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How do we assemble the Galerkin matrix (stiffness matrix) efficiently? Recall that for the Poisson
equation we have

n

Ay = [alpj, ‘Pi)]i,j:1 .
The actual computation of the coefficients a;; = a(yj, ;) is usually done as follows. We have
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Thus it is enough to compute aéj = le Vo, - Vo,dz.

By construction, aéj is zero if z; &  or z; ¢ Q. For the remaining cases we go back to a reference

triangle
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and T; is an affine linear mapping on triangles with
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We want to map a point y = [73] € Q on the reference triangle (bijectively) to a point z = [2L] € Q.
It can be easily checked that [73] = T; ([}5]) = zi + (2 — zi)y1 + (2K — 2)y2 realizes such a mapping
by an affine linear transformation. In the end, we use the changed coordinates to compute ai-j on the
reference triangle as follows: With
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we get
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Assume that there are two piecewise linear ansatz functions @; and ; defined on the reference triangle
;. Then we get

pi(z) = 0i(Ti(y)) = 2i(y),  wi(@) = ¢;(Ti(y)) = @;(y).



Now we want to do the change of coordinates in the integrals, in particular, we must change the

coordinates when forming the gradients. According to the chain rule in multivariate differentiation,
we obtain
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Since y = A; (v — z;), we see that
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and therefore,
Vap(a) = A7 TV,@(y).

This and the the transformation formula for coordinate changes in integration gives us
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With we get
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Therefore, with
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we finally get
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So in fact, each of the integrals above on the reference triangle have to be computed only once in
total! (and not once for each element). Therefore, the only values we have to compute for each element

again are dj, bln, bl12, and bl22. But this is easy, since it only requires the knowledge of the vertices of

the elements €. )



