SEMINAR ON NON-COMMUTATIVE HODGE
STRUCTURES
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The following notes were taken from a seminar given at Universitdt Bonn during the
summer semester 2016, overseen by Prof. Dr. Tobias Dyckerhoff.
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Introduction

ToBIAS DYCKERHOFF

Hodge Structures

Let M be a real C* manifold. Then we have A*(M), the (real) vector
spaces of C*° k-forms on M. These piece together to form a cochain
complex!:

AS(M) = A°(M) & AY(M) S - b A2 ()
We then have
| Theorem (de Rham). H*(A®(M)) = H*(M,R)?

Now suppose that M has a complex structure J. Let 21, zo,..., 2,
local complex coordinates, with z; = x; + 4y;. Then we have a decom-
position:

AYM)erC = AY(M) o A%Y (M)
w o= > fidz+ > gidz
or, more generally:

AF(M) e C= @ API(M)

p+q=k

Hodge theory asks (and) answers the fundamental question:
DOES THIS DECOMPOSITION DESCEND TO COHOMOLOGY?

Definition. H?? C H¥(A®(M)®gC) is the subspace given by classes

represented by closed (p, ¢)-forms3

Theorem (Hodge). Assume M is a compact Kihler* manifold.
Then
H*M,C)= @ HP(M)
p+q=Fk
Further, we have that HP¢ = H%P. This leads us to the Hodge
Diamond, a way to codify the symmetries of the cohomology of Kahler

manifolds.

! The de Rham Complex, where d
denotes the exterior derivative. We
take dim(M) = 2n for agreement with
the complex case.

2 Where H*(M,R) is the standard
singular homology. In some sense
the de Rham theorem states that an
analytically defined chain complex
yields a purely topological invariant.

3 Naively, one might expect that, in
general

H*(M,C)= € HPY(M)
p+a=k
but this is not generally true.
4 That is, M is equipped with a
complex structure J, a symplectic
structure w, and a Riemannian metric
g such that

9(X,Y) =w(X,JY)
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Hodge Symmetry

Application. M compact Kahler. Then the odd Betti numbers are
even. For example, S' x S3 cannot be Kahler.

Definition (1). A Hodge structure of weight k consists of a Q-vector
space Hgp together with a decomposition

H:=HyooC=  H
p+q=k

such that HP4 = H9P,
or, alternatively

Definition. A Hodge structure of weight k consists of a Q-vector

space Ho® together with a finite decreasing filtration F*® Ho ®g C8 3 Called the rational lattice.
6 Called the Hodge filtration.

"'CFPCFP_HC'-'

such that for all p, ¢ such that p+ ¢ = k+1, we have
e FPHN FYH = {0}
e FPH® F1H =H




To see that (1)=- (2), simply set

FPH = H"

1>p

. To see the reverse implication, set

HPY := FPHNF1H

Hodge Theory from the Algebraic Perspective

Fact: Every smooth projective variety X/C is a compact Ké&hler man-

ifold.
GROTHENDIECK: The Hodge filtration can be constructed in an
intrinsically algebraic way. There is an algebraic de Rham complex”:

Q% =0% -0k - = 0%

Theorem (Grothendieck). The hypercohomology® of the algebraic de

Rham complex satisfies:

H*(Q%) = H*(X(C),C)

The complex Q2% has a filtration
FPQ% =0— - 50— 05 - .- = Q%

Which induces a filtration on HF (Q})g And a corresponding spectral
sequence (the so-called Hodge to de Rham spectral sequence):

EPY = HI(X, Q%) = HP(Q%)

Question (Grothendieck). Can we prove, purely algebraically, that
this spectral sequence degenerates?

Answer (Deligne-Illusie). Yes!

Non-Commutative Geometry

Let A be a dg category. Then we get invariants
e Hochschild homology HH,(A)

e Periodic Cyclic Homology H P, (A)

e Spectral sequence HH,.(A) = HP,(A)

7 Which is, in fact, a complex of
coherent sheaves on X.

8 The hypercohomology is defined as
the derived local section functor

H*(Q%) = R"Tx (%)

9 This is an elementary fact from
homological algebra. See eg Weibel.



Example (Generalized Hochschild-Kostent-Rosenberg). Let X be a
smooth projective variety over C.

HH,,(Perfy) = @ HI(X,0P)

p—q=k
HPy(Perfy) = @ H*(X(C),C)
k even
H Py (Perfy) = @ H*(X
k odd

So we have something like a generalization of the Hodge diamond:

HH_, HH_, HH, HH, HH,

HP, mho 1

Additionally, we have a spectral sequence
HH, = HP,
which in some sense recovers the Hodge to de Rham spectral sequence.

Question (For the seminar). Can we define Non-Commutative Hodge
Structures for suitable dg-categories not necessarily of the form Perfyx?

- Can we find a Hodge Filtration?

- Can we find a rational lattice?

HP,



HKR for Rings

WALKER STERN

Hochschild Homology and Variants

Let k be a commutative ring, and A be a unital associative algebra

projective over k.
Definition. The Hochschild Homology of A, HH,(A), is'?

Tort" (A4, A)

To relate this definition to an explicit chain complex, we take the

bar resolution of A:

b/
o A3 2 A2 25 A

Cher(A)

With the differential b’ given explicitly as!!

Tensoring A with the bar resolution, we get a chain complex that
computes the Hochschild Homology of A: The Hochschild Chain Com-

plex.
Co(A) = — A3 D 492 5 4

where

b= zn:(—l)idi
=0

K3
On this chain complex, there is a cyclic action ¢ : Cy,(A) = Cp(A)
t(a(], Alyeeny CLn) = (—1)"(an, Ag, A1y ...y an,l)

The norm of this action is

N = En:ti
=0

10

Where

A® = A ®), AP

is the universal enveloping algebra of
A.

11 The d; come from the standard
simplicial structure on C2%7(A), and

are given explicitly by

{

d;(ap, a1, ..

(ao, ..., QiQi41,...,an)

(anag, a1, ..

wanfl)

S an) =
0<i<n

i=n



Additionally, there is a map!2:
51 A® 5 A®ntl
(a1y...,an) = (Lya1,...,a,)

From these operators, we can define Connes B operator:

B=(1-1t)sN
Remark. The B operator has the explicit form
n
B(a07 cee 7an) = Z [(_1)7”(170,“ <o+ 50n,5 A0, - - - 7ai—1)
i=0

—(=1)"(a;,1,...,an,aq, ..., ai,l)]
has degree 1, and satisfies the identities
B*={B,b} =Bb+bB =1

If we take the differential graded algebra k[e], where €2 = 0 and

le| = 1, then the B operator turns C,(A) into a graded k[e]-module'3

under the assignment
e— B

Definition. The Cyclic Homology of A is'4
HC, = Tor®ld(k, C, (A))
The Negative Cyclic Homology of A is
HCO[ = Extyq(k, Ci(A))

We can specify a k[e]-free resolution for k to compute explicit chain

complexes for (negative) cyclic homology:

o K[[=2] S K[[~1] S k] — &

L,

More precisely:

12 Both this s map and and the cyclic

action are contained in the notion of a
cyclic object, which is an extension of

the notion of a simplicial object. See,

eg [4],Ch. 6.

13 This is equivalent to the notion of a
mized complex found in the literature

4 Note that, thoughout this def-
inition, k represents the graded
kle]-module concentrated in degree 0.
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Lo @) C«(A) then yields a double complex whose total complex
computes HC,(A):

b | |
ae3 B g2 B4
b bJ

B

We call the resulting complex the cyclic chain complex of A, and

writel5:

CC.(A) :=Tot (Le @ Ci(A))

Similarly, we find that Homy(Le, C«(A)) gives a double complex
whose total complex computes HC (A).

b b b
B A®4 B A®3 B A®2
b b b
B A®3 B A®2 B A
b b b
B je2 B, B 4
b b
B4 0
b
0

We call the total complex!® the Negative cyclic chain complex of A,
and write

*

CC; (A) := Tot (Homy(Le, C(A)))

As an analogy to better understand (negative) cyclic homology, we
can consider the case of group (co)homology!”:

15 Notice that the cyclic chain com-
plex can also be represented in a
much more compact form as a polyno-
mial algebra over Cy(A):

CCy(A) = (Cy(A)[u™'],b+ Bu)

where |u| = —2.

16 As before, there is an expression
in terms of polynomials in u. In this
case, though, it is important that we
are taking the direct product total
complex, so that we get

OO (A) = (Cx(A)[u]] b+ Bu)

17 The circle action in the right hand
column cannot be fully explained
here, as it requires oco-categorical
notions to make fully accurate. For a
more complete exposition, see [5].
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CycrLic HoMOoLOGY

G a group, k a field
G () M € Vecty,
+
Cel (@) = kG when G is
treated as a discrete topological
group, giving the induced action
kG (Q M
+
k @k, M = My¢
‘homotopy coinvariants’
RHomkg(k, M) = MhG

‘homotopy invariants’

A a k-algebra, k a field
ST Q) (C.(A),b)
1
Ceell(Sh) = k[e], giving the
induced action (precisely the
action described above)
Kl Q) (C.(4),b)
1

k @pje Cu(A) = Cu(A)ps

RHomk[e] (kv C* (A)) = C* (A)hS1

When A is commutative, we also get a product on Hochschild ho-
mology. It is induced by the shuffle product on C,(A)

=X = =shpq: Cp(A) @ Cg(A) = Cpiq(A® A)

Z sgn(o)o.(ap @ ag,a1 @ 1,...,ap @ 1,1®4a},...,1® ay)
o€Sh(p,q)

(ao, ..., ap) x (ap,...,a,) =

where Sh(p, q) is the set of p, g-shuffles'8. 18 A p, g-shuffle is a permutation
with preserves the ordering of the
first p elements it acts on, and of

the last g elements it acts on. More
intuitively, it is any permutation
that can be obtained by shuffling
once a deck of cards that has been
divided into two parts. The action of
the symmetric group on an element
(co,c1y---3¢ptq) € Cx(A® A) used in
the definition is given by

Lemma. — x — satisfies graded Leibnitz rule, that is,
b(x x y) = b(x) x y+ (—1)"lz x b(y)
for all z,y € C.(A).

Sketch of proof. Let

xxy:Zj:(co,cl,...,cp+q) a.(co,ct, - -

-y Cptq) = (co, Co—1(1)s "> Cafl(erq))

and consider sets

X ={uw®l,. . . ,aoel}
Vi={l®d,...,1®ad}

where x = (ag,a1,...,a,) and y = (ag, - . ., ag).
Now, given an element (co, ..., cptq) in the above sum, notice
that if ¢;, ¢;41 are both in X (resp Y'), then d;(co, ..

mand of b(x) x y (resp. = x b(y)). If ¢;, ¢; are in different sets, then

., Cp—gq) s & sum-

(€oy- -+ Cit1,Ciy- - Cprq) is still a shuffle, and appears with opposite

sign. Since A is commutative, we then see that

di(Co, ooy Cip15Chy e 'Cp+q) = di(CQ, .. .Cerq)

so that the terms in the differential cancel. The rest of the proof
amounts to checking signs. O
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We then look at the product
H:A®A— A

which induces

So we are left with a product
=X = Cp(A) ® Cg(A) = Cpiq(A)

Which, by the lemma, descends to Hochschild Homology. More pre-
cisely

Theorem. The product
—x—:HH,(A) @ HH.(A) —» HH.(A)

equips HH,(A) withe the structure of a graded-commutative algebra.

Differential forms

Lemma. Let A be unital and commutative!®. There is a canonical
isomorphism
HH,(A) = Q)

from Hochschild Homology to Kdihler differentials®®
Proof. A commutative implies b : A ® A — A trivial. The image of
b: A®3 5 A2 ig
K=(@y®z—rQyz+z20Qy)
It is then clear that the maps

[a ®b] — a db
adbs [a® b

are well-defined inverse module homomorphisms

A®A/K < QY

The shuffle product gives us a map
Qe © Uy, — HHs(A)

which factors as

2
Oy © Uy, — /\Qh‘k = Q% — HHy(A)

More generally, in fact, it provides a homomorphism of graded alge-
bras. We assert that this, is in fact given by the antisymmetrization
maps.

19 For the rest of this section, this
assumption will remain in place

20 KGhler differentials are in some
sense ‘universal derivations’ on A.
More precisely, Q}A\k is generated over
k by symbols da satisfying

d(Aa + pb) = Ada + pdb Ap€eA
d(ab) = (da)b + a(db)



Definition. The antisymmetrization maps®' are the maps
€n t U4 — HH,(A)
given by

(ap day - -+ day) — Z sgn(o)o.(ag, a1, ..., a,)
oceSy

Lemma. The antisymmetrization maps form an algebra homomor-

phism.??

Proof. First, we want to see that the maps defined above do indeed
take values in cycles. If we set

n n

h(u)(a) =Y (=1)'hi =Y (=1)(ao, .- -, @i, U, ait1, - .., an)

i=0 i=0
then we can compute directly that
boh(u)=0—h(u)ob
and that, when n =0, 1
boe, =0

Assume now, inductively, that this holds up to n. Then

boenti(a,y) = (—1)"bohy) cen(a)
— (~1)"h(y) o bo enla) = 0

So that we do, indeed have an induced morphism to Hochschild ho-
mology.

To see that this is an graded algebra homomorphism amounts to
showing that the diagrams

QP q €p><6q
Pox QY —— HH,(A) x HHy(A)

AJ J .
W —————— HH,4(4)

p+q

commute.

This amounts to showing that

SN Y smlosm(nsen@o(rx o = Y sa(o)o

TESy £€S, 0€Sh(p,q) 0ESpiq

which follows from the fact that any permutation in S, has a unique
expression as a composition of a p, g-shuffle with a product of permu-

tations in S, and S, respectively.

13

21 Sometimes also refered to collec-
tively as the HKR map or the HKR
isomorphism

22 Note that, if this is the case, then
it will be the homomorphism in-
duced by the canonical isomorphism
HH{(A) — Qféﬂk’ since this map is
precisely €;.
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HKR Theorem for commutative rings

Definition. For A a commutative unital ring, we say that A is
smooth over k if it is flat over k and if, for any maximal ideal m C A,
the kernel

I =Xker (pm : (A®k A)y=1(m) = Am)

is generated by a regular seguence?? in (A®k A)p—1(m)

Definition. Let R be a commutative ring and V' an R-module, with
z: V=R

a linear form. The Koszul complex of x is
K(x) = (/\ V. dx)
R

where the differential is given by

do(vo A Avp) =3 (=1 a(0i)vg A= A A-e Aoy
=0

For the remainder of the talk, let us fix R a commutative ring, I

an ideal of R generated by a regular sequence z = (z1,...,2,,) in R.

From this setup, we get a form??:

m
ac(rl, e ,Tm> = Zmﬂ“i
i=1
From this, we get a Koszul complex K (z)

Lemma. The Koszul complex K (z) is a resolution of R/

Proof. By induction on m. Suppose m = 1, then we have the complex
K(x)=K(x1)=0—->REBR—0

So that
R/I n=0

Ha(H () = 0 else

Suppose this is true for m — 1. Then we can fit K (x,,) into the
exact sequence

23 Recall that a sequence of elements
(z1,...,2m) in A is regular if multi-
plication by x; in S/(z1,...,Zm) is
injective.

24 This form can be thought of as a
sort of scalar product.



0 g{o K (l’m) g{l 0
0 0 R R 0
T T O
0 R R 0 0

If we tensor this exact sequence with
L:=K(x1,...,Tm-1)
we get the exact sequence
0> FKo®L = K(x) > K1 ®L—0
We can then take the LES on homology to see that

0 — coker((z,)") = H, (K (2)) = ker((z,,)" ') — 0

where
(€)™ : Ho(L) ™8 H, (L)
For n > 1, this tells us H, (K (x)) = 0. When n = 1, we get?® 25 Injectivity in this case fol-
lows from the regularity of =, in
Hi(K(x)) =ker (z, : R/(x1,... Tm—1) = R/{z1,.. . Tm—-1)) =0 R/{(x1,. .., Tm—1).

and when n =0
Ho(K(x)) = coker (zy, : R/{x1,...Tm-1) = R/{x1,...Tm-1)) = R/I
O]

Lemma. The morphism

e« \(I/1?) = Torf(R/I, R/T)
R/I
induced by
e : 1/1% = Torf(R/I, R/T)

is an isomorphism of graded algebras.

Proof. We take the Koszul complex of z as a resolution of R/I to
compute Tor, and end up with the complex

(/*\[Rm] ®r R/I,d; ® 1)

R
However, d, takes coeflicients in I, so the differential is identically

zero. Hence the homology is

* *

A (R/D™) = \(1/1%)

R

15
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Theorem (HKR). For any smooth algebra A over k, the antisym-

metrization map
€ ! ijw — HH,(A)

is an isomorphism of graded algebras®S. 26 Though we will not prove it here,
this isomorphism also takes the B
operator to the differential on forms.

Proof. Firstly, we notice that A = A°P. Additionally, it suffices to
prove the proposition for localizations at maximal ideals, so we have to

show
Tk = (4 )m — (Tor,®4(4, 4))

for any maximal ideal m C A.
‘We can notice that

B (TorA®4(4, 4)) = Tory %70 (A, Ay)

is a natural transformation of homological functors with 6y an isomor-
phism. Hence, it is a natural isomorphism. If we then let

R=(A@A),-1(m)
R/I = An

in the terminology of the previous lemma, then the lemma implies the

theorem. O



Hochschild Homology of Schemes

MICHAEL BROWN

We fix, for the rest of the talk, k a field, and X a quasi-compact sepa-
rated k-scheme.

GOAL: Sketch a proof27 that, once they are defined, 27 Following, among other sources,
Keller’s paper [6]

HH,(perfy, X) = HH.(X)

and similarly for HC,, HN,, and H P..2% This establishes a well- 28T the notation of the last talk,

defined notion of Hochschild homology on X 29 HN. = HC, .
29 There is a parallel story for
Hochschild cohomology. See for

Defining invariants of Schemes example [8] and [9].

Definition. A mized complex of k-vector spaces is a dg-module over

the dg algebra k[z]/22, |z| = 1, which has trivial differentials®. 30 The differentials here follow chain
complex conventions, ie are of degree

Further, we set the following notation |

D Mix(k) := D (k[z]/x?)

considered as a dg-algebra. We also define @ Mix(X) to be the de-
rived category of sheaves of dg-modules over k[x]/z?

Example. The Hochschild complex C,(A) associated to a k-algebra is
a mixed complex equipped with the Connes B-operator, as we saw in
the last talk. Call this mixed complex M (A).

We then have a presheaf
U~ MIT(U,0O,))

and can set

M(Ox)
to be the sheafification of this presheaf3!. We then define the Hochschild ' Level-wise in this complex.
homology to be32 32 Note: it is not immediately obvious
that the hypercohomology inherits a
HH, (X) — (X, M((QX)) differential from the mixed complex

structure of the sheaf. As it turns out,
it can, in fact, be equipped with a
‘Connes B operator’, but this is a fact
that requires some checking
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Now, given a k-algebra A, let BM(A) denote the direct sum total-
ization of the bicomplex33:

b | |
Aws B e By
b bJ

pez By

b

A

And let BM(Ox) denote the sheafification of the presheaf
U~ BM(I'(U,Ox))

We then can define the cyclic homology of X to be the hypercohomol-

ogy
HC,(X) := H*(X, BM(Ox)

If we denote by H the hypercohomology complex corresponding to
HC.(X), then there is a surjection, the Connes periodicity operator

s:H[2] - H
We can define a new complex via the limit3*
L. ::lign<~~ 2 H[2p + 2] S H[2p] — -..iH)
Using this complex, we can then define periodic cyclic homology
HP, := H "(L,)
and, using the map (which exists by universal property)
L, — H[-2]
we can also define negative cyclic homology

HN,(X) = ker (L, — H[-2))

Theorem (Geller, Weibel. [10]). If X = Spec(A), HH.(X) =
HH,.(A).
Proof. Let ##,,(X) be the Sheafification of the presheaf
U— HH,I'(U,Ox)
Then there exists a bounded spectral sequence
EPY = HP(X,#H _4(X)) = HH_,_,(X)

This spectral sequence collapses at p = 03°. O

33 That is, the bicomplex for the
negative cyclic homology of A

34 Notice that in coordinates one can
think of s as multiplication by the
formal variable u introduced last talk.
In this sense, the inverse limit simply
‘inverts’ u

35 To see that HCy (Spec(A)) =
HC,(A), see the main theorem 2.5 of
Weibel, [7].
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DG-Categories

Let C be a dg category. We can associate a bicomplex to C with

columns as follows36 36 Where C(X,Y) here denotes the
morphism complex between the two
C, = @ G(XmXO) Rk G(Xn—laXn) R -+ Qg G(XO,Xl) objects, and the sum ranges over all

X0, X0 tuples of objects.

The Horizontal differentials are given by alternating sums of the fol-
lowing ‘face maps’

di : Cp = Cpy 0<i<n
(fn7~~'af0)'_>(fn""afi+lofia"'af0)

dy : Cn — Cn—l
(fnw"uf()) — (_1)71+U(f0 Ofnu"'7f1)

where
o= fol (Ifal+ -+ [fa-1l)

Let C(C) be the direct sum totalization of this bicomplex, and call
it the Hochschild complex of C.

Definition. A complex P of ©x-modules is strictly perfect if, for

every x € X there exists a neighborhood U of x such that P|y is

isomorphic to a bounded complex of summands of locally free © x-
modules.

A complex P of Ox-modules is perfect if, for every € X there
exists a neighborhood U of x such that Py is quasi-isomorphic to a
strictly perfect complex.

We also write perf,;;, Ox for the dg quotient of the dg category of
perfect complexes on X. And analogously for strperf,;; Ox.

Theorem (Keller, [6]). There is an isomorphism in @ Mix(k)37 37 Where we write M (C) for C(C) as
a mixed complex, for a dg category C.
7 : M(perf,, Ox) = RI(X, M(Ox)) And
RI(X, ) : @ Mix(X) — D Mix(k)
We now write M (perf , Ox) for the sheafification of is the total right derived functor of
the global sections functor. Note that
Uw— M(perfdg Ox) there is a quasi-isomorphism

RT(X, M (Ox)) = H(X, M(Ox))
For every U C X open, there are maps
as proved in the appendix of [6]

M((T(U,Ox)) — M(proj(I'(U,Ox))) — M(perfdg Op)

therefore, the exists a morphism of sheaves

M(Ox) = M(perf ,,Ox)
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ILemma (Key Lemma, [6]). « is an isomorphism in @ Mix(X).

Sketch of Proof. 3% Our strategy will be to show that « is an quasi-
isomorphism on stalks.
First notice that

M(pelj[dg@x) i) 111)11 (M(perfdg @U))
We will show that
B li_r>nperfdg Oy — perfy, Ox «

is a quasi-isomorphism. This will complete the proof, since the follow-

ing diagram commutes

M(Ox o) —~— M(perf 4,Ox)a ——— M(lim_, perf,, Op)

b ~
M (perf,;, Ox,x)

where a is a quasi-isomorphism because of the properties of the limit,
and b is a quasi-isomorphism by the assumption of Morita invariance.

To see that [ is a quasi-isomorphism, notice that we have a commu-
tative diagram

lim_, M (perf,;, Oy) ———— M(perf,, Ox )

| e

lim_, M (strperf,, Op) M (strperf,; Ox )

a
lim_, M (strperf,, I'(U, Ox))

Since a and b are quasi-isomorphisms, so is e, since ¢, e, and d are

quasi-isomorphisms3?, we see that 3 is. O

To define the map 7 of the theorem, we use the following square in
D Mix(k)
M(perfdg Ox) —— I‘(X,M(perfdg(QX)))
T

RT(X, M (Ox)) m RT (X, M (perf ;, Ox))

38 We here use the assumption of the
morita invariance of

M(—) : dg — Cat — @ Mix(k)

which will be discussed in future
talks.

39 d is a quasi-isomorphism since it

is an affine case. a and c are because
we can restrict to affines. b is a quasi-
isomorphism by Morita invariance.
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IClaim. T is an isomorphism when X = Spec(A).

Proof. We have the following commutative diagram

M(A) v M (perf,, Ox)

c /

|
RI'(X, M(Ox))
|
H(

12

a

(
X7M(@X))

Since a is a quasi-isomorphism, so is ¢, and since ¢ and b are quasi-

isomorphisms, 7 is as well. O

Proposition ([6]). If V,WW C X are open and quasi-compact, and

X =V UW, there exists an isomorphism of triangles in @ Mix(k)*0 40 Note that this can be thought of as
a sort of Mayer-Vietoris-type result.

M (perf;, Ox) RF(M(PeffdQQX))

M (perf,, Ov) & M (pert 4y Ow ) ——— RI(V, M (perf ,,Ov)) & RT(W, M (perf ;,Ow))

M(perfd QVOW) RF(V Nnw, M(pe1fdg(9\/mw))

This tells us that

Corollary. Our two definitions of Hochschild Homology coincide®!, 41 Additionally, we have that

ie HC\ (perfy, Ox) 2 H, (k&
HH,(perf,, Ox) = HH.(X)

122RD(X, M(0x))

(]

But it is not immediately clear that
this is HC(X). This is, however,
Now, let Q C k, and proved by Keller in [6], and can
further be used to deduce the same

e: M(A) — (Qz‘k’o’d) for HN and HP.

be the antisymmetrization maps from last talk*2. As we saw before, 42 We list the target as a triple to
when Ak is smooth, e is a quasi-isomorphism. However, we have the emphlasme that it is a mized chain
complex.

same result for schemes, which follows from simply sheafifying. That is
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Proposition (HKR for Schemes). The induced map
e: M(Ox) = (Q%4,0,0)
is an isomorphism when X |k is smooth and Q C k.

As a result, we get the decomposition

HH;(X)= ) HI(X, )

q—p=t

Example. We can, for example, compare the Hodge diamond to the
dimensions of the Hochschild Homology groups. For example

HH_, HH, HH,

HH,(P)



Differential Graded Categories

GUSTAVO JASSO

For the most part, this talk will follow [11], and will try as far as
possible to use the same notation.

Let k be a commutative ring, and denote by C(k) the category of
complexes of k-modules.

Preliminaries

Definition. A dg category A consists of

e A class Obj(A) of objects
e For any z,y € Obj(A), a complex

A(z,y) € C(k)

of morphisms

e For any z,y,z € Obj(A) a morphism of complexes
Az, y) @k Ay, z) = Az, 2)

satisfying unitality and associativity.

Example. a) Let A be a dg category such that Obj(A) = {*}. Then
A= A (%, %)
inherits the structure of a dg-algebra

(A®A,do1+1®d) — (A,d)

Recall that
(AR A" := P AP A

p+g=n

So for f € AP, g € A%, we want that TFDC43 43 Up to Koszul sign convention.
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f@gr——df @ g+ (-1)P1f @ dg

| |

fg———d(f9g)

so that
d(fg) =df - g+ (=1)"f-dg

b) Let B be an additive k-category?*, and define Caq(B) to be the 44 For example, Proj(A), Mod —A,

category whose objects are complexes in @, and with Qcoh(X)...

Hom(X,Y)" = degree n maps X — Y
equipped with the differentials
frdf i=fody —(=1)"dx o f

for f € Hom(X,Y)".

Definition. For a dg category A,
a) Z°(A) the cycle category has
Obj(Z°(A)) = Obj(A)
Z%(A)(x,y) = Z(A(x,y))

b) HY(Z) has
Obj(H"(A)) = Obj(A)

HO(A)(x,y) = H(A(z,y))

Example. Let B be an additive category.

a) We have
Z%(Cag(B)) = C(B)

Since
f € Hom(X,Y)

Z%(Hom(X,Y
f e 2 (Hom(X, ))(:){df:fody—dxofzo

b) Moreover

since
Jh € Hom(X,Y)!
feB' Hom(X,Y)) < f=dh=hody +dxoh
(f is null-homotopic)



Definition. Let A and B be dg categories. A dg-functor F : A — B
consists of

e amap F: Obj(A) — Obj(B)
e For any z,y € Obj(A) a morphism of complexes
Foy s A(x,y) = B(F(x), F(y))

satisfying unitality and composition.

Example. For a dg category A, and

Cag (k) = Cag (Mody)
Then for all € Obj(A)

Az, =) : A = Cag(k)

is a dg functor.

Definition. Let F,G : A — B be dg functors, and
Hom(F,G) = degree n natural transformations
that is, the set
{n. € B(F(x),G(x)) | x € Obj(A)}

satisfying that for any f € A(z,y), TFDC

In this case, Z°(Hom(F, G)) is simply the set of morphisms from F
to G.

Definition. Let A be a small dg category, B any dg category. Then
the category Hom (A, B) has objects dg functors A — B, and

Hom(A,B)(F,G) := Hom(F,G)

25
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Definition. Let A and B be k-categories. The tensor product of A
and @ is defined by

Obj(A ® B) := Obj(A) x Obj(B)

and

(A 2 B) ((a,b),(a',b)) := A(a,a’)B(b,b)

Before continuing, we fix some notation. We will denote by
dg-cat

the category of small dg categories.

Proposition. (dg-cat,®) is a symmetric closed monoidal category.

In particular, there is a canonical isomorphism® 45 This isomorphism determines the

tensor product up to isomorphism.

Hom(A ® B,C) = Hom(A Hom(B, C))

Dg-modules

Definition. Let A be a dg category. Then the opposite dg category
ACP is given by
e Obj(A°%) = Obj(A)
e For any z,y € Obj(A°P)
AP (z,y) = Ay, x)
e For any z,y,z € Obj(A°P)

A% (2,y) @ AP (y,2) = AP (2, 2)
fegm (-1)lgo f

Definition. Let A € dg-cat. The dg category of (right) dg modules
is

Mod 7z = Cdg(ﬂ) = HOm(ﬂOp, Cdg(k))
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Proposition. Let A be a dg category.

a) For any x € Obj(A) and any M € Cyy(A)
Hom 7 (A(—,z), M) = M,

b) If A is small,

A — Cdg(ﬂ)
x = A(—,x)

Definition. Let A € dg-cat and M € Cyy(A)

a) M is acyclic if, for any « € Obj(A), M, € Cy4q(A) is acyclic.

b) M is h-projective®S if, for any N € Claq(A) that is acyclic, 46In the context of model categories,
this can be thought of as cofibrant.

H°(Hom(M, N)) =0

¢) M an h-projective object is compact if, for any indexing set I and
any
{NiECdgHGI}

the canonical morphism

H H° (Hom (M, N;)) — H° (Homﬂ (M, ]_[ Ni> )

i€l i€l

Definition. Let A € dg-cat.

a) Dgq(A) is the dg category of h-projective dg A -modules?”. 47 In the context of model categories,
these are the derived/perfect derived
categories. This description of them
modules. works because every object admits a

cofibrant (h-projective) replacement.

b) perf,, (A) is the dg category of compact h-projective dg A-

Note that
perf(A) := Ho(perfdg(ﬂ))

Remark. Let A € dg-cat. Then we have a commutative square

Y Yoneda Cdg(ﬂ)
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The category Hge
Definition. A dg functor F' : A — B is a quasi-equivalence if
e For any z,y € Obj(A)

Foy : A(x,y) = B(F(x), F(y))

is a quasi-isomorphism

o HYF): HY(A) — H®(B) is an equivalence.

Remark. ® and Hom do not preserve quasi-equivalences.

Theorem (Tabuada). The category
Hqe := (dg-cat)[geq 1]

exists and is equivalent to the model category of a cofibrantly gener-

ated model category.

Definition. A dg category A is h-flat, if, for all z,y € Obj(A),

A(z,y) ® —: C(k) = C(k)

preserves quasi-isomorphisms.

Remark. For any A € dg-cat, there exists A,y € dg-cat which is
h-flat, such that
A = ﬂcof

in Hqe.

Definition. Let A,B € dg-cat and X € Cyy(A? @ B). X is a
quasi-functor if, for any a € Obj(A) there exists b € Obj(B) such
that

X ZB(—,b)

in H°(Dgy(B)).

Remark. Let A,B € dg-cat and X € Cyy(A°? ® B) a quasi-functor.
Then X induces
H°(A) — H°(B)
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Definition. Let A, B € dg-cat. Then rep,,(A,B) is the dg category
of quasi-functors in
D4y (A & B)

Definition. Let A € dg-cat. The left derived tensor product is

ﬂ@L—:zﬂcof®—:qu—>qu

Theorem (Drinfeld, Toén). (qu, ®L) s symmetric closed monoidal
with internal hom

RHom(A, B) = repyy(Acos, B)

in Hqge

Theorem (Toén). Let A and B be dg categories, then
Dag(A°P @ B) = RHom, (Dag(A), Dag(B))

is an isomorphism in Hqe.

Triangulated dg categories

Definition (Toén). A € dg-cat is ¢riangutated perfect48 if 48 This notion is stronger than the no-
tion of a pretriangulated dg category.
To get the definition of pretriangu-
0
H (perfdg (ﬂ)) lated, take the subcategory tria(A)
fitting into

H°(can)
—

HO(A)

is an equivalence
A ———— Cyy(A)

Definition (Toén). F' : A — B dg functor is called a Morita /

tria(A)

F*: D(B) — D(A) \

is an equivalence. perf 4, (A)

equivalence (mo) is

in place of perfy, (A).
Remark. a) geq C mo

b) A perf,, (A) is a Morita equivalence.
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Theorem (Tabuada). Hmo := (dg-cat)[mo™1] exists and is equiva-
lent to the homotopy category of a cofibrantly generated model cate-

gory.
Remark. There is a quotient
Hge 5 Hmo
Proposition (Toén?). The map A — perf,, (A) is right adjoint to
m and induces an equivalence

Hmo = {A € Hqe | A is perfect}

Theorem (Toén). Let A,B € dg-cat. The map

Dag(AP @ B) — RHom(Dy(A), Day(B))

is an equivalences in Hqe.
Remark. Hmo is pointed and has finite direct sums.

Definition. A short exact sequence is a bicartesian diagram

A

|k

0——20C

Theorem (Toén). Let A = Acony be a dg category, and 1z :
AP @ A — A be given by (x,y) — A(x,y)

a) 17 € RHom(A, A) = rep,, (A, B)

b) HH*(A) = H*(Hom(1z, 1))

¢) In the above isomorphism, cup product is sent to composition, and

vice VErsa.

Remark. e The morphism

HH, () )

HH,(perf,,(A))

is a quasi-isomorphism

e HH, of dg categories preserves short exact sequences in Hmo.



Reduction to Characteristic p > 0 for Schemes

ANTHONY BLANC

We have the Hodge to De Rham spectral sequence for K a field*?, and 49 We will, in general use K for a field
X a K-scheme of characteristic 0, and k for a field of
’ positive characteristic.

EPY = HY(X, Q?{\K) = HPT(X|K) (%)

Theorem (1). If char K = 0 and X is smooth and proper over K,
then (x) degenerates at F.

Theorem (2). Let chark = p > 0, and X is smooth and proper

over k. If dim(X) < p and X admits a lift to Wo (k)% then (x) 50 The only facts about Wa (k) that
will be needed for this talk are that
Wa(k) = k? as a k-vector space, that
the addition and multiplication are
given by

degenerates at F1.

The main body of this talk will be devoted to proving that:
IClaim. Theorem 1 implies Theorem 2. (a, b)1+ (@', ¥) = (a+ab+ b+
- (ap71+ (a")P~1 — (a+a')p))
. p
Before that, we will need (@,5)(a', ) = (ad’, (a')Pb + Va?)

Theorem (Grothendieck). Let X be a smooth proper K-scheme. that there is a SES

There exists a finitely generated ring A and a smooth proper A- I — Wa(k) =k
scheme Y such that Y @4 K ~ X. with T2 = 0, and that Wa(F,) ~

Z/(p?).
Proof. (%) The first step we need is that there exists some scheme

Y — Spec(A) where A has finite type.
Since X — Spec(K) has finite type, we have a decomposition into

affines .
X = U Spec(4;)
i:lA/_/
U;
where

AiZK[Xl,...7Xni]/Cli

and a; = (pli, . ,pf;i). Similarly, letting U; N U; = Spec A;j, we have

AU = K[Xl, LI 7X7lij]/aij
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and a;; = (pzlj, e ,pi,fj)
We can then set

A = Zcoeff. of p} & pif] — K
so that there exist ideals

a; gA[Xl,,Xm] Cl;mK:Cli
Clij CAXy,..., X0, ] agj NK = a;

1)

If we then set
Al = A[Xy,..., X,,]/d

3

and let
Y = colim Spec A
7

we almost definitionally have

Y — Spec(A)
YRsaK=X

We can then write

K = colim A;
i>0

where the A; are finitely generated over Z. As a result, there exists
10 > 0 with

X— Y,

l J{ﬁn. type

Spec(K) — Spec(4;,)

(%) The next claim, which we state without proof, is that there

exists i1 > 99 and a proper A;, -scheme Y;, such that Y;, ®a,, K ~ X51,

Using the Chow lemma, we can then reduce to the projective case.
() Finally, we claim that there exists i > 4 and a smooth and
proper A;,-scheme Y;, such that Y;, ®4,, K ~ X52,

I}—)CD,Q

X Yi, Y;

| i i

Spec(K) —— Spec(A;,) — Spec(4;,)

1

Smoothness follows from

e fis smooth at € X if and only if X is geometrically regular at x
(ie X @k X is regular at T).

e f is smooth at z € X if and only if there exists i2 > i3 such that f;,
is smooth at x;, € Y;,. This is true because X being geometrically
regular at x is equivalent to Y;, being geometrically regular at z;,.

51 For a complete treatment, see [12]

52 Once again, see [12] for a full
treatment.



e By quasi-compactness of X, we then get that the result.

O

Proposition. If S is a finite type integral scheme over SpecZ, then
the smooth locus of S is a non-empty open subset of S.

We now consider, for X — Spec K as in Theorem 1,

X—Y

N

Spec K ——= Spec A = S

Let d > the dimensions of the fibers of Y°3. Set

N:Hp

p<d prime
S’ = Spec A 1
N

S — S

There exists s’ € S’ such that char (k(s’)) > d, so we can suppose

that S has a closed point s € S such that char (k(s)) =p > d

54

We can then define coherent®* sheaves over S:

R6nf.Qy g = H"

If we let n = (0) € S, we see that #,7 and #,' are finite dimensional

K-vector spaces. And K is given by the (filtered) colimit

K =TFrac(A) = co%n Ala™

Which implies that there exists a # 0 such that #*|p ) and #H"|p(q)
are locally free sheaves over D(a).
Considering then the diagram

Y, Y X

| N

Spec k(s) — Spec Wa(k(s)) ——= S <—— Spec K

We have that the map * exists by the smoothness of s. Since Theorem

2 applies to Y

W= > hY

i+j=n

and the claim from the beginning is proved.

33

53 This is possible by quasi-
compactness.

54 By the Grothendieck finiteness
theorem for proper morphisms.
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Dg Algebra Analogue

Theorem (1 Toén). Let k be a commutative ring. Let A be a smooth
proper k-dg-algebra. Then there exists a finitely generate ring ko and
a smooth proper ko-dg-algebra Ay such that Ay ®£0 k ~ A (quasi-
isomorphic).

Fix some notation

dgalg,  cat. of dg algebras
Ho(dgalg,)  homotopy cat.
Ho(dgalg;”)  full subcat. of smooth+proper

Theorem (2). let {k;}icr be a filtration diagram of commutative
rings with

k = colim k;
iel
Then the functor

colimi€1(7®£’ki)

coéilm Ho(dgalg;"”) Ho(dgalg;")

is an equivalence.

As before, we have that

IClaim. Theorem 2 implies Theorem 1



The Deligne-1llusie Decomposition

TOBIAS DYCKERHOFF

There are two basic constructions that we will need to prove the de-
generation of the Hodge-to-De Rham Spectral Sequence in positive

characteristic:

1) THE FROBENIUS ENDOMORPHISM

e Let S be a scheme of characteristic p > 0°® We then get the
absolute Frobenius Fg : S — S given by

— The identity map on underlying topological spaces.
— Fs(f) = fP where f € Og.

Assume S = Spec(k) where k is a field of characteristic p > 0.
Let
XSS

be a k-linear scheme. Then we can form the following diagram

We define X®) to be the pullback, and then the morphism
F:=Fx/s
called the relative Frobenius, exists by universal property®S.
Example. Let X = Speck[t]/(f), where f = a,,t™. Then

X® = Speck @y, k[t]/(f)

55 That is, such that
p-1=0¢€ Og

over any open.

56 Notice that F' is a homeomorphism
of the underlying topological spaces,
but it is not generally an isomor-
phism of schemes.
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where the morphism k& — k in the definition of the tensor product is

Fs. So we see that
X @) == Speck[t] /()

where
f(p) _ Z ab ™

Furthermore, for a € k
o*(at) =1 ®at = a’t

and
F*(a®t) = at?

2) THE DE RHAM COMPLEX

e Let S = Speck, for k a field. X = S a scheme over k.

e Then we have
Qbulletx/s = Ox i Qﬁ(/s i} Q?X/S I
the De Rham Complex of X over S.

Example. 1) Take k = C, and X = A{.. Then we can write down the
de Rham complex

. d
%/s = Clt] = C[t]dt
t" s "t
So that, computing the homology, we see that

#H=(1)=C
' =

which is exactly the same as
H*(A(C),C)
2) Take k = C, X = A{ \ {0}. Then the de Rham complex is

%5 = Clt,t71 % Clt, ¢~ Yt

t" s nt" Tt
so the homology is

#HO=(1)=C
(7€1=<dt>gﬁc
t

H*(A'(C)\ {0},C)

Which, as before, is

the homology of the analytic space®”

57 There is, in fact, a more general
result:

Theorem (Grothendieck). For X
smooth over C, there is an algebra
isomorphism

H* (X, Q% 5) = H*(X(C),C)



3) Now let k =TF,, and X = A[}fs. Then the complex is

QB(/S =T, [t] — Fylt]dt

" s nt"ldt
So

HO = (1,42, ... t™P ) 2 T[]
HE =P dt, .. P e, 2T [Pt
Returning to the more general case, let S = Speck, and char(k) =
p > 0. Let X =% S be a scheme over k. Then for a ® f € Oy, we

have
dF*(a® f) =d(af?) =0

This implies that®?

F*QS(/S is an Ox(p) linear complex.

further, we have

Theorem (Cartier). Assume that X is smooth over k. Then there

exist isomorphisms of O -modules

These isomorphisms are uniquely determined by the properties®©
1L ellef)=F(1ef)=fec#(F.O%s)

2. CT (1 @df) = frldf € #(F.Q%,g)"

3. CTHwAT)=C"Hw)ACTI(r)

GoAL: Improve Cartier’s result (under additional assumptions) via a
more systematic interpretation of %f).

QUESTION: How to divide by p in characteristic p > 07

TRICK: Let M be a Z/(p)-module, and assume that there exists a lift
M of M to Z/(p?), that is

1. M/pM = M
2. M is flat over Z/(p?), so there exists a short exact sequence
0—pM — M2 pM -0

In this situation, we can divide by p

37

58 Where we assume q = p", so that
F4 has characteristic p

59 This is a direct generalization of
what we can observe in examples 3),
where

@)((P) = Fq[t?]

60 Imposed locally over some open
affine in X.

61 Where the term
frtaf

can be thought of heuristically as an
analogue of

dfp

p
We will make this notion more precise
later on.



38

p]\;[;M/pM

1%

M

pl
Slightly more generally, if M is a module over k of character p > 0,
there exists a ring Wa(k)%? which is a flat Z/(p?)-module equipped 62 The so-called Witt vectors.

with an isomorphism
Wa(k)/pW2(k) = k

replacing Z/(p®) by Wa(k) in the above construction gives a k-linear
version of p~!.

Theorem (Deligne-Tllusie). 63 Let k be perfect of character p > 0 and 63 Called the Decomposition theorem.
let X be a smooth scheme over k. Assume that X admits a smooth

lift X over Wy(k). Then there exists an isomorphism

bx @me/s E>T<pF QX/S

i<p

in D (X P64 inducing C~' on cohomology sheaves.5

64 The derived category of complexes
of Oy (p)-modules.

65 Note: Cartier uses fewer assump-
tions and gets a stronger result.
However, this is a more refined version
X 4> X of the theorem, which allows us to

\ / access what’s really going on.

66 Here we use the notations

x (@ S = Speck

\ / § = Spec Wa(k)
S

STEP 0: We can explicitly write down the map

Proof. Assume first that there exists a lift of the relative Frobenius

to
X F

9% 1 Oxw — HO(F.Q%g) = FQ%/s
1@ f—F(1®f)

STEP 1: Note that the map
is the zero map. This means that the image of

nLaR 1
r 'QX<p>/s_>FQX

/S

lies in pF, QL % Then we use the diagram

/8



) .
Q%05 pf*QX/é
=
Y-
xXw/s T T T » By s

Where the diagonal map exists since F* factors, and the bottom map
exists by inverting the multiplication by p57.
In local coordinates

F*(1® f) = f* + pu(f)
Fr(1®df) = pfr=df + du(f)

so that 1
Ok = JF L@ df) = f77df + du(f)
is a closed 1-form. Hence,

¢% * Ux ysl—1 = FQy/g

yields the morphism from Cartier’s theorem.

STEP 2: We can explicitly define

Qsl)? : Qé((p)/s — F*QB(/S
WA Aw; ¢}((w1)/\~-~/\¢}((wi)
PROBLEM: F typically doesn’t exist globally, but only locally.
To solve this, we replace Step 1 by choosing an open cover U =
{U C X} on which F admits a lift

FLOQU Q) o Fus
a
Q}X(p)/s[_l]

Where a is produced from local data coming from lifts of F' in ad-
dition to carefully chosen homotopies on overlaps. b is known as the
Cech replacement and is a quasi-isomorphism. Hence, if we pass to the
derived category @D (X ®)), we get a morphism

Qx/sl—1 = PO

Unfortunately Step 2 was element theoretic, and so also does not
generalize. Instead, we take the diagram

39

67 This is where all the additional
assumptions come into play. In partic-
ular, the requirement of smoothness.
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Q F.Q5

i
X®) /8 *ix/8

where a is the antisymmetrization58

1
alwy A= Awg) = a Z sgN(0) Wy (1) ® -+ @ We(s)

’ g€eS;

Tracing through this diagram then proves the theorem.

Sequence
a,b °
E" = H"(X, Q%/s) = H Y ( X/s)

degenerates on page 1.

Proof. The proof is based on dimension counting.

Hm(Xa Q;(/S) = Hm(X(p)v F*QS(/S)

e VA X
>0 ~—
J*Qfx/s

where the second line follows from Deligne-Illusie.
We can then apply base change to get

H™(X, Q% /s) = P FsH™ (X, Q)
i>0

but, since F§ is a field automorphism

dimy FEH™ (X, wh/s) = dimy, H™ (X, W /g)

so that degeneration happens on page one.

The Conjugate Spectral Sequence.

Recall that there are two spectral sequences for hypercohomology.

Given a resolution:

Corollary. Suppose X is smooth and proper over k, with a lift X
to Wo(k) and dim X < p. Then the Hodge-to-de Rham Spectral

%8 Note that the use of % implicitly
makes the assumption that i < p.



ﬂO,Q ﬂl,Q ./72’2

L]

ﬂO,l ﬂl,l ﬂ271

L]

ﬂ0,0 ﬂl,() ﬂQ,O

/s Ox ——— Qx)s — /s

One can take either the vertical or the horizontal filtration, leading
to

I) Horizontal filtration gives us Hodge-to-de Rham

EPPHO (X, Q% 5) = H' P (Qy )

IT) Vertical filtration gives us the Conjugate spectral sequence

Ey’ = H(X, 7" (ys)) = HF (2% /5)

Using Cartier’s result, we have

H(X, 3"(Q% ) = H(XP), 7" (F., Q% /5))
>~ HY(X®, 0% 5

= FSH(X, 0% s)

and, under suitable finiteness conditions, the degeneration of I) is
equivalent to the degeneration of II).

STRATEGY for approaching non-commutative geometry. (Kontsevich,
Kaledin)

e Find a non-commutative analogue of the conjugate spectral se-
quence.

e Show it degenerates.

e Use this to conclude that the Hodge to de Rham spectral sequence

degenerates for reasons of dimension.

41



Non-commutative Cartier Isomorphism, Part I

TOBIAS DYCKERHOFF

As we saw previously, in the commutative case, if X is a scheme that
is smooth over S = Spec k where char(k) = p > 0, k perfect, then we
have the relative frobenius

and the Cartier isomorphism
M B HF.D )
is an Oxp)-linear isomorphism determined by
L el (f)y=F(f)=f"
2. C7N(df) = W) = pr-tgy
3. CTHwAT)=CHw)ACT(r)

SPECIAL PHENOMENON IN CHARACTERISTIC p > 0(x): Every
function of the germ fP? is constant (df? = 0)

GOAL: Let A be an ossociative k-algebra, A smooth over k, and let%?
AP = A R k
We then hope that, for |u] = —2 there is an isomorphism

HH.(AP)((u)) = HP.(A)
As we will see, there is an analogous special phenomenon to (x) in
the non-commutative case. That is, (*)yop:
st st

Z 2P

89 Where the connecting morphism
k — k is given by the Frobenius F'.



is ‘constant modulo p’ or ‘factors over the point modulo p’ which can

be expressed in a heuristic diagram as

st— gt

N4

Of course, this doesn’t make much sense until we explain what is
meant by ‘modulo p’. What we mean here is precisely that the dia-

gram
[SH————p [S'=p
H*(Sl, k) ———— St
\ *
commutes’V.

RECALL: A an associative unital algebra allows us to write down the

bar construction™

clA)y=A a2 Y ges i

A®A°P free resolution

where the differential ¥’ is given by”?

n—1
Viag® - @ ay,) = Z(—l)ia0®"'®aiai+l ® @ ap
=0

If we tensor the free resolution from the bar construction (over
A® A°P) by A, we get a new complex, the cyclic bar construction

AL A2 p®3 0
where the differential is given by’3
blag® - ®ap) =0 (a0 @+ ®ay) + (—=1)"ana0 @+ @ an_1
In particular, we have the Hochschild Homology
HH,(A) := H,(Cy(A)) = Tor2®4” (A, A)
Alan Connes Mad the fundamental observation that
tlag®---®a,) = (-1)"a, ®ag® - @ an_1

defines an action of Z/nZ on the n-cells of the cyclic bar construction
such that
Cu(4) = Cu(4)
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70 This is not just an analogy. We will
make explicit use of precisely this fact
in the proof of a key lemma.

71 Throughout this talk, we will
make use of the homological grading
convention.

72 We can also view this differential
pictorially as

ap ai an
—e—o—9o 0o o o —

The differential is just the sum over
‘contracting intervals’.

73 Again, there is a pictorial repre-
sentation. As before, the differential
is given by a sum over contracted
intervals, but now on the circle:

ay

ao

an
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is a map of complexes, ie
(1=t =b(1—1t)
Therefore, the k-vector spaces
Cﬁ\(A) = (Cn(A))Z/(nH)

organize into a new complex called the Connes Complez.

Theorem (Connes). Let A be commutative and smooth over k,
where k has characteristic 074, then (for X = Spec A)

HCy = QA0 & Hyp* (o) & Hig'(X) & -

Problem: This does not hold in characteristic p. Reason: the func-
tor (—)z/pz is not exact in characteristic p, rather, we have lots of
group homology™®.

To try and address this problem, we can consider the full’® double
complex

b v b
A®3 1t A®3 N A®3 -t
b v b
ne 1-—t ne N N 1-—t¢
b v
1-—t 1—1¢
A AN 4
Ce(A) Ce(A4)

We call this the cyclic bicomplex CC, o(A), and write
CCe(A) =tot CC, o(A)
We then have the cyclic homology

HCW(A) = H(CCu(A))

In characteristic 0, HC, = HC?. Connes theorem holds verbatim in

characteristic P > 0 if we replace HC)} by HC,™".

Observation. The fact that we have lots of group homology for Z/pZ
in characteristic p tells us that we have lots of deRham cohomology in

characteristic p.

74 This is significantly simpler than
the B-operator/mixed complex pic-
ture precisely because it only works in
characteristic 0.

7 For example
H;(Z/pZ,Fp) = Fp

for every i > 0.

76 In defining C}) (A), we were, in
effect, merely considering the first two
rows.

77 See the talks on the HKR theorem
for more details.



Our strategy to move away from complexes and reach a broader
definition and construction of the Cartier isomorphism will be to use
simplicial methods:

(1) The bar complex arises from a simplicial vector space

AR AP = Vecty,

[n] — A®(+1)

whose simplicial structure is given by

0i(ap® - ®ap) =ag® - ® ;ai4+1 @ R an
O'l(ao(g)@an):a()@@ 1 ®®an

3

(2) The cyclic symmetries of Connes can be captured in a lift of A%
to Connes/Tsygan’s cyclic category A

A
N
A°P Vecty,
AA

The structure of the cyclic category is relatively straightforward.
e Like A, Lambda has one object (n) for each n > 0.

e The morphism sets Homy ({(m), (n)) are the sets of maps

1 1

m n

which are continuous, monotone, degree 1, and preserve the sets of
marked points. Two such maps are considered equivalent if there is
a homotopy through such maps between them.

So, can’t we not just consider cyclic order preserving maps?

Example.
[Homy ({m), (0))] = m + 1

Considering the picture
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m

we see that which segment we choose to collapse determines which
morphism we are considering. In particular, A has no final object.

Fact. Every morphism in the cyclic category has a unique factoriza-

tion o o ¢ where

d€Z/(m+ 1) = Autp((m))

and o € A.

The subcategory of A consisting of those morphisms preserving 0
can be identified with A°P, giving us an inclusion

AP — A

Definition. For every p > 0, there is a variant of A called the p-
cyclic category A,. It has morphisms

(¢, ) € Homy, ((m), (n))

where ¢ € Homy ((m), (n)) and ¢ is a lift to the p-fold cover

Pictorially, we can represent such a morphism as

\@1

2P 2P
1 1
¢
0 —— 0
m n

From this definition, then, we can think of A, as something of a
hybrid between A and Z/p(m + 1).



FUNDAMENTAL: There are two canonical functors

n) ——— 77 1{0,1,...,7}) = {p(n+1) -1

(n) A, 5 A
forget q
(n) A
KEY FacT:

|A| ~ BS* ~ BBZ ~ CP*

and the same is true for A,. Furthermore, the diagram above becomes,

after applying | — |
BS' —— BS"
B(z — z")J
BS?

Proof. Apply Quillen’s Theorem B to the functor
AP — A
Using the fiber diagram

Sl SN |A0p‘

|

¥ —— A

we then see the result.
To see the relation to cyclic homology, consider the adjunction
co/l\im : Fun(A, Vecty) <> Vecty, : const
then the cyclic homology is given by®
CCy(A) ~ LcolAim(AA) € D (Vecty)

We can however, obtain a refined understanding of this colimit,
using the machinery of Kan extensions.
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78 As an aside: if we do the same
thing for the simplex category

cogm : Fun(A°P  Vecty ) <> Vecty, : const

We get that
L cokm(X.)

is the complex associated with X via

d=" (-1)%d;
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A prototypical example of this sort of use of Kan extensions is the
case of Vector spaces equipped with a monoid action:

Vector spaces with
L coli Vector
an action of a com H,.(BG;E)
. Spaces
monoid M.
BM
Group| com- Lo L colim
pletio
BG Vector Spaces with

an action of G

Top. Interp:
Local system
E on BG

In the case, for example M = N, we then have G = Z and BG = S*.

In our case, we want an infinity-categorical variant on this, so we
take:

Fun™ (A, Chy) L colim Chy H.(BS', E)

771
Fun®(|A], Chy) E

where we interpret Fun®(|A|, Chy) as “infinity-local systems of com-

plexes” on |A|. This computation gives us

H,(BS') = k[u™]



Non-commutative Cartier Isomorphism, Part 11

TOBIAS DYCKERHOFF

We can refine our understanding of L colimy (—) via Kan extensions:

colimp (—) := He(A, —)

Fun(N(A), Na (Ch(k))) Nay(Ch(k))
BS?
™ —N—
H.(‘N(A)L _)

Fun(Sing [N (A)|, Nag(Ch(k)))

Definition. An co-category is a simplicial set C € Seta such that
every inner horn A? — C (0 < i < n) has a filler A™ — C.

Examples.

(1) If C is a category, then N(C) is an oo-category (Every inner horn
has a unique filler, in fact).

(2) If X is a topological space, then Sing X is an co-category (every
horn has a filler, that is, Sing X is an co-groupoid).

(3) For C € Catrop, N1op(C) is an infinity category.

(4) For C € Catgy(k) a k-linear dg-category, Ny, is an infinity cate-
gory.

(5) Given I € Seta and C and oo-category, we can define the functor
category to be the internal Hom

Fun(I,C) := Homg,, (I,C)
which is, itself, an co-category.

All of these constructions can be understood in terms of (Quillen)

adjunctions, for example:
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(2) We have an adjunction
| — | : Seta > Top : Sing
For any simplicial set X, the map
X — Sing | X|
is given by the counit of the adjunction, eg

7 N(A) — Sing [N (A)]

(4) We have an adjunction

dg : Seta <> Catgg(k) : Ngg
2] — dg[2]

where, for a diagram

/

h

The dg category has |f| = |g| = |h| = 0 are cycles, and has |H| = 1

with
dH = fog—nh
Definition. If X is a topological space, then” 0 Often, in the notation that follows,
we will drop the k& when it is clear
Loc(X, k) := Fun(Sing X, ng(Ch(k))) what field we are working over.
is called the oco-category of co-local systems on X with values in
Ch(k).
Via (4), if X is a connected topological space, we have, in some
senseso, a quasi-isomorphism 80 To make this rigorous, we need
to be quite careful. We are working
Fun Sine X. N, (Ch(k ~ Fun dg Sine X. Ch(k with Quillen adjunctions, so in some
e ( &4 dg( ( ))) dg ( g &4 ( )) sense the proper functor categories
to consider are those defined via
We can also compute that bimodules.

dg(Sing(X)) ~ C.(Q X, k)
the differential graded algebra of singular chains.

Examples.



51

(1) Let X = BG where G is a discrete group. Then
Ci(Q, X, k) ~ kG

so that
IO(‘(X, k) >~ @(Modkg)

(2) Let X = BS!. Then
C.(Q:BS*, k) ~ k[e]
where |¢] = 1 and €2 = 0. Then we have
Loc(BS', k) ~ D (Mody)
To relate this to cyclic homology, consider the diagram

J

N(A°P)
-

N(A)

Sing [N (A)| —— Sing [N (A)]
7

4 i
pt BS!t
This is a pullback diagram of infinity categoriesgl. 81 As argued in the previous lecture,

this result follows by first noting that
Quillen’s Theorem B implies that 7 is
a fibration.

In this context we have a notion of base change: for
E € Fun(N(A), Ngy(Ch(k)))

we have that
*m~nJ'E

Therefore, we have an object
mA? € Loc(BSY)

with
imAN >y T AN ~ Oy (A)
—
AL
To illustrate how this perspective is natural, we take the example
of a mixed complex. Let V be a vector space over k with an action of
(t) = Z/pZ, then we get a complex
=
1 0
This complex has a k[e]-structure (a mixed complex structure) given
by the diagram
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where

N=>"¢

=0

The topological explanation is that, taking
B(Z/pZ) < BS!
We can consider
V € Loc(BZ/pZ) %5 Loc(BS') T Loc(pt)
Exercise. Check that ¢,V yields the constructed k[e]-module.

Now that we have dealt with the background, we can return to the
non-commutative Cartier isomorphism

PROOF STRATEGY
We can consider the diagram

n) ——— 7 1({0,1,...,7}) = {p(n+1) — 1)

(n) A, - A
forget q
(n) A

from last lecture. Under geometric realization, as we remarked, it
leads to

BS' —=— BS!
B(szp)J
BS!



Let A be an associative k-algebra

Step @O Show that, for the map s aboved?
H,(A,,S*AM) ~ CC.(A)
Step @ In chark = p > 0, show that we have a quasi-isomorphism
H.(Ap,q*AY) = (C.lu™"],b)
Step @ Construct a map
g (APHA 5 r AN
which induces an equivalence

lim H. (A, q"(AP)N) 5 lim H, (A, 5" A%)

CL(A)((w) CP.(A)=(C.(A) b+uB)

The proof of Step@) is based on the folowing;:
Let E € Loc(BS*, k), chark = p > 0, and consider the diagram ()

BS?

BS?!

which commutes “modulo p” in the sense of the previous talk.
We then claim that
Q> jror

Why is this true? We can check the adjoint statement
q* ~ 7,* Oj*

Considering
Loc(BSY) & Loc(BSY)

If we restrict along this map, we get the commutative diagram

C) x (%, k)

C.(S', k) C.(S', k)
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82 Where, for example,
5% AN (n)) = A®P(D

This step is actually relatively easy to
show. We consider the diagram

Ao 2L Aop

|

Ap ——A

where sd is given by
D
———
[n] = [n] % -- - x [n]
Then apply the usual tricks to show

that we have a pullback square, and
thus a weak equivalence.
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which proves the claim.

3

Then we can make the computation8 83 Where the quasi-isomorphism

marked with a K follows from the

1 % £ 1 * functorality of the Kan extension,
H.(BS',q" E) = H(BS", q"E) that marked with () follows from the
P H (BSI E®q k) diagram (*), and those marked with a
= My 3 !

P follow from the projection formula.
mk

Y H.(BS",E @ jiH.(BS,, k)

L H.(BS' ji(j°E © H.(BS',K))
~ j*E ® H,(BS', k)
~ C,(A) @ k[u™]

To show Step 3), we need to find a non-commutative analogue of

the Frobenius.

F: AP 5 g%p
“a,}_>®’.’®a,77
N—_——

p

This doesn’t make sense, so instead we consider the necessary equivari-
ance

Z/p Q AP — A®P ) Z/p (+)
and the morphism on Tate homology

o

1, (2/p2, AP 5 H. (2/p2, A7) (34)

We therefore want a morphism (%) inducing («x). If we assume that
such a morphism exists, the proof follows.

PROBLEM: Such a morphism basically never exists.



Non-commutative Cartier Isomorphism, Part 111

THOMAS POGUNTKE

Let k be a perfect field of characteristic p, and A a smooth k-algebra.
We want to construct a (non-commutative inverse Cartier) isomor-
phism

HH.(A®)((u)) — HP.(A)

Last time, we saw that we expect this to be induced by a map of
p-cyclic objects®4
g (APHA 5 gx AN

In a (very) special case, the desired map of p-cyclic objects will be
(=)« applied to some ‘NC-frobenius’ map

APy A®p

otimesp>

‘aa

which is Z/p-equivariant, and induces an isomorphism on Tate homol-

ogy.
Lemma. For any vector space W, the map
W(p) = ﬁ'(Z/p7 W(p)) - H’(Z/p7 W®p)

given by
a s a®?

is an isomorphism. In particular, it is additive.

Proof. Cyclic groups have cyclic Tate homology with differentials
di M — M
where M is a Z/p-module, given by

1—0 7 odd

d; =
l+o+---+0P"1 jeven

Now, choose a basis I of W = kI. Then®

84 Where, as before, ¢ : Ap — A
forgets the lift to the p-fold cover of
the circle, and s : A, — A sends
(n) = 7~ 1{n).

85 This equality is Z/p-equivariant.
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W = kA @ k(I*P\ A)
Where Z/p acts on A trivially and Z/p acts on I*P \ A freely.
Therefore, we can decompose the homology into36
H,(Z/p, W®P) = Hy(Z[p,kA) & Hy(Z[p, k(P \ A))

~W =0

Now assume A is commutative. Spec(A) is a commutative group
scheme (a cocommutative Hopf algebra)®”. Then

Vi AS (ASPYEIP — (A®P)EIP /d, (A®P) = AP)

is called the Verschiebung which is, in fact, an algebra homomor-
phism®8.
Then

A (p)LA

L
2\
=5

V.4
PN
A

ie F oV = poidy. That is, V is an isomorphism if and only if

®p

Spec(A) C GY is a subgroup of the multiplicative group, which it-

self holds if and only if A = kG over a separable extension (where G is

commutative, although the ‘NC-frobenius’ exists for any G)8.

Now let k = ), and A perfect. Then there exists a p-adically
complete ring W(A) together with a residue isomorphism

Wi(a) —» W(A)/pW(A) = A
Moreover, the Frobenius on A lifts to F' : W(A) — W (A), and induces
F W (A) /5" W(A) =5 Wa(A) = Wy (A)
Additionally, there is another map
V:W,_1(A) - W(A)

for any n such that F'V = poidy ) =VF.
Finally, there exists a Teichmiiller map (which is multiplicative)

A— W(A)
W(A) is the collection of Witt vectors, reminiscent of
Ly =W (Fp)

where, in Z,[X]%°

7" - X = [[ (x - a))

a€lF,

86 This is a morphism of vector
spaces. It is not at all clear that it
lifts to an additive algebra morphism
AP) 5 A®P for an algebra A.

87 je there exists an algebra homomor-
phism

c

A A®A

N

(A®2)Z/2

88 The map
(A®P)Sp /d; (A®P) = A(P)

is clearly an algebra isomorphism,
with inverse

a > a®P

so that
P
(0 +8)% =37 () a® b=
r=0

in symmetric tensors.
89 In this case,
V: kG — kEGP
g—g®1
S0
kG®P) — k [G*P]
g (g,---,9)
N———

90 Hensel’s Lemma.



Construction

Consider A = (A,-) (A commutative) as a multiplicative monoid. The
Teichmiiller map should be

~ (ansfal)

There is a Frobenius lift
[a] — [a”]

and augmentation sequence

0—-I1I—-7ZA—A—=0

where
I = span([a +b] — [a] — [b])

so that
W(a) =lUmZA/I"
-

is the I-adic completion. It remains to show p-adic completeness.
If F(I) = I, the Frobenius descends, and Teichmiiller yields

A—ZA—-W(A)
In this case, F is an isomorphism, so we can just set V = pF—1.91

Proof Sketch of p-adic completeness. There is a short exact sequence??
0—p /1" - zZA/ " B 1)1 =0
The transition maps

P I/ p ()

are trivial, ie if p -z € I" then x € 1"~ 1.
For this case, we can define a ‘derivation’

§:ZA—TA
2 p” (Fx) —a?)

Then )
p—
Sa+y) Y o) +o(y) - p! <f> a"yP
r=1
and??

(zy) = 0(x) F(y) + "6 (y)
This implies that

p—1
Say - ap) 2 > F(x41) - F(xn)
r=1
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91In fact, Wp(A) X ZA/I™

92 This is because x € I implies that
F(z) = 2P mod pZA
and hence
T = F_"(m)p" mod pZA
for any n. Therefore

I=1"+pZA

93 Note also that

6([a]) =0
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which, in turn, implies
5([") g In—l

by ().
Thus, for pz € I™ as above, §(pz) € I~ and

d(px) def F(z) — pP~ 2P = F(z) mod I"

and hence, F(z) € I"~! as well. Since F is an automorphism of I, we
get
el

Therefore, in fact,
lim (p~1"/1") =0
and so p is injective on W(A), with
p-W(A) = 1131[/[” C W(a)
with respect to which W(A) is complete. O

Remark. If A is commutative,

Wi (A) 2 g (THH(A)ZWH)

Witt’s Original Construction

Example. Consider Wy(A4) = A2 (with ring structure to be defined)
given by
x = (Z,0(x))

where T denotes the image of x under
Wi (A) —» A

Namely, on the RHS,

p—1
1 _
(zo,z1) + (Yo, 11) = (330 + Yo, 1+ Y1 — Z;} (f) ToYo T)

r=1
and
(20, 21)(Y0,y1) = (Toyo, Yo@1 + Y176 — pT1Y1)
So where does this come from? We can think of W(a) = [[ A4 as

power series in p, and then define addition.

Question. If

Z[an]p" + Z[bn]p" = Z[cn}p"

n>0 n>0 n>0

what is [¢,]?

INCOMPLETE



Non-commutative Cartier Isomorphism, Part VI
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Recall. We are trying to construct
C': HH,(A)((v)) = HP,(A)
for A smooth over k, a field a characteristic p > 0
The perspective on C~! from p-adic Hodge theory:

Definition. Let k be perfect of characteristic p > 0. A filtered
Dierdonné module over W (k) consists of

e A W(k)-module M
e A decreasing filtration
{F'M|ieZ}
with
FM=0, |JFM=M
e Frobenius-semilinear maps
¢i: F'M — M
satisfying

(1) ilpirine =p- ditr
(2) The sequence

0@ FM B @M= M0

is exact.

Note. If M is annihilated by p, then condition (2) says

greM Z—?i M

R

Example. Let X be a smooth variety over W (k) with dim(X) < p.
Then each H™ (% /W(k)) carries a filtered Dierdonné module. Reduc-
tion modulo p yields the isomorphism

grpHp(Xk) = Hip(Xk)

showing the degeneration of the Hodge-to-de Rham Spectral se-

quenceg4. 94 Construction due to Faltings.
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