Universität Hamburg Fachbereich Mathematik Dr. Felix Schwenninger felix.schwenninger[ät]uni-hamburg.de

Fourier Analysis – Exercise sheet 7 (to be discussed on July 9)

Important information:

This last exercise class will be held in a slightly different format than what has been the case so far: During the exercise class the participants should work (alone or in groups) on some given exercises and I will assist with problems and difficulties. Some exercises on the topics that are currently discussed in the lecture are already included below. Other exercises — dealing with topics that were already covered by previous exercise sheets — will be provided on Monday.

Ex 7.1: Discuss whether the following objects are tempered distributions:

(a) the functionals

$$L_f: \phi \mapsto \int_{\mathbb{R}} \phi(s) f(s) \, ds$$

for the choices of functions f(x) = c for all $x \in \mathbb{R}$ or $f(x) = e^{x^2}$.

- (b) L_f for $f \in L^p(\mathbb{R}), p \in [1, \infty]$.
- (c) L_f for $f \in L^1_{loc}(\mathbb{R})$
- (d) the functional δ_t given by $\phi \mapsto \phi(t)$ for fixed $t \in \mathbb{R}$
- (e) L_{μ} for any finite Borel measure μ , where L_{μ} is defined by

$$L_{\mu}\phi = \int_{\mathbb{R}} \phi(s) \, d\mu(s)$$

(f) $L_{\log|\cdot|}$

(g) the functional given by

$$\phi \mapsto \lim_{\varepsilon \to 0^+} \int_{|x| \ge \varepsilon} \frac{\phi(s)}{s} \, ds$$

Ex 7.2: (Derivative and Fourier transform of tempered distribution) Let $n \in \mathbb{N}$. We define the n-th derivative $\partial^n u \in S'(\mathbb{R})$ of a tempered distribution $u \in S'(\mathbb{R})$ by

$$\langle \partial^n u, \phi \rangle = \langle u, (-1)^n \phi \rangle$$

(recall that by definition $\langle u, \phi \rangle = u(\phi)$). Also, define the Fourier transform $\mathcal{F}u$ by

$$\langle \mathcal{F}u, \phi \rangle = \langle u, \mathcal{F}\phi \rangle$$

and similarly the inverse Fourier transform by

$$\langle \mathcal{F}^{\star} u, \phi \rangle = \langle u, \mathcal{F}^{\star} \phi \rangle$$

Show the following

- (a) This definition of the Fourier transform is consistent with the definition we have seen for functions u in L^p for p = 1 and p = 2 (note what we have shown in Ex. 7.1).
- (b) Compute the Fourier transform of $\partial \delta_0$ where δ_0 is defined as in Ex 7.2
- (c) Compute the derivative of the function step function $f(s) = \begin{cases} 1 & |s| \le 1 \\ 0 & |s| > 1 \end{cases}$
- (d) Compute the Fourier transform of the distributions defined by the functions sin and cos.