Tangles: from weak to strong clustering
or: Our adventure in machine learning

D Fiovoranti, S Klepper, L Rendsburg, U von Luxburg, E, K, T

Tangle definition

Given a set S of bipartitions (cuts), a tangle is a set τ which contains exactly one side of each bipartition such that

$$
|A \cap B \cap C| \geq a \quad \forall A, B, C \in \tau .
$$

a: Agreement parameter

Stochastic Block Model

 k blocks of equal size $\frac{n}{k}$Edges within blocks with probability p, between blocks with probability $q<p$

Stochastic Block Model

 k blocks of equal size $\frac{n}{k}$Edges within blocks with probability p, between blocks with probability $q<p$

Consider all cuts up to order Ψ

When are the blocks (distinct) tangles?
When are there no other tangles?

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

All cuts up to order Ψ
$\left|A, A^{\complement}\right|:=\sum_{a \in A, b \in A^{\complement}} w(a, b)$

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

All cuts up to order ψ

$$
\left|A, A^{\complement}\right|:=\sum_{a \in A, b \in A^{\complement}} w(a, b)
$$

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

All cuts up to order ψ
$\left|A, A^{\complement}\right|:=\sum_{a \in A, b \in A^{\complement}} w(a, b)$

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

All cuts up to order ψ

$$
\left|A, A^{\complement}\right|:=\sum_{a \in A, b \in A^{\complement}} w(a, b)
$$

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

All cuts up to order ψ

$$
\left|A, A^{\complement}\right|:=\sum_{a \in A, b \in A^{\complement}} w(a, b)
$$

SBM (Expectation Case)

2 blocks of equal size $\frac{n}{2}$
Edges within blocks with weight p, between blocks with weight q

All cuts up to order ψ

$$
\left|A, A^{\complement}\right|:=\sum_{a \in A, b \in A^{\complement}} w(a, b)
$$

$$
\sum_{\substack{(i, j) \\\left(\frac{i}{n}, j\right) \in A_{\psi}}}\binom{n_{1}}{i} \cdot\binom{n_{2}}{j} \ll \sum_{\substack{(i, j) \\\left(\frac{i}{\delta n}, \frac{j}{\delta n}\right) \in A_{\psi}}}\binom{n_{1}}{i} \cdot\binom{n_{2}}{j}
$$

How do we sample good cuts?

How do we sample good cuts?
How do we evaluate?

V[Viewnior Viewnior]

"Tangle order 61.0.svg" selected ($172,4 \mathrm{kB}$), Free space: $259,4 \mathrm{~GB}$

Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, $p=0.5, q=0.05$

Karger's algorithm

 Image by Thore Husfeldt for Wikimedia Commons, Creative Commons BY-SA
Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, $p=0.5, q=0.05$ (Data is fuzzed for readability)

Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, $p=0.5, q=0.05$ (Data is fuzzed for readability)

Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, $p=0.5, q=0.05$ (Data is fuzzed for readability)

Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, $p=0.5, q=0.05$ (Data is fuzzed for readability)

Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, $p=0.2, q=0.05$ (Data is fuzzed for readability)

The mindset model

A 'typical' pattern of answering a questionaire.

The mindset model

k mindsets, m questions, n people
Step 1: Sample k template vectors $\mu_{1}, \ldots, \mu_{k} \in\{0,1\}^{m}$ (mindsets)
Step 2: For each μ_{i}, a set of $\frac{n}{k}$ people answers as μ_{i} does, but deviates on each question independently with probability $p<\frac{1}{2}$

The mindset model

k mindsets, m questions, n people
Step 1: Sample k template vectors $\mu_{1}, \ldots, \mu_{k} \in\{0,1\}^{m}$ (mindsets)
Step 2: For each μ_{i}, a set of $\frac{n}{k}$ people answers as μ_{i} does, but deviates on each question independently with probability $p<\frac{1}{2}$

Cuts are induced by questions.

The mindset model

k mindsets, m questions, n people
Step 1: Sample k template vectors $\mu_{1}, \ldots, \mu_{k} \in\{0,1\}^{m}$ (mindsets)
Step 2: For each μ_{i}, a set of $\frac{n}{k}$ people answers as μ_{i} does, but deviates on each question independently with probability $p<\frac{1}{2}$

Cuts are induced by questions.

When are the mindsets tangles?
When are there no other tangles?

Stochastics

Everything's just Bernoulli random variables.
Binomial distributions are well understood.

Stochastics

If $1-3 p>k a / n$ then with probability at least $1-k m \exp \left(-2 n\left(\frac{k a}{n}-1+3 p\right)^{2} \frac{1}{9 k}\right)$ every mindset is a tangle.

Stochastics

If $1-3 p>k a / n$ then with probability at least $1-k m \exp \left(-2 n\left(\frac{k a}{n}-1+3 p\right)^{2} \frac{1}{9 k}\right)$ every mindset is a tangle.

If $p \leq a / n$ then with probability at least
$1-m k \exp \left(-\frac{2 n}{k}\left(p-\frac{k a}{n}\right)^{2}\right)$ every triple with large intersection comes from a mindset.

Stochastics

If $1-3 p>k a / n$ then with probability at least $1-k m \exp \left(-2 n\left(\frac{k a}{n}-1+3 p\right)^{2} \frac{1}{9 k}\right)$ every mindset is a tangle.

If $p \leq a / n$ then with probability at least
$1-m k \exp \left(-\frac{2 n}{k}\left(p-\frac{k a}{n}\right)^{2}\right)$ every triple with large intersection comes from a mindset.

But how do we turn this into 'Every tangle is a mindset'?

The problem

Suppose we have these mindsets:

$$
\begin{aligned}
& (1,1,1,0,0,0,0,0,0,0,0,0) \\
& (0,0,0,1,1,1,0,0,0,0,0,0) \\
& (0,0,0,0,0,0,1,1,1,0,0,0) \\
& (0,0,0,0,0,0,0,0,0,1,1,1)
\end{aligned}
$$

The problem

Suppose we have these mindsets:

$$
\begin{aligned}
& (1,1,1,0,0,0,0,0,0,0,0,0) \\
& (0,0,0,1,1,1,0,0,0,0,0,0) \\
& (0,0,0,0,0,0,1,1,1,0,0,0) \\
& (0,0,0,0,0,0,0,0,0,1,1,1)
\end{aligned}
$$

Then we also get a tangle for

$$
(0,0,0,0,0,0,0,0,0,0,0,0)
$$

The problem

Suppose we have these mindsets:

$$
\begin{aligned}
& (1,1,1,0,0,0,0,0,0,0,0,0) \\
& (0,0,0,1,1,1,0,0,0,0,0,0) \\
& (0,0,0,0,0,0,1,1,1,0,0,0) \\
& (0,0,0,0,0,0,0,0,0,1,1,1)
\end{aligned}
$$

Then we also get a tangle for

$$
(0,0,0,0,0,0,0,0,0,0,0,0)
$$

Assumption. If $\tau \in\{0,1\}^{m}$ satisfies that for all $x, y, z \leq m$ there exists a mindset μ such that $\tau(x)=\mu_{i}(x)$ as well as $\tau(y)=\mu_{i}(y)$ and $\tau(z)=\mu_{i}(z)$, then τ is a mindset, i.e. $\tau=\mu_{j}$ for some j.

How often is this satisified?

Assumption. If $\tau \in\{0,1\}^{m}$ satisfies that for all $x, y, z \leq m$ there exists a mindset μ such that $\tau(x)=\mu_{i}(x)$ as well as $\tau(y)=\mu_{i}(y)$ and $\tau(z)=\mu_{i}(z)$, then τ is a mindset, i.e. $\tau=\mu_{j}$ for some j.

How often is this satisified?

Assumption. If $\tau \in\{0,1\}^{m}$ satisfies that for all $x, y, z \leq m$ there exists a mindset μ such that $\tau(x)=\mu_{i}(x)$ as well as $\tau(y)=\mu_{i}(y)$ and $\tau(z)=\mu_{i}(z)$, then τ is a mindset, i.e. $\tau=\mu_{j}$ for some j.

Easily holds if every partition of the mindsets is induced by a question.

How often is this satisified?

Assumption. If $\tau \in\{0,1\}^{m}$ satisfies that for all $x, y, z \leq m$ there exists a mindset μ such that $\tau(x)=\mu_{i}(x)$ as well as $\tau(y)=\mu_{i}(y)$ and $\tau(z)=\mu_{i}(z)$, then τ is a mindset, i.e. $\tau=\mu_{j}$ for some j.

Easily holds if every partition of the mindsets is induced by a question.
This is bound to happen as $m \rightarrow \infty$.

How often is this satisified?

Assumption. If $\tau \in\{0,1\}^{m}$ satisfies that for all $x, y, z \leq m$ there exists a mindset μ such that $\tau(x)=\mu_{i}(x)$ as well as $\tau(y)=\mu_{i}(y)$ and $\tau(z)=\mu_{i}(z)$, then τ is a mindset, i.e. $\tau=\mu_{j}$ for some j.

Easily holds if every partition of the mindsets is induced by a question.
This is bound to happen as $m \rightarrow \infty$.
Caveat: This requires m to be exponential in k.

How often is this satisified?

Assumption. If $\tau \in\{0,1\}^{m}$ satisfies that for all $x, y, z \leq m$ there exists a mindset μ such that $\tau(x)=\mu_{i}(x)$ as well as $\tau(y)=\mu_{i}(y)$ and $\tau(z)=\mu_{i}(z)$, then τ is a mindset, i.e. $\tau=\mu_{j}$ for some j.

Easily holds if every partition of the mindsets is induced by a question.
This is bound to happen as $m \rightarrow \infty$.
Caveat: This requires m to be exponential in k.

Theorem. Asympotically, m has to be exponential in k, or else the assumption fails with high probability.

How often is it really satisified?

Realistically $k \leq 15$.

How often is it really satisified?

Realistically $k \leq 15$.

Back to experiments

How do we evaluate the quality of our clustering numerically?

Back to experiments

How do we evaluate the quality of our clustering numerically?

Turn it into a hard clustering. Count the number of wrongly separated pairs. Adjust for expectation. (\rightsquigarrow Adjusted Rand Index)

Dimensions

k : number of mindsets
m : number of questions
n : number of people
p : noise probability
a: tangle agreement
additional noise questions

A 6-dimensional space that needs to be explored!

	0.24	0.2	0.36	0.37	0.51	0.52	0.51	0.35	0.47	0.88
	0.22	0.1	0.44	0.73	0.79	0.69	0.75	0.64	0.73	0.82
	0.2	0.29	0.63	0.73	0.92	0.97	0.98	0.92	0.96	0.93
	0.18	0.57	0.82	0.84	0.97	0.98	0.99	0.84	0.99	1
	0.16	0.53	0.65	0.99	0.92	0.95	0.89	1	1	1
Q	0.14	0.69	0.79	0.96	1	0.96	0.95	1	1	1
. $\frac{0}{0}$	0.12	0.73	0.9	0.92	1	1	1	1	1	1
2	0.1	0.82	1	1	1	1	1	1	1	1
	0.08	0.78	1	1	1	1	1	1	1	1
	0.06	0.73	0.99	1	1	1	1	1	1	1
	0.04	0.57	1	1	1	1	1	1	1	1
	0.02	0.54	1	1	1	1	1	1	1	1
	0.0	1	1	1	1	1	1	1	1	1
mindset size $\left\|V_{i}\right\|$										

 $\mathcal{Q}_{0.14-\cdots}$

 0.0 "1234567891011121314151617181920212228252627282983132334353657839 number of questions m

The same goes for the SBM

Visualizing tangles

Suppose our data points are embedded in the plane

Visualizing tangles

Suppose our data points are embedded in the plane

Visualizing tangles

Suppose our data points are embedded in the plane

- tangle
\square splitting tangle
\odot maximal tangle

Visualizing tangles

Suppose our data points are embedded in the plane

Visualizing tangles

Suppose our data points are embedded in the plane

Dendrogram

Dendrogram

ground truth

τ_{1}

ground truth

τ_{1}

Thank you!

