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Introduction
Tobias Dyckerhoff

Hodge Structures

Let M be a real C∞ manifold. Then we have Ak(M), the (real) vector

spaces of C∞ k-forms on M . These piece together to form a cochain

complex1: 1 The de Rham Complex, where d
denotes the exterior derivative. We

take dim(M) = 2n for agreement with

the complex case.
A•(M) := A0(M)

d→ A1(M)
d→ · · · d→ A2n(M)

We then have

Theorem (de Rham). Hk(A•(M)) ∼= Hk(M,R)2 2 Where Hk(M,R) is the standard
singular homology. In some sense

the de Rham theorem states that an

analytically defined chain complex
yields a purely topological invariant.

Now suppose that M has a complex structure J . Let z1, z2, . . . , zn

local complex coordinates, with zj = xj + iyj . Then we have a decom-

position:

A1(M)⊗R C ∼= A1,0(M)⊕A0,1(M)

ω =
∑

fjdzj +
∑

gjdzj

or, more generally:

Ak(M)⊗R C ∼=
⊕
p+q=k

Ap,q(M)

Hodge theory asks (and) answers the fundamental question:

Does this decomposition descend to cohomology?

Definition. Hp,q ⊆ Hk(A•(M)⊗RC) is the subspace given by classes

represented by closed (p, q)-forms3 3 Näıvely, one might expect that, in

general

Hk(M,C) ∼=
⊕

p+q=k

Hp,q(M)

but this is not generally true.

Theorem (Hodge). Assume M is a compact Kähler4 manifold.

4 That is, M is equipped with a

complex structure J , a symplectic
structure ω, and a Riemannian metric
g such that

g(X,Y ) = ω(X, JY )

Then

Hk(M,C) ∼=
⊕
p+q=k

Hp,q(M)

Further, we have that Hp,q = Hq,p. This leads us to the Hodge

Diamond, a way to codify the symmetries of the cohomology of Kähler

manifolds.
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H0,0

H1,0 H0,1

H2,0 H1,1 H0,2

. .
. . . .

Hn,0 H0,n

. . . . .
.

. . . . .
.

Hn,n

qp

Hodge Symmetry

Hard

Lefschetz

H0

H1

H2

Hn

H2n

Application. M compact Kähler. Then the odd Betti numbers are

even. For example, S1 × S3 cannot be Kähler.

Definition (1). A Hodge structure of weight k consists of a Q-vector

space HQ together with a decomposition

H := HQ ⊗Q C ∼=
⊕
p+q=k

Hp,q

such that Hp,q = Hq,p.

or, alternatively

Definition. A Hodge structure of weight k consists of a Q-vector

space HQ
5 together with a finite decreasing filtration F •HQ ⊗Q C6 5 Called the rational lattice.

6 Called the Hodge filtration.

· · · ⊂ F p ⊂ F p+1 ⊂ · · ·

such that for all p, q such that p+ q = k+1, we have

• F pH ∩ F qH = {0}
• F pH ⊕ F qH = H
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To see that (1)⇒ (2), simply set

F pH =
⊕
1≥p

Hi,k−i

. To see the reverse implication, set

Hp,q := F pH ∩ F qH

Hodge Theory from the Algebraic Perspective

Fact: Every smooth projective variety X/C is a compact Kähler man-

ifold.

Grothendieck: The Hodge filtration can be constructed in an

intrinsically algebraic way. There is an algebraic de Rham complex7: 7 Which is, in fact, a complex of
coherent sheaves on X.

Ω•X := Ω0
X → Ω1

X → · · · → ΩnX

Theorem (Grothendieck). The hypercohomology8 of the algebraic de 8 The hypercohomology is defined as
the derived local section functor

Hk(Ω•X) := RkΓX(Ω•X)

Rham complex satisfies:

Hk(Ω•X) ∼= Hk(X(C),C)

The complex Ω•X has a filtration

F pΩ•X = 0→ · · · → 0→ ΩpX → · · · → ΩnX

Which induces a filtration on Hk(Ω•X)9 And a corresponding spectral 9 This is an elementary fact from

homological algebra. See eg Weibel.sequence (the so-called Hodge to de Rham spectral sequence):

Ep,q2 = Hq(X,ΩpX)⇒ Hp+q(Ω•X)

Question (Grothendieck). Can we prove, purely algebraically, that

this spectral sequence degenerates?

Answer (Deligne-Illusie). Yes!

Non-Commutative Geometry

Let A be a dg category. Then we get invariants

• Hochschild homology HH∗(A)

• Periodic Cyclic Homology HP∗(A)

• Spectral sequence HH∗(A)⇒ HP∗(A)
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Example (Generalized Hochschild-Kostent-Rosenberg). Let X be a

smooth projective variety over C.

HHk(PerfX) ∼=
⊕
p−q=k

Hq(X,Ωp)

HP0(PerfX) ∼=
⊕
k even

Hk(X(C),C)

HP1(PerfX) ∼=
⊕
k odd

Hk(X(C),C)

So we have something like a generalization of the Hodge diamond:

H0,0

H1,0 H0,1

H2,0 H1,1 H0,2

. .
. . . .

Hn,0 H0,n

. . . . .
.

. . . . .
.

Hn,n

qp

HH−n HH−1 HH0 HH1 HHn

HP0HP1

Additionally, we have a spectral sequence

HH∗ ⇒ HP∗

which in some sense recovers the Hodge to de Rham spectral sequence.

Question (For the seminar). Can we define Non-Commutative Hodge

Structures for suitable dg-categories not necessarily of the form PerfX?

- Can we find a Hodge Filtration?

- Can we find a rational lattice?



HKR for Rings
Walker Stern

Hochschild Homology and Variants

Let k be a commutative ring, and A be a unital associative algebra

projective over k.

Definition. The Hochschild Homology of A, HH∗(A), is10 10 Where

Ae = A⊗k Aop

is the universal enveloping algebra of

A.

TorA
e

∗ (A,A)

To relate this definition to an explicit chain complex, we take the

bar resolution of A:

· · · → A⊗3 b′→ A⊗2︸ ︷︷ ︸
Cbar∗ (A)

b′→ A

With the differential b′ given explicitly as11 11 The di come from the standard
simplicial structure on Cbar∗ (A), and

are given explicitly by

di(a0, a1, . . . , an) ={
(a0, . . . , aiai+1, . . . , an) 0 ≤ i < n

(ana0, a1, . . . , an−1) i = n

b′ =

n−1∑
i=0

(−1)idi

Tensoring A with the bar resolution, we get a chain complex that

computes the Hochschild Homology of A: The Hochschild Chain Com-

plex.

C∗(A) := · · · → A⊗3 b→ A⊗2 b→ A

where

b =

n∑
i=0

(−1)idi

On this chain complex, there is a cyclic action t : Cn(A)→ Cn(A)

t(a0, a1, . . . , an) = (−1)n(an, a0, a1, . . . , an−1)

The norm of this action is

N =

n∑
i=0

ti
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Additionally, there is a map12: 12 Both this s map and and the cyclic
action are contained in the notion of a

cyclic object, which is an extension of

the notion of a simplicial object. See,
eg [4],Ch. 6.

s : A⊗n → A⊗n+1

(a1, . . . , an) 7→ (1, a1, . . . , an)

From these operators, we can define Connes B operator :

B = (1− t)sN

Remark. The B operator has the explicit form

B(a0, . . . , an) =

n∑
i=0

[
(−1)ni(1, ai, . . . , an, a0, . . . , ai−1)

−(−1)ni(ai, 1, . . . , an, a0, . . . , ai−1)
]

has degree 1, and satisfies the identities

B2 = {B, b} = Bb+ bB = 1

If we take the differential graded algebra k[ε], where ε2 = 0 and

|ε| = 1, then the B operator turns C∗(A) into a graded k[ε]-module13 13 This is equivalent to the notion of a

mixed complex found in the literatureunder the assignment

ε 7→ B

Definition. The Cyclic Homology of A is14 14 Note that, thoughout this def-
inition, k represents the graded

k[ε]-module concentrated in degree 0.HC∗ = Tork[ε]
∗ (k,C∗(A))

The Negative Cyclic Homology of A is

HC−∗ = Ext∗k[ε](k,C∗(A))

We can specify a k[ε]-free resolution for k to compute explicit chain

complexes for (negative) cyclic homology:

· · · → k[ε][−2]
ε→ k[ε][−1]

ε→ k[ε]︸ ︷︷ ︸
L•

→ k

More precisely:

...
...

...

· · · kε 0 0

· · · k kε 0

· · · 0 k k

...
...

...

ε

ε ε
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L• ⊗k[ε] C∗(A) then yields a double complex whose total complex

computes HC∗(A):

...
...

...

A⊗3 A⊗2 A

A⊗2 A

A

b

b

b

b

b

. .
.

B B

B

We call the resulting complex the cyclic chain complex of A, and

write15: 15 Notice that the cyclic chain com-
plex can also be represented in a

much more compact form as a polyno-

mial algebra over C∗(A):

CC∗(A) ∼=
(
C∗(A)[u−1], b+Bu

)
where |u| = −2.

CC∗(A) := Tot
(
L• ⊗k[ε] C∗(A)

)
Similarly, we find that Homk[ε](L•, C∗(A)) gives a double complex

whose total complex computes HC−∗ (A).

...
...

...

· · · A⊗4 A⊗3 A⊗2

· · · A⊗3 A⊗2 A

· · · A⊗2 A 0

· · · A 0

0

B

B

B

B

B

B

B

B

B

B

b

b

b

b

b

b

b

b

b

b

b

b

We call the total complex16 the Negative cyclic chain complex of A, 16 As before, there is an expression
in terms of polynomials in u. In this

case, though, it is important that we

are taking the direct product total
complex, so that we get

CC−∗ (A) ∼= (C∗(A)[[u]], b+Bu)

and write

CC−∗ (A) := Tot
(
Homk[ε](L•, C∗(A))

)
As an analogy to better understand (negative) cyclic homology, we

can consider the case of group (co)homology17:
17 The circle action in the right hand

column cannot be fully explained
here, as it requires ∞-categorical

notions to make fully accurate. For a
more complete exposition, see [5].
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Group Homology Cyclic Homology

G a group, k a field A a k-algebra, k a field

G

�

M ∈ Vectk S1

�

(C∗(A), b)

↓ ↓
Ccell∗ (G) = kG when G is

treated as a discrete topological

group, giving the induced action

kG

�

M

Ccell∗ (S1) = k[ε], giving the

induced action (precisely the

action described above)

k[ε]

�

(C∗(A), b)

↓ ↓
k ⊗LkGM = MhG

‘homotopy coinvariants’
k ⊗k[ε] C∗(A) = C∗(A)hS1

RHomkG(k,M) = MhG

‘homotopy invariants’
RHomk[ε](k,C∗(A)) = C∗(A)hS

1

When A is commutative, we also get a product on Hochschild ho-

mology. It is induced by the shuffle product on C∗(A)

−×− = shp,q : Cp(A)⊗ Cq(A)→ Cp+q(A⊗A)

(a0, . . . , ap)× (a′0, . . . , a
′
q) =

∑
σ∈Sh(p,q)

sgn(σ)σ.(a0 ⊗ a′0, a1 ⊗ 1, . . . , ap ⊗ 1, 1⊗ a′1, . . . , 1⊗ a′q)

where Sh(p, q) is the set of p, q-shuffles18. 18 A p, q-shuffle is a permutation

with preserves the ordering of the
first p elements it acts on, and of

the last q elements it acts on. More

intuitively, it is any permutation
that can be obtained by shuffling

once a deck of cards that has been

divided into two parts. The action of
the symmetric group on an element

(c0, c1, . . . , cp+q) ∈ C∗(A⊗ A) used in

the definition is given by

σ.(c0, c1, . . . , cp+q) = (c0, cσ−1(1), . . . , cσ−1(p+q))

Lemma. −×− satisfies graded Leibnitz rule, that is,

b(x× y) = b(x)× y + (−1)|x|x× b(y)

for all x, y ∈ C∗(A).

Sketch of proof. Let

x× y =
∑
±(c0, c1, . . . , cp+q)

and consider sets

X := {a1 ⊗ 1, . . . , ap ⊗ 1}
Y :=

{
1⊗ a′1, . . . , 1⊗ a′q

}
where x = (a0, a1, . . . , ap) and y = (a′0, . . . , a

′
q).

Now, given an element (c0, . . . , cp+q) in the above sum, notice

that if ci, ci+1 are both in X (resp Y ), then di(c0, . . . , cp=q) is a sum-

mand of b(x) × y (resp. x × b(y)). If ci, cj are in different sets, then

(c0, . . . , ci+1, ci, . . . cp+q) is still a shuffle, and appears with opposite

sign. Since A is commutative, we then see that

di(c0, . . . , ci+1, ci, . . . cp+q) = di(c0, . . . cp+q)

so that the terms in the differential cancel. The rest of the proof

amounts to checking signs.
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We then look at the product

µ : A⊗A→ A

which induces

µ : C∗(A⊗A)→ C∗(A)

So we are left with a product

−×− : Cp(A)⊗ Cq(A)→ Cp+q(A)

Which, by the lemma, descends to Hochschild Homology. More pre-

cisely

Theorem. The product

−×− : HH∗(A)⊗HH∗(A)→ HH∗(A)

equips HH∗(A) withe the structure of a graded-commutative algebra.

Differential forms

Lemma. Let A be unital and commutative19. There is a canonical 19 For the rest of this section, this

assumption will remain in placeisomorphism

HH1(A) ∼= Ω1
A|k

from Hochschild Homology to Kähler differentials20 20 Kähler differentials are in some

sense ‘universal derivations’ on A.
More precisely, Ω1

A|k is generated over

k by symbols da satisfying

d(λa+ µb) = λda+ µdb λ, µ ∈ A
d(ab) = (da)b+ a(db)

Proof. A commutative implies b : A ⊗ A → A trivial. The image of

b : A⊗3 → A⊗2 is

K = 〈xy ⊗ z − x⊗ yz + zx⊗ y〉

It is then clear that the maps

[a⊗ b] 7→ a db

a db 7→ [a⊗ b]

are well-defined inverse module homomorphisms

A⊗A/K ↔ Ω1
A|k

The shuffle product gives us a map

Ω1
A|k ⊗ Ω1

A|k → HH2(A)

which factors as

Ω1
A|k ⊗ Ω1

A|k →
2∧

Ω1
A|k = Ω2

A|k → HH2(A)

More generally, in fact, it provides a homomorphism of graded alge-

bras. We assert that this, is in fact given by the antisymmetrization

maps.
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Definition. The antisymmetrization maps21 are the maps 21 Sometimes also refered to collec-

tively as the HKR map or the HKR

isomorphismεn : ΩnA|k → HHn(A)

given by

(a0 da1 · · · dan) 7→
∑
σ∈Sn

sgn(σ)σ.(a0, a1, . . . , an)

Lemma. The antisymmetrization maps form an algebra homomor-

phism.22 22 Note that, if this is the case, then
it will be the homomorphism in-

duced by the canonical isomorphism

HH1(A) → Ω1
A|k, since this map is

precisely ε1.

Proof. First, we want to see that the maps defined above do indeed

take values in cycles. If we set

h(u)(a) =

n∑
i=0

(−1)ihi =
n∑
i=0

(−1)i(a0, . . . , ai, u, ai+1, . . . , an)

then we can compute directly that

b ◦ h(u) = 0− h(u) ◦ b

and that, when n = 0, 1

b ◦ εn = 0

Assume now, inductively, that this holds up to n. Then

b ◦ εn+1(a, y) = (−1)nb ◦ h(y) ◦ εn(a)

= (−1)nh(y) ◦ b ◦ εn(a) = 0

So that we do, indeed have an induced morphism to Hochschild ho-

mology.

To see that this is an graded algebra homomorphism amounts to

showing that the diagrams

ΩpA × ΩqA HHp(A)×HHq(A)

Ωp+qA HHp+q(A)

εp × εq

εp+q

∧ ×

commute.

This amounts to showing that∑
τ∈Sp

∑
ξ∈Sq

∑
σ∈Sh(p,q)

sgn(σ)sgn(τ)sgn(ξ)σ(τ × ξ) =
∑

σ∈Sp+q

sgn(σ)σ

which follows from the fact that any permutation in Sp+q has a unique

expression as a composition of a p, q-shuffle with a product of permu-

tations in Sp and Sq respectively.
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HKR Theorem for commutative rings

Definition. For A a commutative unital ring, we say that A is

smooth over k if it is flat over k and if, for any maximal ideal m ⊂ A,

the kernel

I = ker
(
µm : (A⊗k A)µ−1(m) → Am

)
is generated by a regular seguence23 in (A⊗k A)µ−1(m)

23 Recall that a sequence of elements

(x1, . . . , xm) in A is regular if multi-
plication by xi in S/〈x1, . . . , xm〉 is

injective.

Definition. Let R be a commutative ring and V an R-module, with

x : V → R

a linear form. The Koszul complex of x is

K(x) = (

∗∧
R

V, dx)

where the differential is given by

dx(v0 ∧ · · · ∧ vn) =

n∑
i=0

(−1)ix(vi)v0 ∧ · · · ∧ v̂i ∧ · · · ∧ vn

For the remainder of the talk, let us fix R a commutative ring, I

an ideal of R generated by a regular sequence x = (x1, . . . , xm) in R.

From this setup, we get a form24: 24 This form can be thought of as a

sort of scalar product.

x(r1, . . . , rm) =

m∑
i=1

xiri

From this, we get a Koszul complex K(x)

Lemma. The Koszul complex K(x) is a resolution of R/I

Proof. By induction on m. Suppose m = 1, then we have the complex

K(x) = K(x1) = 0→ R
x1→ R→ 0

So that

Hn(K(x)) =

R/I n = 0

0 else

Suppose this is true for m − 1. Then we can fit K(xm) into the

exact sequence
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0 K0 K(xm) K1 0

0 0 R R 0

0 R R 0 0

xm

If we tensor this exact sequence with

L := K(x1, . . . , xm−1)

we get the exact sequence

0→ K0 ⊗ L→ K(x)→ K1 ⊗ L→ 0

We can then take the LES on homology to see that

0→ coker((xm)n)→ Hn(K(x))→ ker((xm)n−1)→ 0

where

(xm)n : Hn(L)
xm→ Hn(L)

For n > 1, this tells us Hn(K(x)) = 0. When n = 1, we get25 25 Injectivity in this case fol-

lows from the regularity of xm in

R/〈x1, . . . , xm−1〉.H1(K(x)) = ker (xm : R/〈x1, . . . xm−1〉 → R/〈x1, . . . xm−1〉) = 0

and when n = 0

H0(K(x)) = coker (xm : R/〈x1, . . . xm−1〉 → R/〈x1, . . . xm−1〉) = R/I

Lemma. The morphism

ε∗

∗∧
R/I

(I/I2)→ TorR∗ (R/I,R/I)

induced by

ε1 : I/I2 ∼= TorR1 (R/I,R/I)

is an isomorphism of graded algebras.

Proof. We take the Koszul complex of x as a resolution of R/I to

compute Tor, and end up with the complex( ∗∧
R

[Rm]⊗R R/I, dx ⊗ 1

)
However, dx takes coefficients in I, so the differential is identically

zero. Hence the homology is

∗∧
((R/I)m) ∼=

∗∧
R

(I/I2)
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Theorem (HKR). For any smooth algebra A over k, the antisym-

metrization map

ε∗ : ω∗A|k → HH∗(A)

is an isomorphism of graded algebras26. 26 Though we will not prove it here,

this isomorphism also takes the B
operator to the differential on forms.

Proof. Firstly, we notice that A ∼= Aop. Additionally, it suffices to

prove the proposition for localizations at maximal ideals, so we have to

show

ΩnAm|k
∼= (ΩnA|k)m →

(
TorA⊗An (A,A)

)
m

for any maximal ideal m ⊂ A.

We can notice that

θn :
(
TorA⊗An (A,A)

)
m
→ Tor

(A⊗A)µ−1(m)
n (Am, Am)

is a natural transformation of homological functors with θ0 an isomor-

phism. Hence, it is a natural isomorphism. If we then let

R = (A⊗A)µ−1(m)

R/I = Am

in the terminology of the previous lemma, then the lemma implies the

theorem.



Hochschild Homology of Schemes
Michael Brown

We fix, for the rest of the talk, k a field, and X a quasi-compact sepa-

rated k-scheme.

Goal: Sketch a proof27 that, once they are defined, 27 Following, among other sources,
Keller’s paper [6]

HH∗(perfdgX) ∼= HH∗(X)

and similarly for HC∗, HN∗, and HP∗.
28 This establishes a well- 28 In the notation of the last talk,

HN∗ = HC−∗ .defined notion of Hochschild homology on X29
29 There is a parallel story for

Hochschild cohomology. See for
example [8] and [9].Defining invariants of Schemes

Definition. A mixed complex of k-vector spaces is a dg-module over

the dg algebra k[x]/x2, |x| = 1, which has trivial differentials30. 30 The differentials here follow chain
complex conventions, ie are of degree

−1.
Further, we set the following notation

D Mix(k) := D(k[x]/x2)

considered as a dg-algebra. We also define D Mix(X) to be the de-

rived category of sheaves of dg-modules over k[x]/x2

Example. The Hochschild complex C∗(A) associated to a k-algebra is

a mixed complex equipped with the Connes B-operator, as we saw in

the last talk. Call this mixed complex M(A).

We then have a presheaf

U 7→M(Γ(U,Ox))

and can set

M(OX)

to be the sheafification of this presheaf31. We then define the Hochschild 31 Level-wise in this complex.

homology to be32 32 Note: it is not immediately obvious

that the hypercohomology inherits a
differential from the mixed complex
structure of the sheaf. As it turns out,
it can, in fact, be equipped with a
‘Connes B operator’, but this is a fact

that requires some checking

HH∗(X) := H−∗(X,M(OX))
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Now, given a k-algebra A, let BM(A) denote the direct sum total-

ization of the bicomplex33: 33 That is, the bicomplex for the

negative cyclic homology of A...
...

...

A⊗3 A⊗2 A

A⊗2 A

A

b

b

b

b

b

. .
.

B B

B

And let BM(OX) denote the sheafification of the presheaf

U 7→ BM(Γ(U,OX))

We then can define the cyclic homology of X to be the hypercohomol-

ogy

HC∗(X) := H−∗(X,BM(OX)

If we denote by H the hypercohomology complex corresponding to

HC∗(X), then there is a surjection, the Connes periodicity operator

s : H[2]→ H

We can define a new complex via the limit34 34 Notice that in coordinates one can

think of s as multiplication by the

formal variable u introduced last talk.
In this sense, the inverse limit simply

‘inverts’ u

L∗ := lim
←

(
· · · s→ H[2p+ 2]

s→ H[2p]→ · · · s→ H
)

Using this complex, we can then define periodic cyclic homology

HPn := H−n(L∗)

and, using the map (which exists by universal property)

L∗ → H[−2]

we can also define negative cyclic homology

HNn(X) := ker (L∗ → H[−2])

Theorem (Geller, Weibel. [10]). If X = Spec(A), HH∗(X) =

HH∗(A).

Proof. Let HHn(X) be the Sheafification of the presheaf

U 7→ HH∗Γ(U,OX)

Then there exists a bounded spectral sequence

Ep,q2 = Hp(X,HH−q(X))⇒ HH−p−q(X)

This spectral sequence collapses at p = 035. 35 To see that HCn(Spec(A)) ∼=
HCn(A), see the main theorem 2.5 of

Weibel, [7].
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DG-Categories

Let C be a dg category. We can associate a bicomplex to C with

columns as follows36 36 Where C(X,Y ) here denotes the

morphism complex between the two

objects, and the sum ranges over all
tuples of objects.

Cn =
⊕

X0,...,Xn

C(Xn, X0)⊗k C(Xn−1, Xn)⊗k · · · ⊗k C(X0, X1)

The Horizontal differentials are given by alternating sums of the fol-

lowing ‘face maps’

di : Cn → Cn−1 0 ≤ i < n

(fn, . . . , f0) 7→ (fn, . . . , fi+1 ◦ fi, . . . , f0)

dn : Cn → Cn−1

(fn, . . . , f0) 7→ (−1)n+σ(f0 ◦ fn, . . . , f1)

where

σ = |f0| (|f1|+ · · ·+ |fn−1|)

Let C(C) be the direct sum totalization of this bicomplex, and call

it the Hochschild complex of C.

Definition. A complex P of OX -modules is strictly perfect if, for

every x ∈ X there exists a neighborhood U of x such that P |U is

isomorphic to a bounded complex of summands of locally free OX -

modules.

A complex P of OX -modules is perfect if, for every x ∈ X there

exists a neighborhood U of x such that PU is quasi-isomorphic to a

strictly perfect complex.

We also write perfdg OX for the dg quotient of the dg category of

perfect complexes on X. And analogously for strperfdg OX .

Theorem (Keller, [6]). There is an isomorphism in D Mix(k)37 37 Where we write M(C) for C(C) as
a mixed complex, for a dg category C.

And

RΓ(X,−) : D Mix(X)→ D Mix(k)

is the total right derived functor of

the global sections functor. Note that
there is a quasi-isomorphism

RΓ(X,M(OX))
'→ H(X,M(OX))

as proved in the appendix of [6]

τ : M(perfdg OX)
'→ RΓ(X,M(OX))

We now write M(perf
dg
OX) for the sheafification of

U 7→M(perfdg OX)

For every U ⊂ X open, there are maps

M(Γ(U,OX))→M(proj(Γ(U,OX)))→M(perfdg OU )

therefore, the exists a morphism of sheaves

M(OX)
α→M(perf

dg
OX)
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Lemma (Key Lemma, [6]). α is an isomorphism in D Mix(X).

Sketch of Proof. 38 Our strategy will be to show that α is an quasi- 38 We here use the assumption of the

morita invariance of

M(−) : dg− Cat→ D Mix(k)

which will be discussed in future

talks.

isomorphism on stalks.

First notice that

M(perf
dg
OX)

∼=→ lim
→

(
M(perfdg OU )

)
We will show that

β : lim
→

perfdg OU → perfdg OX,x

is a quasi-isomorphism. This will complete the proof, since the follow-

ing diagram commutes

M(OX,x) M(perf
dg
OX)x M(lim→ perfdg OU )

M(perfdg OX , x)

α a '

b '

where a is a quasi-isomorphism because of the properties of the limit,

and b is a quasi-isomorphism by the assumption of Morita invariance.

To see that β is a quasi-isomorphism, notice that we have a commu-

tative diagram

lim→M(perfdg OU ) M(perfdg OX,x)

lim→M(strperfdg OU ) M(strperfdg OX,x)

lim→M(strperfdg Γ(U,OX))

a

c d

b

β

e

Since a and b are quasi-isomorphisms, so is e, since c, e, and d are

quasi-isomorphisms39, we see that β is. 39 d is a quasi-isomorphism since it

is an affine case. a and c are because
we can restrict to affines. b is a quasi-

isomorphism by Morita invariance.
To define the map τ of the theorem, we use the following square in

D Mix(k)

M(perfdg OX) Γ(X,M(perf
dg
OX)))

RΓ(X,M(OX)) RΓ(X,M(perf
dg

ØX))
'

Key Lemma

τ
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Claim. τ is an isomorphism when X = Spec(A).

Proof. We have the following commutative diagram

M(A) M(perfdg OX)

RΓ(X,M(OX))

H(X,M(OX))

'
c

a

b

τ

Since a is a quasi-isomorphism, so is c, and since c and b are quasi-

isomorphisms, τ is as well.

Proposition ([6]). If V,W ⊂ X are open and quasi-compact, and

X = V ∪W , there exists an isomorphism of triangles in D Mix(k)40 40 Note that this can be thought of as

a sort of Mayer-Vietoris-type result.

M(perfdg OX) RΓ(M(perf
dg
OX))

M(perfdg OV )⊕M(perfdg OW ) RΓ(V,M(perf
dg
OV ))⊕ RΓ(W,M(perf

dg
OW ))

M(perfdg OV ∩W ) RΓ(V ∩W,M(perf
dg
OV ∩W ))

...
...

β

This tells us that

Corollary. Our two definitions of Hochschild Homology coincide41, 41 Additionally, we have that

HC∗(perfdg OX) ∼= H∗(k⊗Lk[x]/x2RΓ(X,M(OX)))

But it is not immediately clear that
this is HC∗(X). This is, however,
proved by Keller in [6], and can

further be used to deduce the same
for HN and HP .

ie

HH∗(perfdg OX) ∼= HH∗(X)

Now, let Q ⊂ k, and

ε : M(A)→ (Ω∗A|k, 0, d)

be the antisymmetrization maps from last talk42. As we saw before, 42 We list the target as a triple to

emphasize that it is a mixed chain

complex.
when A|k is smooth, e is a quasi-isomorphism. However, we have the

same result for schemes, which follows from simply sheafifying. That is
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Proposition (HKR for Schemes). The induced map

e : M(OX)→ (Ω∗X|k, 0, ∂)

is an isomorphism when X|k is smooth and Q ⊂ k.

As a result, we get the decomposition

HHi(X) ∼=
⊕
q−p=i

Hq(X,ΩpX)

Example. We can, for example, compare the Hodge diamond to the

dimensions of the Hochschild Homology groups. For example

HH∗(P1) 0

1

1

0

HH−1 HH1HH0



Differential Graded Categories
Gustavo Jasso

For the most part, this talk will follow [11], and will try as far as

possible to use the same notation.

Let k be a commutative ring, and denote by C(k) the category of

complexes of k-modules.

Preliminaries

Definition. A dg category A consists of

• A class Obj(A) of objects

• For any x, y ∈ Obj(A), a complex

A(x, y) ∈ C(k)

of morphisms

• For any x, y, z ∈ Obj(A) a morphism of complexes

A(x, y)⊗k A(y, z)→A(x, z)

satisfying unitality and associativity.

Example. a) Let A be a dg category such that Obj(A) = {∗}. Then

A := A(∗, ∗)

inherits the structure of a dg-algebra

(A⊗A, d⊗ 1 + 1⊗ d)→ (A, d)

Recall that

(A⊗A)n :=
⊕
p+q=n

Ap ⊗Aq

So for f ∈ Ap, g ∈ Aq, we want that TFDC43 43 Up to Koszul sign convention.
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f ⊗ g df ⊗ g + (−1)pqf ⊗ dg

fg d(fg)

so that

d(fg) = df · g + (−1)pqf · dg

b) Let B be an additive k-category44, and define Cdg(B) to be the 44 For example, Proj(A), Mod−A,
Qcoh(X)...category whose objects are complexes in B, and with

Hom(X,Y )n = degree n maps X → Y

equipped with the differentials

f 7→ df := f ◦ dY − (−1)ndX ◦ f

for f ∈ Hom(X,Y )n.

Definition. For a dg category A,

a) Z0(A) the cycle category has

Obj(Z0(A)) = Obj(A)

Z0(A)(x, y) = Z0(A(x, y))

b) H0(Z) has

Obj(H0(A)) = Obj(A)

H0(A)(x, y) = H0(A(x, y))

Example. Let B be an additive category.

a) We have

Z0(Cdg(B)) = C(B)

Since

f ∈ Z0(Hom(X,Y ))⇔

f ∈ Hom(X,Y )

df = f ◦ dY − dX ◦ f = 0

b) Moreover

H0(Cdg(B)) = K(B)

since

f ∈ B1(Hom(X,Y ))⇔


∃h ∈ Hom(X,Y )1

f = dh = h ◦ dY + dX ◦ h
(f is null-homotopic)



25

Definition. Let A and B be dg categories. A dg-functor F : A → B

consists of

• a map F : Obj(A)→ Obj(B)

• For any x, y ∈ Obj(A) a morphism of complexes

Fx,y : A(x, y)→ B(F (x), F (y))

satisfying unitality and composition.

Example. For a dg category A, and

Cdg(k) := Cdg(Modk)

Then for all x ∈ Obj(A)

A(x,−) : A → Cdg(k)

is a dg functor.

Definition. Let F,G : A → B be dg functors, and

Hom(F,G) = degree n natural transformations

that is, the set

{ηx ∈ B(F (x), G(x)) | x ∈ Obj(A)}

satisfying that for any f ∈A(x, y), TFDC

F (x) F (y)

G(x) G(y)

F (f)

ηx

G(f)

ηy

In this case, Z0(Hom(F,G)) is simply the set of morphisms from F

to G.

Definition. Let A be a small dg category, B any dg category. Then

the category Hom(A,B) has objects dg functors A → B, and

Hom(A,B)(F,G) := Hom(F,G)
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Definition. Let A and B be k-categories. The tensor product of A

and B is defined by

Obj(A ⊗ B) := Obj(A)×Obj(B)

and

(A ⊗ B) ((a, b), (a′, b′)) := A(a, a′)B(b, b′)

Before continuing, we fix some notation. We will denote by

dg-cat

the category of small dg categories.

Proposition. (dg-cat,⊗) is a symmetric closed monoidal category.

In particular, there is a canonical isomorphism45 45 This isomorphism determines the
tensor product up to isomorphism.

Hom(A ⊗ B,C) ∼= Hom(A Hom(B,C))

Dg-modules

Definition. Let A be a dg category. Then the opposite dg category

Aop is given by

• Obj(Aop) = Obj(A)

• For any x, y ∈ Obj(Aop)

Aop(x, y) = A(y, x)

• For any x, y, z ∈ Obj(Aop)

Aop(x, y)⊗Aop(y, z)→Aop(x, z)

f ⊗ g 7→ (−1)|f ||g|g ◦ f

Definition. Let A ∈ dg-cat. The dg category of (right) dg modules

is

ModA = Cdg(A) := Hom(Aop, Cdg(k))
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Proposition. Let A be a dg category.

a) For any x ∈ Obj(A) and any M ∈ Cdg(A)

HomA(A(−, x),M) ∼= Mx

b) If A is small,

A ↪→ Cdg(A)

x 7→A(−, x)

Definition. Let A ∈ dg-cat and M ∈ Cdg(A)

a) M is acyclic if, for any x ∈ Obj(A), Mx ∈ Cdg(A) is acyclic.

b) M is h-projective46 if, for any N ∈ Cdg(A) that is acyclic, 46 In the context of model categories,

this can be thought of as cofibrant.

H0(Hom(M,N)) = 0

c) M an h-projective object is compact if, for any indexing set I and

any

{Ni ∈ Cdg | i ∈ I}

the canonical morphism

∐
i∈I

H0 (HomA(M,Ni))→ H0

(
HomA

(
M,
∐
i∈I

Ni

))

Definition. Let A ∈ dg-cat.

a) Ddg(A) is the dg category of h-projective dg A-modules47. 47 In the context of model categories,
these are the derived/perfect derived

categories. This description of them

works because every object admits a
cofibrant (h-projective) replacement.

b) perfdg(A) is the dg category of compact h-projective dg A-

modules.

Note that

perf(A) := H0(perfdg(A))

Remark. Let A ∈ dg-cat. Then we have a commutative square

A Cdg(A)

perfdg(A) Ddg(A)

Yoneda

can.
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The category Hqe

Definition. A dg functor F : A → B is a quasi-equivalence if

• For any x, y ∈ Obj(A)

Fx,y : A(x, y)→ B(F (x), F (y))

is a quasi-isomorphism

• H0(F ) : H0(A)→ H0(B) is an equivalence.

Remark. ⊗ and Hom do not preserve quasi-equivalences.

Theorem (Tabuada). The category

Hqe := (dg-cat)[qeq−1]

exists and is equivalent to the model category of a cofibrantly gener-

ated model category.

Definition. A dg category A is h-flat, if, for all x, y ∈ Obj(A),

A(x, y)⊗− : C(k)→ C(k)

preserves quasi-isomorphisms.

Remark. For any A ∈ dg-cat, there exists Acof ∈ dg-cat which is

h-flat, such that

A ∼= Acof

in Hqe.

Definition. Let A,B ∈ dg-cat and X ∈ Cdg(A
op ⊗ B). X is a

quasi-functor if, for any a ∈ Obj(A) there exists b ∈ Obj(B) such

that

aX ∼= B(−, b)

in H0(Ddg(B)).

Remark. Let A,B ∈ dg-cat and X ∈ Cdg(Aop ⊗ B) a quasi-functor.

Then X induces

H0(A)→ H0(B)
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Definition. Let A,B ∈ dg-cat. Then repdg(A,B) is the dg category

of quasi-functors in

Ddg(A
op ⊗ B)

Definition. Let A ∈ dg-cat. The left derived tensor product is

A ⊗L − := Acof ⊗− : Hqe→ Hqe

Theorem (Drinfeld, Toën).
(
Hqe,⊗L

)
is symmetric closed monoidal

with internal hom

RHom(A,B) ∼= repdg(Acof ,B)

in Hqe

Theorem (Toën). Let A and B be dg categories, then

Ddg(A
op ⊗ B)→ RHomc (Ddg(A),Ddg(B))

is an isomorphism in Hqe.

Triangulated dg categories

Definition (Toën). A ∈ dg-cat is triangulated perfect48 if 48 This notion is stronger than the no-

tion of a pretriangulated dg category.
To get the definition of pretriangu-

lated, take the subcategory tria(A)
fitting into

A //

��

yy

Cdg(A)

tria(A)

%%
perfdg(A)

BB

in place of perfdg(A).

H0(A)
H0(can)−→ H0(perfdg(A))

is an equivalence

Definition (Toën). F : A → B dg functor is called a Morita

equivalence (mo) is

F ∗ : D(B)→ D(A)

is an equivalence.

Remark. a) qeq ⊂ mo

b) A
can→ perfdg(A) is a Morita equivalence.
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Theorem (Tabuada). Hmo := (dg-cat)[mo−1] exists and is equiva-

lent to the homotopy category of a cofibrantly generated model cate-

gory.

Remark. There is a quotient

Hqe
π→ Hmo

Proposition (Toën?). The map A 7→ perfdg(A) is right adjoint to

π and induces an equivalence

Hmo ∼= {A ∈ Hqe |A is perfect}

Theorem (Toën). Let A,B ∈ dg-cat. The map

Ddg(A
op ⊗L B)→ RHomc(Ddg(A),Ddg(B))

is an equivalences in Hqe.

Remark. Hmo is pointed and has finite direct sums.

Definition. A short exact sequence is a bicartesian diagram

A

��

i // B

p

��
0 // C

Theorem (Toën). Let A = Aconf be a dg category, and 1A :

Aop ⊗A →A be given by (x, y) 7→A(x, y)

a) 1A ∈ RHom(A,A) = repdg(A,B)

b) HH∗(A) ∼= H∗(Hom(1A ,1A))

c) In the above isomorphism, cup product is sent to composition, and

vice versa.

Remark. • The morphism

HH∗(A)
HH∗(can)−→ HH∗(perfdg(A))

is a quasi-isomorphism

• HH∗ of dg categories preserves short exact sequences in Hmo.



Reduction to Characteristic p > 0 for Schemes
Anthony Blanc

We have the Hodge to De Rham spectral sequence for K a field49, and 49 We will, in general use K for a field

of characteristic 0, and k for a field of
positive characteristic.

X a K-scheme.

Ep,q1 = Hq(X,ΩpX|K)⇒ Hp+q(X|K) (∗)

Theorem (1). If charK = 0 and X is smooth and proper over K,

then (∗) degenerates at E1.

Theorem (2). Let char k = p > 0, and X is smooth and proper

over k. If dim(X) < p and X admits a lift to W2(k)50 then (∗) 50 The only facts about W2(k) that

will be needed for this talk are that

W2(k) = k2 as a k-vector space, that
the addition and multiplication are

given by

(a, b) + (a′, b′) =
(
a+ a′, b+ b′+

1

p

(
ap−1+ (a′)p−1 − (a+ a′)p

))
(a, b)(a′, b′) =

(
aa′, (a′)pb+ b′ap

)
that there is a SES

I →W2(k)→ k

with I2 = 0, and that W2(Fp) '
Z/(p2).

degenerates at E1.

The main body of this talk will be devoted to proving that:

Claim. Theorem 1 implies Theorem 2.

Before that, we will need

Theorem (Grothendieck). Let X be a smooth proper K-scheme.

There exists a finitely generated ring A and a smooth proper A-

scheme Y such that Y ⊗A K ' X.

Proof. (∗) The first step we need is that there exists some scheme

Y → Spec(A) where A has finite type.

Since X → Spec(K) has finite type, we have a decomposition into

affines

X =

s⋃
i=1

Spec(Ai)︸ ︷︷ ︸
Ui

where

Ai = K[X1, . . . , Xni ]/ai

and ai =
(
pi1, . . . , p

i
ri

)
. Similarly, letting Ui ∩ Uj = SpecAij , we have

Aij = K[X1, . . . , Xnij ]/aij
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and aij =
(
pij1 , . . . , p

ij
rij

)
.

We can then set

A = Z[coeff. of pi` & pij` ] ↪→ K

so that there exist ideals

a′i ⊆ A[X1, . . . , Xni ] a′i ∩K = ai

a′ij ⊆ A[X1, . . . , Xnij ] a′ij ∩K = aij

If we then set

A′i = A[X1, . . . , Xni ]/a
′
i

and let

Y = colim
i

SpecA′i

we almost definitionally have

Y → Spec(A)

Y ⊗A K = X

We can then write

K = colim
i≥0

Ai

where the Ai are finitely generated over Z. As a result, there exists

i0 > 0 with

X //

��

Yi0

fin. type

��
Spec(K) // Spec(Ai0)

(∗) The next claim, which we state without proof, is that there

exists i1 > i0 and a proper Ai1-scheme Yi1 such that Yi1⊗Ai1 K ' X
51. 51 For a complete treatment, see [12]

Using the Chow lemma, we can then reduce to the projective case.

(∗) Finally, we claim that there exists i2 ≥ i1 and a smooth and

proper Ai2 -scheme Yi2 such that Yi2 ⊗Ai2 K ' X
52. 52 Once again, see [12] for a full

treatment.

X
x7→xi2 //

f

��

Yi2 //

��

Yi1

��
Spec(K) // Spec(Ai2) // Spec(Ai1)

Smoothness follows from

• f is smooth at x ∈ X if and only if X is geometrically regular at x

(ie X ⊗K X is regular at x).

• f is smooth at x ∈ X if and only if there exists i2 > i1 such that fi2
is smooth at xi2 ∈ Yi2 . This is true because X being geometrically

regular at x is equivalent to Yi2 being geometrically regular at xi2 .



33

• By quasi-compactness of X, we then get that the result.

Proposition. If S is a finite type integral scheme over SpecZ, then

the smooth locus of S is a non-empty open subset of S.

We now consider, for X → SpecK as in Theorem 1,

X //

��

Y

��
SpecK // SpecA = S

Let d ≥ the dimensions of the fibers of Y 53. Set 53 This is possible by quasi-
compactness.

N =
∏

p≤d prime

p

S′ = SpecA

[
1

N

]
S′ → S

There exists s′ ∈ S′ such that char (k(s′)) > d, so we can suppose

that S has a closed point s ∈ S such that char (k(s)) = p > d

We can then define coherent54 sheaves over S: 54 By the Grothendieck finiteness
theorem for proper morphisms.

Rjf∗Ω
i
Y |S =: Hij

R6nf∗Ω
∗
Y |S =: Hn

If we let η = (0) ∈ S, we see that Hij
η and Hn

η are finite dimensional

K-vector spaces. And K is given by the (filtered) colimit

K = Frac(A) = colim
a 6=0

A[a−1]

Which implies that there exists a 6= 0 such that Hij |D(a) and Hn|D(a)

are locally free sheaves over D(a).

Considering then the diagram

Ys //

��

Y

��

Xoo

��
Spec k(s) // SpecW2(k(s))

∗ // S SpecKoo

We have that the map ∗ exists by the smoothness of s. Since Theorem

2 applies to Y

hn =
∑
i+j=n

hij

and the claim from the beginning is proved.
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Dg Algebra Analogue

Theorem (1 Toën). Let k be a commutative ring. Let A be a smooth

proper k-dg-algebra. Then there exists a finitely generate ring k0 and

a smooth proper k0-dg-algebra A0 such that A0 ⊗Lk0
k ' A (quasi-

isomorphic).

Fix some notation

dgalgk cat. of dg algebras

Ho(dgalgk) homotopy cat.

Ho(dgalgspk ) full subcat. of smooth+proper

Theorem (2). let {ki}i∈I be a filtration diagram of commutative

rings with

k = colim
i∈I

ki

Then the functor

colim
i∈I

Ho(dgalgspki )
colimi∈I(−⊗Lk ki)−→ Ho(dgalgspk )

is an equivalence.

As before, we have that

Claim. Theorem 2 implies Theorem 1



The Deligne-Illusie Decomposition
Tobias Dyckerhoff

There are two basic constructions that we will need to prove the de-

generation of the Hodge-to-De Rham Spectral Sequence in positive

characteristic:

1) The Frobenius endomorphism

• Let S be a scheme of characteristic p > 055 We then get the 55 That is, such that

p · 1 = 0 ∈ OS

over any open.

absolute Frobenius FS : S → S given by

– The identity map on underlying topological spaces.

– FS(f) = fp where f ∈ OS .

Assume S = Spec(k) where k is a field of characteristic p > 0.

Let

X
u→ S

be a k-linear scheme. Then we can form the following diagram

X

X(p) X

S S

σ

FS

u

FX/S

FX

u A

We define X(p) to be the pullback, and then the morphism

F := FX/S

called the relative Frobenius, exists by universal property56. 56 Notice that F is a homeomorphism

of the underlying topological spaces,

but it is not generally an isomor-
phism of schemes.

Example. Let X = Spec k[t]/(f), where f =
∑
amt

m. Then

X(p) = Spec k ⊗k k[t]/(f)
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where the morphism k → k in the definition of the tensor product is

FS . So we see that

X(p) ∼= Spec k[t]/(f (p))

where

f (p) =
∑

apmt
m

Furthermore, for a ∈ k

σ∗(at) = 1⊗ at = apt

and

F ∗(a⊗ t) = atp

2) The De Rham Complex

• Let S = Spec k, for k a field. X
u→ S a scheme over k.

• Then we have

ΩbulletX/S = OX
d→ Ω1

X/S
d→ Ω2

X/S → · · ·

the De Rham Complex of X over S.

Example. 1) Take k = C, and X = A1
C. Then we can write down the

de Rham complex

Ω•X/S = C[t]
d→ C[t]dt

tn 7→ ntn−1dt

So that, computing the homology, we see that

H0 = 〈1〉 = C

H1 = 0

which is exactly the same as

H∗(A1(C),C)

2) Take k = C, X = A1
C \ {0}. Then the de Rham complex is

Ω•X/S = C[t, t−1]
d→ C[t, t−1]dt

tn 7→ ntn−1dt

so the homology is

H0 = 〈1〉 ∼= C

H1 =

〈
dt

t

〉
∼= C

Which, as before, is

H∗(A1(C) \ {0},C)

the homology of the analytic space57

57 There is, in fact, a more general

result:

Theorem (Grothendieck). For X
smooth over C, there is an algebra
isomorphism

H∗(X,Ω•X/S) ∼= H∗(X(C),C)
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3) Now let k = Fq, and X = A1
Fq

58. Then the complex is 58 Where we assume q = pn, so that
Fq has characteristic p

Ω•X/S = Fq[t]→ Fq[t]dt

tn 7→ ntn−1dt

So

H0 = 〈1, tp, . . . , tmp, . . .〉 ∼= Fq[tp]

H1 = 〈tp−1dt, . . . , tmp−1dt, . . .〉 ∼= Fq[tp]tp−1dt

Returning to the more general case, let S = Spec k, and char(k) =

p > 0. Let X
u→ S be a scheme over k. Then for a ⊗ f ∈ OX(p) , we

have

dF ∗(a⊗ f) = d(afp) = 0

This implies that59 59 This is a direct generalization of
what we can observe in examples 3),

where
OX(p) = Fq [tp]

F∗Ω
•
X/S is an OX(p) linear complex.

further, we have

Theorem (Cartier). Assume that X is smooth over k. Then there

exist isomorphisms of OX(p)-modules

C−1 : ΩiX(p)/S

∼=→ Hi(F∗Ω
•
X/S)

These isomorphisms are uniquely determined by the properties60 60 Imposed locally over some open
affine in X.

1. C−1(1⊗ f) = F ∗(1⊗ f) = fp ∈ H0(F∗Ω
•
X/S)

2. C−1(1⊗ df) = fp−1df ∈ H1(F∗Ω
•
X/S)61 61 Where the term

fp−1df

can be thought of heuristically as an
analogue of

dfp

p

We will make this notion more precise

later on.

3. C−1(ω ∧ τ) = C−1(ω) ∧ C−1(τ)

Goal: Improve Cartier’s result (under additional assumptions) via a

more systematic interpretation of dfp

p .

Question: How to divide by p in characteristic p > 0?

Trick: Let M be a Z/(p)-module, and assume that there exists a lift

M̃ of M to Z/(p2), that is

1. M̃/pM̃ ∼= M

2. M̃ is flat over Z/(p2), so there exists a short exact sequence

0→ pM̃ → M̃
p→ pM̃ → 0

In this situation, we can divide by p
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pM̃ M̃/pM̃ M∼=
∼=

p−1

Slightly more generally, if M is a module over k of character p > 0,

there exists a ring W2(k)62 which is a flat Z/(p2)-module equipped 62 The so-called Witt vectors.

with an isomorphism

W2(k)/pW2(k) ∼= k

replacing Z/(p2) by W2(k) in the above construction gives a k-linear

version of p−1.

Theorem (Deligne-Illusie). 63Let k be perfect of character p > 0 and 63 Called the Decomposition theorem.

let X be a smooth scheme over k. Assume that X admits a smooth

lift X̃ over W2(k). Then there exists an isomorphism

φX̃ :
⊕
i<p

ΩiX(p)/S [−i] '→ τ<pF∗Ω
•
X/S

in D(X(p))64 inducing C−1 on cohomology sheaves.65 64 The derived category of complexes

of OX(p) -modules.

65 Note: Cartier uses fewer assump-
tions and gets a stronger result.

However, this is a more refined version

of the theorem, which allows us to
access what’s really going on.

Proof. Assume first that there exists a lift of the relative Frobenius

X
F //

��

X(p)

}}
S

to66 66 Here we use the notations

S = Spec k

s̃ = SpecW2(k)

X̃
F̃ //

��

X̃(p)

}}
S̃

Step 0: We can explicitly write down the map

φ0
X̃

: OX(p) → H0(F∗Ω
•
X/S) ↪→ F∗Ω

•
X/S

1⊗ f 7→ F ∗(1⊗ f)

Step 1: Note that the map

F ∗ : Ω•X(p)/S → F∗Ω
1
X/S

is the zero map. This means that the image of

F̃ ∗ : Ω1
X̃(p)/S̃

→ F̃∗Ω
1
X̃/S̃

lies in pF̃∗Ω
1
X̃/S̃

. Then we use the diagram
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Ω1
X̃(p)/S̃

pF̃∗Ω
1
X̃/S̃

Ω1
X(p)/S

F∗Ω
1
X/S

F̃ ∗

·p∼=

∃!φ1
X̃

Where the diagonal map exists since F̃ ∗ factors, and the bottom map

exists by inverting the multiplication by p67. 67 This is where all the additional

assumptions come into play. In partic-
ular, the requirement of smoothness.

In local coordinates

F̃ ∗(1⊗ f) = fp + pu(f)

F̃ ∗(1⊗ df) = pfp−1df + du(f)

so that

φ1
X̃

=
1

p
F̃ ∗(1⊗ df) = fp−1df + du(f)

is a closed 1-form. Hence,

φ1
X̃

: Ω1
X(p)/S [−1]→ F∗Ω

•
X/S

yields the morphism from Cartier’s theorem.

Step 2: We can explicitly define

φi
X̃

: ΩiX(p)/S → F∗Ω
•
X/S

ω1 ∧ · · · ∧ ωi 7→ φ1
X̃

(ω1) ∧ · · · ∧ φ1
X̃

(ωi)

Problem: F̃ typically doesn’t exist globally, but only locally.

To solve this, we replace Step 1 by choosing an open cover U =

{U ⊂ X} on which F admits a lift

F∗Ĉ(U,Ω•X/S) F∗Ω
•
X/S

Ω1
X(p)/S

[−1]

a

b

'

Where a is produced from local data coming from lifts of F in ad-

dition to carefully chosen homotopies on overlaps. b is known as the

Ĉech replacement and is a quasi-isomorphism. Hence, if we pass to the

derived category D(X(p)), we get a morphism

Ω1
X(p)/S [−1]→ F∗Ω

•
X/S

Unfortunately Step 2 was element theoretic, and so also does not

generalize. Instead, we take the diagram
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(
Ω1
X(p)/S

[−1]
)⊗i (

F∗Ω
•
X/S

)⊗i

Ωi
X(p)/S

F∗Ω
•
X/S

a[−i]

(
φ1
X̃

)⊗i

where a is the antisymmetrization68 68 Note that the use of 1
i!

implicitly
makes the assumption that i < p.

a(ω1 ∧ · · · ∧ ωi) =
1

i!

∑
σ∈Si

sgn(σ)ωσ(1) ⊗ · · · ⊗ ωσ(i)

Tracing through this diagram then proves the theorem.

Corollary. Suppose X is smooth and proper over k, with a lift X̃

to W2(k) and dimX < p. Then the Hodge-to-de Rham Spectral

Sequence

Ea,b1 = Hb(X,ΩaX/S)⇒ Ha+b(Ω•X/S)

degenerates on page 1.

Proof. The proof is based on dimension counting.

Hm(X,Ω•X/S) ∼= Hm(X(p), F∗Ω
•
X/S)

∼=
⊕
i>0

Hm−i(X(p),ΩiX(p)/S︸ ︷︷ ︸
σ∗Ωi

X/S

)

where the second line follows from Deligne-Illusie.

We can then apply base change to get

Hm(X,Ω•X/S) ∼=
⊕
i≥0

F ∗SH
m−i(X,ΩiX/S)

but, since F ∗S is a field automorphism

dimk F
∗
SH

m−i(X,ωiX/S) = dimkH
m−i(X,ωiX/S)

so that degeneration happens on page one.

The Conjugate Spectral Sequence.

Recall that there are two spectral sequences for hypercohomology.

Given a resolution:
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A0,2 A1,2 A2,2

A0,1 A1,1 A2,1

A0,0 A1,0 A2,0

Ω•X/S OX Ω1
X/S Ω2

X/S

One can take either the vertical or the horizontal filtration, leading

to

I) Horizontal filtration gives us Hodge-to-de Rham

Ea,b1 Hb(X,ΩaX/S)⇒ Ha+b(ΩX/S)

II) Vertical filtration gives us the Conjugate spectral sequence

Ea,b2 = Ha(X,Hb(Ω•X/S))⇒ Ha+b(Ω•X/S)

Using Cartier’s result, we have

Ha(X,Hb(Ω•X/S)) ∼= Ha(X(p),Hb(F∗,Ω
•
X/S))

∼= Ha(X(p),ΩbX(p)/S

∼= F ∗SH
a(X,ΩbX/S)

and, under suitable finiteness conditions, the degeneration of I) is

equivalent to the degeneration of II).

Strategy for approaching non-commutative geometry. (Kontsevich,

Kaledin)

• Find a non-commutative analogue of the conjugate spectral se-

quence.

• Show it degenerates.

• Use this to conclude that the Hodge to de Rham spectral sequence

degenerates for reasons of dimension.



Non-commutative Cartier Isomorphism, Part I
Tobias Dyckerhoff

As we saw previously, in the commutative case, if X is a scheme that

is smooth over S = Spec k where char(k) = p > 0, k perfect, then we

have the relative frobenius

X

X(p) X

S S

σ

FS

u

FX/S

FX

u A

and the Cartier isomorphism

C−1ΩiX(p)/S

cong→ Hi(F∗Ω
•
X/S)

is an OX(p)-linear isomorphism determined by

1. C−1(f) = F ∗(f) = fp

2. C−1(df) = F∗(df)
p = fp−1df

3. C−1(ω ∧ τ) = C−1(ω) ∧ C−1(τ)

Special Phenomenon in Characteristic p > 0(∗): Every

function of the germ f p is constant (df p = 0)

Goal: Let A be an ossociative k-algebra, A smooth over k, and let69 69 Where the connecting morphism
k → k is given by the Frobenius F .

A(p) = A⊗k k

We then hope that, for |u| = −2 there is an isomorphism

HH∗(A
(p))((u))

∼=→ HP∗(A)

As we will see, there is an analogous special phenomenon to (∗) in

the non-commutative case. That is, (∗)top:

S1 → S1

Z 7→ zp
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is ‘constant modulo p’ or ‘factors over the point modulo p’ which can

be expressed in a heuristic diagram as

S1 S1

∗

mod p

Of course, this doesn’t make much sense until we explain what is

meant by ‘modulo p’. What we mean here is precisely that the dia-

gram

H∗(S
1, k) S1

∗

[S1] p · [S1] = p

commutes70. 70 This is not just an analogy. We will
make explicit use of precisely this fact

in the proof of a key lemma.
Recall: A an associative unital algebra allows us to write down the

bar construction71 71 Throughout this talk, we will

make use of the homological grading

convention.C ′•(A) = A
b′← A⊗2 b′← A⊗3 b′← · · ·︸ ︷︷ ︸

A⊗Aop free resolution

where the differential b′ is given by72 72 We can also view this differential
pictorially as

a0 a1 · · · an

The differential is just the sum over

‘contracting intervals’.

b′(a0 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

If we tensor the free resolution from the bar construction (over

A⊗Aop) by A, we get a new complex, the cyclic bar construction

A
b← A⊗2 b← A⊗3 b← · · ·

where the differential is given by73 73 Again, there is a pictorial repre-
sentation. As before, the differential
is given by a sum over contracted

intervals, but now on the circle:

a0

a1

an

b(a0 ⊗ · · · ⊗ an) = b′(a0 ⊗ · · · ⊗ an) + (−1)nana0 ⊗ · · · ⊗ an−1

In particular, we have the Hochschild Homology

HH∗(A) := H∗(C•(A)) ∼= TorA⊗A
op

∗ (A,A)

Alan Connes Mad the fundamental observation that

t(a0 ⊗ · · · ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · ⊗ an−1

defines an action of Z/nZ on the n-cells of the cyclic bar construction

such that

C ′•(A)
1−t→ C•(A)
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is a map of complexes, ie

(1− t)b′ = b(1− t)

Therefore, the k-vector spaces

Cλn(A) = (Cn(A))Z/(n+1)

organize into a new complex called the Connes Complex.

Theorem (Connes). Let A be commutative and smooth over k,

where k has characteristic 074, then (for X = SpecA) 74 This is significantly simpler than
the B-operator/mixed complex pic-

ture precisely because it only works in

characteristic 0.
HCλn = ΩnA|k/dΩn−1

A|k ⊕H
n−2
dR (x)⊕Hn−4

dR (X)⊕ · · ·

Problem: This does not hold in characteristic p. Reason: the func-

tor (−)Z/pZ is not exact in characteristic p, rather, we have lots of

group homology75. 75 For example

Hi(Z/pZ,Fp) ∼= Fp

for every i ≥ 0.

To try and address this problem, we can consider the full76 double

76 In defining Cλn(A), we were, in
effect, merely considering the first two

rows.

complex

...
...

...

A⊗3 A⊗3 A⊗3 · · ·

A⊗2 A⊗2 A⊗2 · · ·

A A A · · ·

C•(A) C ′•(A)

b′

N1− t 1− t
b b

b′

N1− t 1− t
b b

b′

N1− t 1− t
b b

We call this the cyclic bicomplex CC•,•(A), and write

CC•(A) = totCC•,•(A)

We then have the cyclic homology

HC•(A) := H(CC•(A))

In characteristic 0, HC∗ ∼= HCλ∗ . Connes theorem holds verbatim in

characteristic P > 0 if we replace HCλ∗ by HC∗
77. 77 See the talks on the HKR theorem

for more details.

Observation. The fact that we have lots of group homology for Z/pZ
in characteristic p tells us that we have lots of deRham cohomology in

characteristic p.
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Our strategy to move away from complexes and reach a broader

definition and construction of the Cartier isomorphism will be to use

simplicial methods:

(1) The bar complex arises from a simplicial vector space

A∆ : ∆op → Vectk

[n] 7→ A⊗(n+1)

whose simplicial structure is given by

∂i(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an
σi(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ 1︸︷︷︸

i

⊗ · · · ⊗ an

(2) The cyclic symmetries of Connes can be captured in a lift of A∆

to Connes/Tsygan’s cyclic category Λ

Λ

∆op Vectk

AΛ

A∆

The structure of the cyclic category is relatively straightforward.

• Like ∆, Lambda has one object 〈n〉 for each n ≥ 0.

• The morphism sets HomΛ(〈m〉, 〈n〉) are the sets of maps

0

1

m

0

1

n

which are continuous, monotone, degree 1, and preserve the sets of

marked points. Two such maps are considered equivalent if there is

a homotopy through such maps between them.

So, can’t we not just consider cyclic order preserving maps?

Example.

|HomΛ(〈m〉, 〈0〉)| = m+ 1

Considering the picture
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0

1

m

0

we see that which segment we choose to collapse determines which

morphism we are considering. In particular, Λ has no final object.

Fact. Every morphism in the cyclic category has a unique factoriza-

tion σ ◦ φ where

φ ∈ Z/(m+ 1) = AutΛ(〈m〉)

and σ ∈ ∆.

The subcategory of Λ consisting of those morphisms preserving 0

can be identified with ∆op, giving us an inclusion

∆op ↪→ Λ

Definition. For every p > 0, there is a variant of Λ called the p-

cyclic category Λp. It has morphisms

(φ, φ̃) ∈ HomΛp(〈m〉, 〈n〉)

where φ ∈ HomΛ(〈m〉, 〈n〉) and φ̃ is a lift to the p-fold cover

Pictorially, we can represent such a morphism as

0

1

m

0

1

n

φ

π π

φ̃

z

zp

z

zp

From this definition, then, we can think of Λp as something of a

hybrid between ∆ and Z/p(m+ 1).
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Fundamental: There are two canonical functors

〈n〉 π−1({0, 1, . . . , r}) = 〈p(n+ 1)− 1〉

〈n〉 Λp Λ

〈n〉 Λ

S

qforget

Key Fact:

|Λ| ' BS1 ' BBZ ' CP∞

and the same is true for Λp. Furthermore, the diagram above becomes,

after applying | − |

BS1 BS1

BS1

'

B(z 7→ zp)

Proof. Apply Quillen’s Theorem B to the functor

∆op ↪→ Λ

Using the fiber diagram

S1 |∆op|

∗ |Λ|

we then see the result.

To see the relation to cyclic homology, consider the adjunction

colim
Λ

: Fun(Λ,Vectk)↔ Vectk : const

then the cyclic homology is given by78 78 As an aside: if we do the same

thing for the simplex category

colim
∆

: Fun(∆op,Vectk)↔ Vectk : const

We get that

L colim
∆

(X•)

is the complex associated with X via

d =
∑

(−1)idi

CC•(A) ' L colim
Λ

(AΛ) ∈ D (Vectk)

We can however, obtain a refined understanding of this colimit,

using the machinery of Kan extensions.
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A prototypical example of this sort of use of Kan extensions is the

case of Vector spaces equipped with a monoid action:

Vector spaces with

an action of a

monoid M .

Vector

Spaces

Vector Spaces with

an action of G

Lπ!
L colim

L colim

BM

BG

Group com-

pletion

Top. Interp:

Local system

E on BG

H∗(BG;E)

In the case, for example M = N, we then have G = Z and BG = S1.

In our case, we want an infinity-categorical variant on this, so we

take:

Fun∞(Λ,Chk) Chk H∗(BS
1, E)

Fun∞(|Λ|,Chk) E

L colim

π!

where we interpret Fun∞(|Λ|,Chk) as “infinity-local systems of com-

plexes” on |Λ|. This computation gives us

H∗(BS
1) = k[u−1]



Non-commutative Cartier Isomorphism, Part II
Tobias Dyckerhoff

We can refine our understanding of L colimΛ(−) via Kan extensions:

Fun(N(Λ), Ndg(Ch(k))) Ndg(Ch(k))

Fun(Sing |N(Λ)|, Ndg(Ch(k)))

colimΛ(−) := H•(Λ,−)

π!
H•(

BS1︷ ︸︸ ︷
|N(Λ)|,−)

Definition. An ∞-category is a simplicial set C ∈ Set∆ such that

every inner horn Λni → C (0 < i < n) has a filler ∆n → C.

Examples.

(1) If C is a category, then N(C) is an ∞-category (Every inner horn

has a unique filler, in fact).

(2) If X is a topological space, then SingX is an ∞-category (every

horn has a filler, that is, SingX is an ∞-groupoid).

(3) For C ∈ CatTop, NTop(C) is an infinity category.

(4) For C ∈ Catdg(k) a k-linear dg-category, Ndg is an infinity cate-

gory.

(5) Given I ∈ Set∆ and C and ∞-category, we can define the functor

category to be the internal Hom

Fun(I,C) := HomSet∆
(I,C)

which is, itself, an ∞-category.

All of these constructions can be understood in terms of (Quillen)

adjunctions, for example:
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(2) We have an adjunction

| − | : Set∆ ↔ Top : Sing

For any simplicial set X, the map

X → Sing |X|

is given by the counit of the adjunction, eg

π : N(Λ)→ Sing |N(Λ)|

(4) We have an adjunction

dg : Set∆ ↔ Catdg(k) : Ndg

[2] 7→ dg[2]

where, for a diagram

•

• •

g f

h

⇓H

The dg category has |f | = |g| = |h| = 0 are cycles, and has |H| = 1

with

dH = f ◦ g − h

Definition. If X is a topological space, then79 79 Often, in the notation that follows,

we will drop the k when it is clear
what field we are working over.Loc(X, k) := Fun(SingX,Ndg(Ch(k)))

is called the ∞-category of ∞-local systems on X with values in

Ch(k).

Via (4), if X is a connected topological space, we have, in some

sense80, a quasi-isomorphism 80 To make this rigorous, we need

to be quite careful. We are working

with Quillen adjunctions, so in some
sense the proper functor categories
to consider are those defined via
bimodules.

Fun∞ (SingX,Ndg(Ch(k))) ' Fundg (dg SingX,Ch(k))

We can also compute that

dg(Sing(X)) ' C∗(ΩxX, , k)

the differential graded algebra of singular chains.

Examples.
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(1) Let X = BG where G is a discrete group. Then

C∗(ΩxX, k) ' kG

so that

Loc(X, k) ' D(ModkG)

(2) Let X = BS1. Then

C∗(ΩxBS
1, k) ' k[ε]

where |ε| = 1 and ε2 = 0. Then we have

Loc(BS1, k) ' D(Modk[ε])

To relate this to cyclic homology, consider the diagram

N(∆op) N(Λ)

Sing |N(∆op)| Sing |N(Λ)|

pt BS1

j

r

i

q

' '

A

This is a pullback diagram of infinity categories81. 81 As argued in the previous lecture,

this result follows by first noting that

Quillen’s Theorem B implies that i is
a fibration.

In this context we have a notion of base change: for

E ∈ Fun(N(Λ), Ndg(Ch(k)))

we have that

i∗π! ' r!J
∗E

Therefore, we have an object

π!A
Λ ∈ Loc(BS1)

with

i∗π!A
Λ ' r! j

∗AΛ︸ ︷︷ ︸
A∆

' C•(A)

To illustrate how this perspective is natural, we take the example

of a mixed complex. Let V be a vector space over k with an action of

〈t〉 = Z/pZ, then we get a complex

V
1

1−t→ V
0

This complex has a k[ε]-structure (a mixed complex structure) given

by the diagram
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V V 0

0 V V

1− t

1− t

N

where

N =

p−1∑
i=0

ti

The topological explanation is that, taking

B(Z/pZ)
i
↪→ BS1

We can consider

V ∈ Loc(BZ/pZ)
i!→ Loc(BS1)

π!→ Loc(pt)

Exercise. Check that i!V yields the constructed k[ε]-module.

Now that we have dealt with the background, we can return to the

non-commutative Cartier isomorphism

Proof Strategy

We can consider the diagram

〈n〉 π−1({0, 1, . . . , r}) = 〈p(n+ 1)− 1〉

〈n〉 Λp Λ

〈n〉 Λ

s

qforget

from last lecture. Under geometric realization, as we remarked, it

leads to

BS1 BS1

BS1

'

B(z 7→ zp)
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Let A be an associative k-algebra

Step 1© Show that, for the map s above82 82 Where, for example,

s∗AΛ(〈n〉) = A⊗p(n+1)

This step is actually relatively easy to
show. We consider the diagram

∆op sd //

��

∆op

��
Λp // Λ

where sd is given by

[n] 7→
p︷ ︸︸ ︷

[n] ∗ · · · ∗ [n]

Then apply the usual tricks to show
that we have a pullback square, and

thus a weak equivalence.

H∗(Λp, S
∗AΛ) ' CC∗(A)

Step 2© In char k = p > 0, show that we have a quasi-isomorphism

H∗(Λp, q
∗AΛ) '

(
C∗[u

−1], b
)

Step 3© Construct a map

q∗(A(p))Λ → s∗AΛ

which induces an equivalence

lim
←
u

H∗

(
Λp, q

∗(A(p))Λ
)

︸ ︷︷ ︸
C∗(A(p))((u))

'→ lim
←
u

H∗
(
Λp, s

∗AΛ
)

︸ ︷︷ ︸
CP∗(A)=(C∗(A),b+uB)

The proof of Step 2© is based on the folowing:

Let E ∈ Loc(BS1, k), char k = p > 0, and consider the diagram (∗)

BS1

∗

BS1

r

q)

j

which commutes “modulo p” in the sense of the previous talk.

We then claim that

q! ' j! ◦ r!

Why is this true? We can check the adjoint statement

q∗ ' r∗ ◦ j∗

Considering

Loc(BS1)
q∗→ Loc(BS1)

If we restrict along this map, we get the commutative diagram

C) ∗ (∗, k)

C∗(S
1, k) C∗(S

1, k)
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which proves the claim.

Then we can make the computation83 83 Where the quasi-isomorphism

marked with a K follows from the

functorality of the Kan extension,
that marked with (∗) follows from the

diagram (∗), and those marked with a

P follow from the projection formula.

H∗(BS
1, q∗E)

K' H∗(BS1, q!q
∗E)

P' H∗(BS1, E ⊗ q!k)

(∗)
' H∗(BS

1,

r!k︷ ︸︸ ︷
E ⊗ j!H∗(BS1, k))

P' H∗(BS1, j!(j
∗E ⊗H∗(BS1, k))

' j∗E ⊗H∗(BS1, k)

' C∗(A)⊗ k[u−1]

To show Step 3©, we need to find a non-commutative analogue of

the Frobenius.

F : A(p) → A⊗p

“a 7→ ⊗ · · · ⊗ a︸ ︷︷ ︸
p

”

This doesn’t make sense, so instead we consider the necessary equivari-

ance

Z/p

�

A(p) → A⊗p

	

Z/p (∗)

and the morphism on Tate homology

Ȟ∗

(
Z/pZ, A(p)

) ∼=→ Ȟ∗
(
Z/pZ, A⊗p

)
(∗∗)

We therefore want a morphism (∗) inducing (∗∗). If we assume that

such a morphism exists, the proof follows.

Problem: Such a morphism basically never exists.



Non-commutative Cartier Isomorphism, Part III
Thomas Poguntke

Let k be a perfect field of characteristic p, and A a smooth k-algebra.

We want to construct a (non-commutative inverse Cartier) isomor-

phism

HH∗(A
(p))((u))→ HP∗(A)

Last time, we saw that we expect this to be induced by a map of

p-cyclic objects84 84 Where, as before, q : Λp → Λ

forgets the lift to the p-fold cover of
the circle, and s : Λp → Λ sends

〈n〉 7→ π−1〈n〉.

q∗(A(p))Λ → s∗AΛ

In a (very) special case, the desired map of p-cyclic objects will be

(−)∗ applied to some ‘NC-frobenius’ map

A(p) → A⊗p

‘a 7→ aotimesp’

which is Z/p-equivariant, and induces an isomorphism on Tate homol-

ogy.

Lemma. For any vector space W , the map

W (p) ∼= Ĥ•(Z/p,W (p))→ Ĥ•(Z/p,W⊗p)

given by

a 7→ a⊗p

is an isomorphism. In particular, it is additive.

Proof. Cyclic groups have cyclic Tate homology with differentials

di : M →M

where M is a Z/p-module, given by

di =

1− σ i odd

1 + σ + · · ·+ σp−1 i even

Now, choose a basis I of W = kI. Then85 85 This equality is Z/p-equivariant.
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W⊗p = k∆⊕ k(I×p \∆)

Where Z/p acts on ∆ trivially and Z/p acts on I×p \∆ freely.

Therefore, we can decompose the homology into86 86 This is a morphism of vector

spaces. It is not at all clear that it
lifts to an additive algebra morphism

A(p) → A⊗p for an algebra A.
Ĥi(Z/p,W⊗p) ∼= Ĥi(Z/p, k∆)︸ ︷︷ ︸

∼=W

⊕ Ĥi(Z/p, k(I×p \∆))︸ ︷︷ ︸
=0

Now assume A is commutative. Spec(A) is a commutative group

scheme (a cocommutative Hopf algebra)87. Then 87 ie there exists an algebra homomor-

phism

A

##

c // A⊗A

(A⊗2)Z/2

99
V : A

cp→ (A⊗p)Z/p → (A⊗p)Z/p/d1(A⊗p) ∼= A(p)

is called the Verschiebung which is, in fact, an algebra homomor-

phism88.

88 The map

(A⊗p)Sp/d1(A⊗p) ∼= A(p)

is clearly an algebra isomorphism,

with inverse

a 7→ a⊗p

so that

(a+ b)⊗p =

p∑
r=0

(pr) a
⊗rb⊗(p−r)

in symmetric tensors.

Then

A A(p) A

A⊗p

V F

c mult
∃

ie F ◦ V = p ◦ idA. That is, V is an isomorphism if and only if

Spec(A) ⊆ GNm is a subgroup of the multiplicative group, which it-

self holds if and only if A ∼= kG over a separable extension (where G is

commutative, although the ‘NC-frobenius’ exists for any G)89. 89 In this case,

V : kG→ kGp

g 7→ g ⊗ 1

so

kG(p) → k
[
G×p

]
g 7→ (g, . . . , g)︸ ︷︷ ︸

p

Now let k = Fp, and A perfect. Then there exists a p-adically

complete ring W (A) together with a residue isomorphism

W (a) �W (A)/pW (A) ∼= A

Moreover, the Frobenius on A lifts to F : W (A)→W (A), and induces

F : W (A)/pnW (A) =: Wn(A)→Wn+1(A)

Additionally, there is another map

V : Wn−1(A)→W (A)

for any n such that FV = p ◦ idW (A) = V F .

Finally, there exists a Teichmüller map (which is multiplicative)

A→W (A)

W (A) is the collection of Witt vectors, reminiscent of

Zp = W (Fp)

where, in Zp[X]90 90 Hensel’s Lemma.

Zp −X =
∏
a∈Fp

(X − [a])
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Construction

Consider A = (A, ·) (A commutative) as a multiplicative monoid. The

Teichmüller map should be

≈
(
A→ZA
a 7→[a]

)
There is a Frobenius lift

[a] 7→ [ap]

and augmentation sequence

0→ I → ZA→ A→ 0

where

I = span([a+ b]− [a]− [b])

so that

W (a) = lim
←

ZA/In

is the I-adic completion. It remains to show p-adic completeness.

If F (I) = I, the Frobenius descends, and Teichmüller yields

A ↪→ ZA�W (A)

In this case, F is an isomorphism, so we can just set V = pF−1.91 91 In fact, Wn(A) ∼= ZA/In

Proof Sketch of p-adic completeness. There is a short exact sequence92 92 This is because x ∈ I implies that

F (x) = xp mod pZA

and hence

x ≡ F−n(x)p
n

mod pZA

for any n. Therefore

I = In + pZA

0→ p−1In/In → ZA/In p→ I/In → 0

The transition maps

p−1(In)/In → p−1(In−1)/In−1

are trivial, ie if p · x ∈ In then x ∈ In−1.

For this case, we can define a ‘derivation’

δ : ZA→ ZA

z 7→ p−1(F (x)− xp)

Then

δ(x+ y)
(∗)
= δ(x) + δ(y)−

p−1∑
r=1

p−1

(
p

r

)
xryp−r

and93 93 Note also that

δ([a]) = 0δ(xy) = δ(x)F (y) + xpδ(y)

This implies that

δ(x1 · · ·xn)
(∗∗)
=

p−1∑
r=1

F (xr+1) · · ·F (xn)
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which, in turn, implies

δ(In) ⊆ In−1

by (∗).
Thus, for px ∈ In as above, δ(px) ∈ In−1 and

δ(px)
def
= F (x)− pp−1xp ≡ F (x) mod In

and hence, F (x) ∈ In−1 as well. Since F is an automorphism of I, we

get

x ∈ In−1

Therefore, in fact,

lim
←

(
p−1In/In

)
= 0

and so p is injective on W (A), with

p ·W (A) = lim
←
I/In ⊂W (a)

with respect to which W (A) is complete.

Remark. If A is commutative,

Wn(A) ∼= π0

(
THH(A)Z/p

n−1
)

Witt’s Original Construction

Example. Consider W2(A)
∼→ A2 (with ring structure to be defined)

given by

x 7→ (x, δ(x))

where x denotes the image of x under

W2(A) � A

Namely, on the RHS,

(x0, x1) + (y0, y1) =

(
x0 + y0, x1 + y1 −

p−1∑
r=1

1

p

(
p

r

)
xr0y

p−r
0

)
and

(x0, x1)(y0, y1) = (x0y0, y
p
0x1 + y1x

p
0 − px1y1)

So where does this come from? We can think of W (a) =
∏
A as

power series in p, and then define addition.

Question. If ∑
n≥0

[an]pn +
∑
n≥0

[bn]pn =
∑
n≥0

[cn]pn

what is [cn]?

INCOMPLETE



Non-commutative Cartier Isomorphism, Part VI
Tobias Dyckerhoff

Recall. We are trying to construct

C−1 : HH∗(A)((u))
∼=→ HP∗(A)

for A smooth over k, a field a characteristic p > 0

The perspective on C−1 from p-adic Hodge theory:

Definition. Let k be perfect of characteristic p > 0. A filtered

Dierdonné module over W (k) consists of

• A W (k)-module M

• A decreasing filtration {
F iM | i ∈ Z

}
with ⋂

F iM = 0 ,
⋃
F iM = M

• Frobenius-semilinear maps

φi : F iM →M

satisfying

(1) φi|F i+1M = p · φi+1

(2) The sequence

0→
⊕

F iM
t−p·id→

⊕
F iM

∑
φi→ M → 0

is exact.

Note. If M is annihilated by p, then condition (2) says

gr•FM
∑
φi→∼= M

Example. Let X be a smooth variety over W (k) with dim(X) < p.

Then each Hn(Ω•X/W (k)) carries a filtered Dierdonné module. Reduc-

tion modulo p yields the isomorphism

gr•FH
n
dR(Xk)

∼=→ Hn
dR(Xk)

showing the degeneration of the Hodge-to-de Rham Spectral se-

quence94. 94 Construction due to Faltings.
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