,lsp)Al--~Akf2 = 2P 1HCD<PA1...Ak,2CD "spin lowering”

The spin-0, spin-1 and spin-2 parts of the linearized curvature can be expressed by

I, = K35 ,K3 g9V
= (Rb¥ca Vs — RabeaV™ — RachaV <)V p~2/6,
Zap = (K3 o’Cz%,oﬁw)ABEA’B'
= (—2Y“Riajca) Ve + 3yCdR[af|cd|yb]f)p72/4
Wabed = ((KC3.0K4,0K3,0/Ch.0 — 16K2,0/C3,0K3,0K5,0)0V) ascpeasrécipr.



Expressions in a tetrad

In any principal tetrad (/2,n?, m?, m?) (aligned with principal directions of Weyl):

WWo = Rimim,

V1 = L Rimin — 3 Rimmm,

IV = LRinin — 3 Rinmin + 3 Rimin + & Rmmmm,

IV3 = 5 Rinmn — 3 Rmminn,

W4 = Ranin,

Vab = ip(fjanp) — mpzMp)),

Zap = 20V 1m[np — 20V3,my,

Wabed = 49V omanpMicng) + 40V ali;mp . my).

Observe that we don't formally need a frame.
Observe that W,peq only contains 9Wq, 9V, called the Teukolsky variables.
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Applications of symmetries to linearized gravity
With the help of the Killing spinor we can describe

@ All local gauge invariant quantities from the Killing spinor and lin. curvature.
o Field equations for gauge invariants. Several possibilities:

o Teukolsky master equations (TME)
o Teukolsky Starobinsky identities (TSI)

Both can be seen as hyperbolic.
e Symmetry operators.

e Conservation laws. (Not today.)

o Coordinate free description.

@ Characterization of Kerr in terms of Killing spinor.

@ Killing spinor can be approximated on general backgrounds
= approximation for all structures.
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Gauge invariance

e Only gauge invariant quantities carries physically relevant information.

Gauge invariance

@ Quantities invariant under linearized diffeomorphisms h,, = £, g, for some 12 are
called (local) gauge invariant. (Linear differential operators)

@ The Teukolsky scalars 9Wq and JW, (components of lin. Weyl) are gauge
invariant.

Generators

@ Any linear differential operator applied to a gauge invariant is also gauge invariant.

@ A set of gauge invariants is generating if all gauge invariants can we expressed as
a linear combinations of differential operators on elements of this set.

@ New result: A minimal generating set of gauge invariant quantities for linearized
gravity on Kerr.
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Gauge invariants from Killing vectors

p= Vybdybd:r*iaxy U, = *valog(p)'

Proposition

Let V@ be a real Killing vector field and

Iy = pPP WV, (p*9¥,) — IRe(p®IW,V,W?) — 2iTm(p° U WP Z,p) — 3 p°W, U WPh,y
where the vector field W, = 2ip~3 VbY., is assumed to satisfy the condition

ﬁ3U[aWb] = — p3U[aWb]. (1)

Then 1y is a local gauge invariant.

On Kerr: €2 and (? satisfies (1) = I, I are gauge invariants.
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All gauge invariant for perturbations of Kerr

A set of local gauge invariant quantities for perturbations of the Kerr spacetime is
given by the 18 components

Teukolsky scalars IWo, 9V, (Second order) (2a)
Linearized Ricci Rab = RachS, (Second order) (2b)
Killing invariants Ie, L. (Third order) (2¢)

Complete description

The set of gauge invariants above is minimal and generates all local gauge invariants
for perturbations of the Kerr spacetime with a # 0.

Minkowski: All 20 components of the linearized curvature tensor.
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Information carried by I¢, I

IWo =0, 9V, =0, Rop = 0, = Linearized vacuum type D with parameters M, N, a, ¢
(mass, NUT charge, angular momentum and c-metric)

e M, a perturbations
I = M, I, = 2a°M — 3Maa,
o N perturbations with x = cos @

2iM : Mp

Ie = — iN+ —N, Ir = —ia®N + ax(r — 2M — —)N,
P P
@ ¢ perturbations
M2 M2 2
I = 0 prxc+3M(/a+(M r)x)e, I = 6;rxc—31Ma(p - r’x%)c.

o Important to control M and 4 modes for self-force problems and stability problems.
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Differential relations

@ The gauge invariants satisfy differential equations.
@ Minkowksi: Linearized Bianchi.

@ Kerr: Linearized Bianchi gives compatibility conditions between the gauge
invariants.

@ Important for the proof that the set generates all gauge invariants. (Not in this
talk)

Hyperbolic evolution equations for lin. vacuum R, = 0.

@ Linearized Bianchi not always practical for estimates.

@ Standard method: Apply another derivative to get wave equations for curvature
components.

This gives Teukolsky equations (TME) for 9Wq, 9V, (wave eqs) on Kerr.

Can also get other equations: Teukolsky-Starobinsky identities (TSI) relating YW
and YW¥,. (Also hyperbolic)

Evolution equations involving I¢, I under investigation.
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Teukolsky (TME) and Teukolsky-Starobinsky (TSI)

Classical view

Field equations = decoupled, separable integrability conditions
@ Teukolsky Master Equations (TME):

(r? +a?)? 2]34; AMar 8% [ 1 ]azzp ( _@) ( z/))
-— 6 e e | e S §+1
[ e oy R W E o ) " 5ind 0 \51?

[a(’r M)+zcose]azp 95 [M(rz—az)
A sin®6 l 8¢ A

o Teukolsky-Starobinsky Identities (TSI): ¢ = e~ ™“te™?S(A)R(r)
2_130,9,91%5'2 + IZMIOJSgT = S-g s
DIDDDR_, = LR, .

(Properties of confluent Heun functions.)

. ]
-7 -ia coge] E;L (s%cot?6 — s)Y=4nZT.
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Teukolsky (TME) and Teukolsky-Starobinsky (TSI)

Modern view 1

Maxwell equations (source free)
Potential A, Field Extreme components ¢g, ¢»
EA=0 p=TA TME: wave eq. for ¢ or ¢ (2nd order)
2nd order eq. 1st order TSI: eq. relating ¢o and ¢» (2nd order)

TME=Teukolsky Master Equations, TSI=Teukolsky—Starobinsky ldentities
Linearized gravity (vacuum)
Lin. metric hgp Lin. Weyl Extreme components Vg, U,
Eh=0 V=Th TME: wave eq. for W or \IJ4 (2nd order)
2nd order eq. 2nd order TSI: eq. relating Wo and Wy (4th order)

@ Extreme components: gauge invariant and carry dynamical degrees of freedom.

e TME often used (gravitational waves), but TSI also carries important information.

@ Not all solutions to TME correspond to solutions of linearized gravity.
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Teukolsky (TME) and Teukolsky-Starobinsky (TSI)

Modern view 2

@ The TME is decoupled set of two hyperbolic
(weighted) scalar wave equations (TME). o b

Completing TSI to a hyperbolic system <<

@ One can formulate TSI as a set of two coupled

differential equations.
(Derivatives of linearized Bianchi.) e N N p

@ TSI can be completed to "full TSI" with 5 v, N / W,
equations (3 for Maxwell).

o Remarkable: Full TSI gives a first order \< >/

symmetric hyperbolic system.

@ Alternative to TME evolution.




Symmetric hyperbolic systems
First order symmetric hyperbolic systems

Any equation of the form

VAN a.=p.a. o Va¥é a. =0 a.

gives a first order symmetric hyperbolic system.

Maxwell

Let ¢pap be a Maxwell field, and kg the Killing spinor (p = —QKAB/{AB ). Define

vaB = — 3pr(a“dB)c, Yan = — p°Vea(p20)al.
The TME and full TSI for Maxwell can be written as
Vi vgyw =0, VAutaey = 0.

2 TME equations, 3 TSI equations (cf Coll et. al.)
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Symmetric hyperbolic systems
Maxwell TME and TSI

Use the commutator VA aa = —2UA an, with Usa = —Vaur log(p) to write

First order symmetric hyperbolic system for the Maxwell TME

VE ppas = —2UB ppa + Wanr,

A CcA’
VA" vy = eapU™" Ycar,

First order symmetric hyperbolic system for the Maxwell TSI

VEypas = —2UB ppag + an,

A AC’ =
Voapap = U™ €apihac-




Symmetric hyperbolic systems
Maxwell TME and TSI

New view

@ Also TSI is a hyperbolic evolution system.
@ Same variables for TME and TSI.

o 5 o.o o /
@ Given an initial data surface with normal n4

the difference
0= —nPaVoeval + naf VpsyPa.

is a constraint for the initial data. (Spatial derivative.)

@ TSI as constraint under TME evolution. (Propagates)

e TME as constraint under TSI evolution. (Propagates)




Symmetric hyperbolic systems
Linearized gravity

First order symmetric hyperbolic system for linearized gravity TSI

@ Have a system. _ -
YABCD

YaBcB
XABB'C’
NAB'C'D’

aAB!

Bas

@ Involves Teukolsky scalars and another gauge invariant (caar).

First order symmetric hyperbolic system for linearized gravity TME

@ TME implies another hyperbolic system in the same variables.

@ TME as constraint for TSI and vice versa under investigation.
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Symmetry operators

Definition
A symmetry operator is a linear differential operator that maps a solution of a
differential equation to a solution.

@ Lie derivatives along (conformal) Killing vectors
for wave eq in Minkowski.

y

Motivation for symmetry operators

@ Explains separability and integrability.
@ Useful for energy estimates:
e Sobolev norms with symmetry operators instead
of partial derivatives.
e Higher order conservation laws.
e Morawetz estimates near orbiting null geodesics
for rotating black holes. (Andersson, Blue)

A\




Symmetry operators of the Kerr spacetime

Symmetries on the Kerr spacetime

o Classical symmetry operators: Lie derivatives along Killing vectors (0; and 0,).

@ Hidden symmetry operator for scalar wave equation:
V.,K3V}, (Carter) where is the Killing tensor K2, V(2Kbe) = 0.

@ Use Killing spinor to derive symmetry operators for Maxwell and lin. gravity.




Symmetry operators from operator identities

e So far: TME and TSI in the source-free case (lin. vacuum).

@ Include source terms (lin. Einstein) = operator identities relating lin. Weyl
components with lin. Einstein components. (cf Bianchi).

Identity: SE =0T
E linearized Einstein.

°
°
o T: hyp—= WWagen.
e O TME or TSI.

Symmetry operators from TME and TSI (Maxwell and lin. gravity)

o Wald 1978: TME operator identity = symmetry operator.
@ We: Also TSI operator identity = symmetry operator.




Adjoint operator method

Idea (Wald 1978)

Use adjoint operator method to produce solutions of Maxwell or linearized gravity from
solutions of TME. (Leads to symmetry operator.)

For any linear partial differential operator A, define

o Al adjoint w.r.t. (¢,¢) = [ ¢vdp, ie. (ATg,0) = (¢, Ap).
o A* adjoint w.rt. (6,4) = [ dibdp, ie. (A*6, ) = (6, Ag).

Theorem

Suppose the identity
SE=0T

holds for linear partial differential operators S,E, O and T.
Suppose v satisfies Of1) = 0. Then Sti satisfies Ef(STy) = 0.
In particular, if E is self-adjoint then EST+) = 0. (Also works with %-adjoint.)

Proof: EfSt = TTOT.



Linearized gravity
TME and a 4th order symmetry operator

General

o Linearized Einstein operator E (2nd order). Ef = E* = E.
o Linearized Weyl operator T : h — YW (2nd order).

TME and a 4th order symmetry operator

e TME equation QYW = 0 (2nd order) involves only YWy and 9¥,. ( Of = 0)
@ The identity SE = OT holds for a 2nd order S.
o STYW is a new complex solution to the linearized gravity.

o Symmetry operator STT from metric to metric is 4th order.

@ We have explicit expressions in a new powerful covariant operator formalism
involving only covariant derivatives and the Killing spinor.
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Linearized gravity
TSI and a 6th order symmetry operator

o Linearized Einstein operator E (2nd order). Ef = E* = E.
o Linearized Weyl operator T : h — 9V (2nd order).

TSI and a 6th order symmetry operator (Aksteiner & Béckdahl 2016)

TSI equation 09V — LIV = 0 involves only ¥Wq and 9V,.
O* = O is 4th order, and LT = L is 1st order (Lie derlvatlve)
The identity SE = OT — LT holds for a 4th order S.

E(S*0W + S*oW) = T*(09V — LV) + T (09V — Lyw)

//%ABA’B’ = (/S\*ﬁ\U)ABA/B/ aF (/S\*ﬁ\U)ABA’B’ is a real solution to linearized gravity

The symmetry operator for linearized gravity (from metric to metric) is 6th order.
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Symbolic calculations with xAct

Efficient tensor/spinor computer algebra for Mathematica

Calculations leading to the results just presented were performed with xAct.
Based on the Killing spinor —> coordinate free calculations.

@ Open source, www.xAct.es

@ Powerful algorithms to handle and use symmetries
of tensors and spinors

@ All operators of this talk are implemented

@ xAct Packages: SymManipulator, SpinFrames,
TexAct

o Irreducible decompositions \ Specific AddOns

e Fundamental spinor operators Projoct
o NP and GHP formalisms
o Structured Tex output

SymManipulator
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Summary and concluding remarks

All gauge invariant quantities for linearized gravity on Kerr.
New view on the Teukolsky-Starobinsky Identities (TSI).
TSI = hyperbolic evolution system.

Both TME and TSI generate symmetry operators.

For linearized gravity we get a 4th order symmetry operator (known), and a new
6th order symmetry operator.

Covariant techniques and efficient formalisms = new insights.

@ Robust operator formulation could work for "almost Kerr" backgrounds.

Thank youl!
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