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Abstract. We prove a new sufficient pair degree condition for tight Hamiltonian cycles
in 3-uniform hypergraphs that (asymptotically) improves the best known pair degree
condition due to Rödl, Ruciński, and Szemerédi. For graphs, Chvátal characterised all
those sequences of integers for which every pointwise larger (or equal) degree sequence
guarantees the existence of a Hamiltonian cycle. A step towards Chvátal’s theorem was
taken by Pósa, who improved on Dirac’s tight minimum degree condition for Hamiltonian
cycles by showing that a certain weaker condition on the degree sequence of a graph
already yields a Hamiltonian cycle.

In this work, we take a similar step towards a full characterisation of all pair degree
matrices that ensure the existence of tight Hamiltonian cycles in 3-uniform hypergraphs
by proving a 3-uniform analogue of Pósa’s result. In particular, our result strengthens the
asymptotic version of the result by Rödl, Ruciński, and Szemerédi.

§1. Introduction

The search for conditions ensuring the existence of Hamiltonian cycles in graphs has
been one of the main themes in graph theory. For graphs, several classic results exist,
starting with the necessary condition by Dirac [6] stating that every graph G “ pV,Eq on
at least 3 vertices and with minimum degree δpGq ě |V |{2 contains a Hamiltonian cycle.
Pósa [15] improved this result to a condition on the degree sequence:

Theorem 1.1. Let G “ prns, Eq be a graph on n ě 3 vertices with degree sequence
dp1q ď ¨ ¨ ¨ ď dpnq. If dpiq ě i` 1 for all i ă pn´ 1q{2 and if furthermore d prn{2sq ě rn{2s

when n is odd, then G contains a Hamiltonian cycle.

Finally, Chvátal [4] achieved an even stronger result: A graph G “ prns, Eq on n ě 3
vertices with degree sequence dp1q ď ¨ ¨ ¨ ď dpnq contains a Hamiltonian cycle if for all i ă n

2

we have: dpiq ď iñ dpn´iq ě n´i. On the other hand, for any sequence a1 ď ¨ ¨ ¨ ď an ă n

not satisfying this condition there exists a graph on vertex set rns with ai ď dpiq for all i P rns
that does not contain a Hamiltonian cycle.
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One can also investigate Hamiltonian cycles in more general structures: A k-uniform
hypergraph (or k-graph) is a pair pV,Eq consisting of a (vertex) set V and an (edge)
set E Ď V pkq. We sometimes write vpHq “ |V pHq| and epHq “ |EpHq|. In the following let
H “ pV,Eq be a 3-graph. For U Ď V , we define HrU s :“ pU,EpUqq with EpUq :“ te P E :
e Ď Uu. For vertices v, w P V , we denote by dpv, wq :“ |tx P V : vwx P Eu| the pair degree,
where for convenience we write an edge as vwx instead of tv, w, xu. In addition, it is also
common to study the vertex degree dpvq :“ |te P E : v P eu|. The minimum pair degree
is δ2pHq :“ minvwPV 2 dpv, wq and the minimum vertex degree is δ1pHq :“ minvPV dpvq.
Often it is useful to consider something like a 2-uniform projection of H with respect to a
vertex v P V ; we define the link graph Lv of v as the graph pV, txy : xyv P Euq.

We will follow the definition of paths and cycles in [16], suggested by Katona and
Kierstead in [10]. A 3-graph P is a tight path of length `, if |V pP q| “ ` ` 2 and there is
an ordering of the vertices V pP q “ tx1, . . . , x``2u such that EpP q “ txixi`1xi`2 : i P r`su.
The tuple px1, x2q is the starting pair of P , the tuple px``1, x``2q is the ending pair of P ,
and both are the end-pairs of P and we say that P is a tight px1, x2q-px``1, x``2q-path. All
other vertices of P are called internal. We sometimes identify a path with the sequence
of its vertices x1, . . . , x``2. Accordingly, a tight cycle C of length ` ě 4 consists of a
path x1, . . . , x` of length `´ 2 together with the two hyperedges x`´1x`x1 and x`x1x2. A
tight walk of length ` is a hypergraph W with V pW q “ tx1, . . . , x``2u, where the xi are not
necessarily distinct, and EpW q “ txixi`1xi`2 : i P r`su. Note that the length of a path, a
cycle or a walk is the number of its edges and we will use this convention for cycles, paths,
and walks in graphs as well.

One might also consider degree conditions for loose Hamiltonian cycles in k-uniform
hypergraphs, in which consecutive edges intersect in less than k ´ 1 vertices. Loose
Hamiltonian cycles were for instance studied in [2, 5, 8, 11]. From now on we only consider
tight paths and cycles and consequently we may omit the prefix “tight”.

In recent years, there has been some progress to achieve Dirac like results for hypergraphs.
Rödl, Ruciński, and Szemerédi [18] started by showing that for α ą 0, there is some n0

such that every 3-graph on n ě n0 vertices with minimum pair degree at least p1
2 ` αqn

contains a Hamiltonian cycle. Actually, in [19] they improved the result to the following.

Theorem 1.2. Let H be a 3-graph on n vertices, where n is sufficiently large. If H
satisfies δ2pHq ě tn{2u, then H has a Hamiltonian cycle. Moreover, for every n, there
exists an n-vertex 3-graph Hn such that δ2 pHnq “ tn{2u´ 1 and Hn does not have a
Hamiltonian cycle.
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More recently, Reiher, Rödl, Ruciński, Schacht, and Szemerédi [16] proved the following
asymptotically optimal result.

Theorem 1.3. For every α ą 0, there is an n0 P N such that every 3-graph H on n ě n0

vertices with δ1pHq ě
`5

9 ` α
˘

n2

2 contains a Hamiltonian cycle.

Since the first version of this article, this has been generalised to all k independently by
Lang and Sanhueza-Matamala [12] and by Polcyn, Reiher, Rödl, and myself [14].

In this work, we study a new pair degree condition that forces large 3-graphs to contain
a Hamiltonian cycle. Call a matrix pdijqij Hamiltonian if every 3-graph H “ prns, Eq

with dpi, jq ě dij , for all ij P rnsp2q, contains a Hamiltonian cycle. It would be very desirable
to get a result for 3-graphs similar to the one by Chvátal for degree sequences in graphs,
that is, a characterisation of all Hamiltonian matrices. For the graph case, Pósa’s result
(Theorem 1.1) was a step towards the characterisation by Chvátal. In a sense, our main
result can be seen as a 3-uniform (asymptotic) analogue of the theorem by Pósa.

Theorem 1.4 (Main result). For α ą 0, there exists an n0 P N such that for all n P N
with n ě n0, the following holds. If H “ prns, Eq is a 3-graph with dpi, jq ě min

`

i, j, n2
˘

`αn

for all ij P rnsp2q, then H contains a (tight) Hamiltonian cycle.

This result strengthens the asymptotic version of Theorem 1.2 achieved in [18].
Let us remark that recently there have also been related results on degree sequences

in graphs. For example, Treglown [22] gave a degree sequence condition that forces the
graph to contain a clique factor and Staden and Treglown [20] proved a degree sequence
condition that forces the graph to contain the square of a Hamiltonian cycle. Since the
first version of this article, Bowtell and Hyde [1] obtained a degree sequence condition for
perfect matchings in 3-graphs.

Note that in the proof (and the proofs of the lemmas) we can always assume α ! 1.
Before we start with the outline of the proof of Theorem 1.4 in the next section, we give
the following examples showing that our result is asymptotically optimal in some regard.

Example 1.5. (i) Consider the partition X 9YY “ rns with X “
“P

n`1
3

T‰

and let H be
the hypergraph on rns containing all triples e P V p3q with |eXX| ‰ 2.

Then we have dpi, jq ě min
`

i, j, n2
˘

´ 1 for all ij P rnsp2q. However, if there
was a Hamiltonian cycle C in H, it would contain at least one edge with two
vertices from X. But such an edge can only lie in a cycle in which all vertices are
from X ( rns. Hence, H does not contain a Hamiltonian cycle.

(ii) Next, look at the partition X 9YY “ rns with X “
“X

n
2

\‰

and let H be the hypergraph
on rns containing all triples e P V p3q such that |eX Y | ‰ 2.
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Then for all ij P rnsp2q, we have dpi, jq ě n
2 ´ 2. But an analogous argument as

above shows that H does not contain a Hamiltonian cycle.

The two examples show that Theorem 1.4 does not hold when replacing the degree condi-
tion with dpi, jq ě min

`

i, j, n2
˘

´ 1 (not even when replacing it with dpi, jq ě min pi, jq´ 1)
and neither when replacing it with dpi, jq ě min

`

i, j, n2 ´ 2
˘

. Note that this means that
Theorem 1.4 cannot (asymptotically) be improved on by decreasing the requirement on
the degree of every pair and neither by “capping” at a lower value than at n

2 ´ 2. However,
it is not yet a Chvátal like characterisation of all Hamiltonian matrices. For instance, it is
easy to see that there are Hamiltonian matrices with dij “ 0 for some i, j P rns.

In the following, we will omit rounding issues if they are not important, e.g., we will
assume that αn etc. are natural numbers. Further, for A,B Ď R`, we write that a
statement S holds for all a P A and b P B with a ! b, to say that for every b P B, there
exists an a0 P R` such that for all a P A with a ď a0, the statement S holds.

Organisation. In the next section we give an overview of the proof, state the auxiliary
results for each step and finally deduce the main result Theorem 1.4 from these. Sections 3-6
are devoted to the proofs of the auxiliary results. In the end, we collect some interesting
related problems in Section 7.

§2. Overview and Final Proof

The proof of Theorem 1.4 uses the absorption method introduced by Rödl, Ruciński,
and Szemerédi in [18], which helps to reduce the problem of finding a Hamiltonian cycle to
the problem of constructing a cycle containing almost all vertices.

This strategy proceeds by constructing a cycle containing almost all vertices of the
hypergraph H and a special subpath into which we can “absorb” any small set of vertices,
meaning we can integrate the left-over vertices into this subpath to obtain a Hamiltonian
cycle. For that, we use that for every vertex v P V pHq, there exist many absorbers in H, a
structure consisting of several paths which can be restructured into paths containing v while
keeping the same end-pairs. Then, utilising the probabilistic method, we can construct
an absorbing path, a path containing many absorbers for every vertex. Lastly, we build a
long path in the remainder of H, consisting of almost all vertices, and connect it with the
absorbing path to a cycle into which the left-over vertices can be absorbed.

For these constructions we often need to connect two paths, that is, find a path between
their end-pairs. Hence, we will begin by showing that we can connect every pair of pairs of
vertices by a large number of paths with a fixed length.
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Lemma 2.1 (Connecting Lemma). Let α, ϑ ą 0, n, L P N with 1{n ! ϑ ! 1{L ! α.
If H “ prns, Eq is a 3-graph with dpi, jq ě min

`

i, j, n2
˘

` αn, for all ij P rnsp2q, then for
all disjoint ordered pairs of distinct vertices px, yq, pw, zq P rns2, the number of paths of
length L in H connecting px, yq and pw, zq is at least ϑnL´2.

See Section 3 for the proof of Lemma 2.1.
Later, we will use this result whenever we need to connect different paths that have

been constructed before. However, when we want to connect paths after almost all the
vertices are covered by paths, we need to ensure that there still exist paths, disjoint to
all previously built paths. To this end, we will take a special selection of vertices - the
reservoir - aside, with the property that for every pair of pairs of vertices, we still have
many paths of fixed length connecting them, where all internal vertices of those paths are
vertices of the reservoir. The existence of such a set will be shown by the probabilistic
method.

Lemma 2.2 (Reservoir Lemma). Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α.
If H “ prns, Eq is a 3-graph satisfying dpi, jq ě min

`

i, j, n2
˘

` αn, for all ij P rnsp2q, then
there exists a reservoir set R Ď rns with ϑ2

2 n ď |R| ď ϑ2n such that for all disjoint ordered
pairs of distinct vertices px, yq, pw, zq P rns2, there are at least ϑ |R|L´2

{2 paths of length L
in H which connect px, yq and pw, zq and whose internal vertices all belong to R.

It follows that removing a few vertices from the reservoir will not destroy its connectability
property.

Lemma 2.3 (Preservation of the Reservoir). Let α, ϑ ą 0 and n, L P N such that 1{n !
ϑ ! 1{L ! α. If H “ prns, Eq is a 3-graph satisfying dpi, jq ě min

`

i, j, n2
˘

` αn, for
all ij P rnsp2q, R is given by Lemma 2.2, and R1 Ď R with |R1| ď 2ϑ4n, then for all
disjoint ordered pairs of distinct vertices px, yq, pw, zq P rns2, there is an px, yq-pw, zq-path
of length L in H with all internal vertices belonging to R r R1.

See Section 4 for the proof of Lemma 2.2 and Lemma 2.3.
The proof will continue with the definition of the absorbers and we will show that for

each vertex, there are many absorbers. We make use of this fact when we show that a
small random selection of tuples still contains many absorbers for every v P V pHq. With
the Connecting Lemma we can afterwards connect all the small paths in that selection to
a path that can absorb any small set of vertices.

Lemma 2.4 (Absorbing Path). Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α.
If H “ prns, Eq is a 3-graph satisfying dpi, jq ě min

`

i, j, n2
˘

`αn, for all ij P rnsp2q, and R
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is given by Lemma 2.2, then there exists a path PA Ď H r R with vpPAq ď ϑn and with
the (absorbing) property that for each X Ď rns with |X| ď 2ϑ2n, there is a path with vertex
set X Y V pPAq and the same end-pairs as PA.

See Section 5 for the proof of Lemma 2.4.
By using weak hypergraph regularity and then an explicit result to obtain an almost

perfect matching in the reduced hypergraph, we show in Section 6 that in every hyper-
graph H satisfying the degree condition in Theorem 1.4, there exists a path which contains
almost all vertices of H (see Proposition 2.5).

Proposition 2.5 (Long Path). Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α.
Let H “ prns, V q be a 3-graph with dpi, jq ě min

`

i, j, n2
˘

` αn, for all ij P rnsp2q, let R be
as in Lemma 2.2, and PA as in Lemma 2.4.

Then there exists a path Q Ď H r PA such that

vpQq ě
`

1´ 2ϑ2˘n´ v pPAq

and |V pQq XR| ď ϑ4n.

See Section 6 for the proof of Proposition 2.5.
Now we are ready to prove our main result, Theorem 1.4 (see also Figure 2.1).

Proof of Theorem 1.4. Let α, ϑ ą 0 and n, L P N such that 1{n ! ϑ ! 1{L ! α. Now
let H “ prns, Eq be a 3-graph satisfying the degree condition dpi, jq ě min

`

i, j, n2
˘

`αn for
all ij P rnsp2q. Lemmas 2.2, 2.4, and Proposition 2.5 provide a reservoir R, an absorbing
path PA Ď H r R and a long path Q Ď H r PA with |RX V pQq| ď ϑ4n. Let pa, bq
and pc, dq be the end-pairs of PA and let pr, sq and pt, uq be the end-pairs of Q (note that
they are disjoint since we have Q Ď H r PA). Since |RX V pQq| ď ϑ4n and PA Ď H r R
and by Lemma 2.3, we can choose a path P1 of length L connecting pt, uq and pa, bq
with all internal vertices in R r pV pQq Y V pPAqq and, by the hierarchy of constants,
we also find a path P2 of length L connecting pc, dq and pr, sq with all internal vertices
in RrpV pQq Y V pPAq Y V pP1qq. That leaves us with a cycle C inH which satisfies vpCq ě
p1´ 2ϑ2qn and PA Ď C. The absorbing property of PA guarantees that forX :“ rnsrV pCq,
there exists a path P 1A with V pP 1Aq “ V pPAq Y X which has the same end-pairs as PA
(which are connected to Q) and hence there is a Hamiltonian cycle in H. �

§3. Connecting Lemma

Before we start with the actual proof of Lemma 2.1, let us take a look at the strategy. Say,
we want to connect two (ordered) pairs px, yq and pw, zq in a hypergraph H satisfying the
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a

b

c

d

r s t u

PA

Q

leftover

Ď R

Ď R

absorbing

Figure 2.1. Overview of the proof

condition in Theorem 1.4. One can easily reduce the case of both pairs being arbitrary to
that of both having pair degree at least n

2 `αn by “climbing up” in the degree sequence (see
the beginning of the proof). Then N ppx, yq, pw, zqq, the set of common neighbours of px, yq
and pw, zq, is non-empty because of the high pair degrees of px, yq and pw, zq. If we were
able to find many (2-uniform) y-w-paths in the link graphs of elements in N ppx, yq, pw, zqq,
we could subsequently insert the elements of N ppx, yq, pw, zqq at every third position of
such a path, thereby obtaining a 3-uniform walk.

So we could indeed connect two pairs if the link graphs of vertices in N ppx, yq, pw, zqq
would inherit the right degree condition, i.e., if the vertices would be large (regarded as
elements ofN). However, since we cannot control how large the elements in N ppx, yq, pw, zqq
are, the degree condition that the link graphs of vertices in N ppx, yq, pw, zqq inherit may
not be strong enough to let us connect two vertices by “climbing up” the degree sequence.
The idea to insert a middle pair pa, bq, as done in [16], overcomes this problem. If pa, bq has
some large common neighbours with px, yq and some with pw, zq, we can find enough px, yq-
pw, zq walks passing through pa, bq by applying the strategy explained above (now we can
connect vertices in the link graphs by “climbing up” the degree sequence). The number of
those walks will depend on the number of large common neighbours that pa, bq has with
each px, yq and pw, zq. So roughly speaking, if the sum over all pa, bq of large common
neighbours of pa, bq and px, yq and of pa, bq and pw, zq is large, we can indeed prove the
Connecting Lemma. This last point (in its accurate form) will follow from the observation
that two link graphs of large vertices have many common edges.
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Note that this strategy can be used in the seemingly different settings of our pair degree
condition and the minimum vertex degree condition in [16], since in both cases we have
“well connected” subgraphs in every link graph and each two of these subgraphs intersect
in many edges: In [16] those subgraphs are the robust subgraphs and in our case we can
just consider the link graphs of large vertices. After the first version of this article, this
idea has also been used extensively in [14].

Proof of Lemma 2.1. Observe that when we show that there exists an L P N and a ϑ ą 0
such that the statement of Lemma 2.1 holds for these, it easily follows that it holds for
all L P N and ϑ ą 0 with 1{n ! ϑ ! 1{L ! α ! 1. Hence, let the hierarchy and H be
given as described in the lemma and let px, yq, pw, zq P rns2 be two disjoint ordered pairs
of distinct vertices.

First, we will show that it is possible to “climb up” along the degree sequence in
(compared to n) few steps, starting from the pairs px, yq and pw, zq and ending with pairs
of vertices ě n

2 .
In the second step, we will connect these two by utilising an analogous “climb up”

argument in the link graphs of neighbours of a pair and slipping in an additional connective
pair. We first look for walks rather than paths and conclude by remarking that many of
them will actually be paths.

First Step. By induction on ` ě 3, we will prove the following statement: There exist at
least

`

α
5

˘`´2
n`´2 walks x1 “ x, x2 “ y, x3, . . . , x` such that for i ě 3 we have:

xi ě min
´α

4npi´ 2q, n2

¯

`
α

4n (3.1)

We will first show the statement for ` “ 3 and ` “ 4 and then deduce it for any ` ě 5 given
that it holds for `´ 1.
` “ 3 : By the degree condition on H we have dpx, yq ě min

`

1, 2, n2
˘

` αn. Hence, there
exist at least α

5n possible vertices x3 such that x1, x2, x3 is a walk and x3 ě
α
4n`

α
4n.

` “ 4 : Let x1, x2, x3 be one of those α
5n walks satisfying the condition (3.1) that we

get by the previous case. We then have dpx2, x3q ě min
`

1, α2n,
n
2

˘

` αn, so there exist at
least α

5n possible vertices x4 such that x1, x2, x3, x4 is a walk and xi ě
α
4npi ´ 2q ` α

4n

for i “ 3, 4.
` ě 5 : Let x1, x2, x3, . . . , x`´1 be one of the

`

α
5

˘`´3
n`´3 walks satisfying, for i ě 3,

xi ě min
´α

4npi´ 2q, n2

¯

`
α

4n

that we get by induction. Then our pair degree condition entails

dpx`´2, x`´1q ě min
´α

4np`´ 4q ` α

4n,
n

2

¯

` αn
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x1 y1

a b

w1 z1

r1 sm

r2 sm´1

rm´1 s2

rm s1

r3

r4

s3

s4

Ux1y1

uip1q

uip2q

uip m
2 `1q

Uw1z1

vjp1q

vjp2q

vjp m
2 `1q

Figure 3.1. Idea of the second step, the picture is similar to [16, Fig. 4.1]

which in turn gives rise to at least α
5n possible vertices x` such that x1, x2, . . . , x` build a

walk and we have xi ě min
`

α
4npi´ 2q, n2

˘

` α
4n for all i P r`s, i ě 3.

This leaves us with
`

α
5

˘
2
α n

2
α possibilities for walks

x1 “ x, x2 “ y, x3, . . . , x 2
α
`2

with x 2
α
`1, x 2

α
`2 ě

n
2 and an analogous argument for pw, zq with just as many possibilities

for walks

z1 “ z, z2 “ w, z3, . . . , z 2
α
`2

with z 2
α
`1, z 2

α
`2 ě

n
2 .

Second Step. Let m be the smallest even number ě 1
α
` 1. It now suffices to show

that for some ϑ1 ą 0 with 1{n ! ϑ1 ! α we have the following. For all ordered pairs
px1, y1q, pw1, z1q P rns2 for which the vertices within each pair are distinct and x1, y1, w1, z1 ě n

2 ,
the number of px1, y1q-pw1, z1q walks with 3m` 4 internal vertices is at least ϑ1n3m`4.

Since dpx1, y1q ě n
2 ` αn, there exists a set Ux1y1 “ tu1, . . . , uαnu Ď rns r rn{2s such

that x1y1 P E pLuiq, for all i P rαns (recall that Lui denotes the link graph of ui). Similarly,
there exists Uw1z1 “ tv1, . . . , vαnu Ď rnsr rn{2s such that w1z1 P E pLviq, for all i P rαns.
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For pa, bq P rns2, let Iab “ ti P rαns : ab P E pLuiq X E pLviqu. Since all vertices ě n
2

(apart from ui, vi) have in both Lui and Lvi at least n
2 ` αn neighbours, and therefore 2αn

vertices that they are adjacent to in both Lui and Lvi , there are at least αn2

4 edges in LviXLui .
Thus, by double counting we have

ÿ

pa,bqPrns2

|Iab| ě
ÿ

iPrαns

|E pLviq X E pLuiq| ě
αn2

4 αn .

Next, for fixed pa, bq P rns2, we find a lower bound on the number Lab of 3-uniform walks
of the form

x1y1uip1qr1r2uip2q . . . uipm2 q
rm´1rmuipm2 `1qab

where y1r1r2 . . . rm´1rma is a 2-uniform walk in Luipkq and ipkq P Iab, for all k P
“

m
2 ` 1

‰

.
To this goal, first observe that for all i P rαns, the number of y1a-walks of length m`

1 in Lui is at least
`

α
3

˘m
nm. Indeed, since ui ě n{2, we know that for j P rns, we

have dLui pjq ě min
`

j, n2
˘

`αn. Therefore, there are at least
`

αn
2

˘m´1 walks of length m´1
starting in a in which each vertex is either at least n

2 `
αn
2 or at least αn

2 larger than the
preceding vertex. Since we set m ě 1{α ` 1, each of these walks ends in a vertex ě n

2 and
for at least

`

αn
3

˘m´1 of them the last vertex is distinct from y1. For each such walk T with
its last vertex a1T ‰ y1, there are 2αn possibilities for common neighbours of y1 and a1T

(note that the degrees in Lui of both y1 and a1T are at least n
2 ` αn). In total, that gives us

at least
`

αn
3

˘m
y1a-walks of length m` 1 in Lui .

Now for ~r P rnsm, we set Dab p~rq :“ ti P Iab : y1~ra is a walk in Luiu. Again by double
counting and by the previous observation we infer

ÿ

~rPrnsm

|Dab p~rq| “
ÿ

iPIab

ˇ

ˇ

 

~r P rnsm : y1~ra is a walk in Lupiq
(ˇ

ˇ ě |Iab|
´α

3

¯m

nm.

Note that for each ~r P rnsm that is a y1a-walk in Luipkq for every k P
“

m
2 ` 1

‰

, we have that

x1y1uip1qr1r2uip2q . . . uipm2 q
rm´1rmuipm2 `1qab

is a 3-uniform px1y1q-pabq-walk of length m` m
2 ` 3 in H. Hence, with Jensen’s inequality

we derive:

Lab ě
ÿ

~rPrnsm

|Dab p~rq|
m
2 `1

ě nm
ˆ

ÿ 1
nm
|Dab p~rq|

˙
m
2 `1

ě nm
´

|Iab|
´α

3

¯m¯m
2 `1

.

We define Rab analogously as the number of 3-uniform walks of the form

abvjp1qs1s2vjp2q . . . vjpm2 q
sm´1smvjpm2 `1qw

1z1 ,

where bs1s2 . . . sm´1smw
1 is a 2-uniform walk in Lvjpkq and jpkq P Iab, for all k P

“

m
2 ` 1

‰

,
and get the same lower bound by an analogous argument.
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At last, let W be the number of px1y1q-pw1z1q-walks of length 3m ` 6 in H. We apply
Jensen’s inequality a second time to obtain:

W ě
ÿ

pa,bqPrns2

LabRab

ěn2m
´α

3

¯m2`2mÿ

pa,bqPrns2

|Iab|
m`2

ěn2m
´α

3

¯m2`2m
n2

ˆ

1
n2
α2n3

4

˙m`2

ě

´α

3

¯m2`2m
ˆ

α2

4

˙m`2

n3m`4

ě

ˆ

α2

4

˙m2`3m`2

n3m`4.

In total, putting together the walks connecting px, yq and px1, y1q, px1, y1q and pw1, z1q
and pw1, z1q and pw, zq we get that the number of px, yq-pw, zq-walks of length 2 ¨ 2

α
`3m`6

in H is at least
ˆ

´α

5

¯
2
α
n

2
α

˙2

ˆ

ˆ

α2

4

˙m2`3m`2

n3m`4
ě αm

3
n

4
α
`3m`4 .

Since only O
´

n
4
α
`3m`3

¯

of these fail to be a path, we are done. �

§4. Reservoir

In this section, we will prove the existence of a small set, the reservoir, such that any two
pairs of vertices can be connected by paths with all internal vertices lying in the reservoir.
The probabilistic proof of this lemma as done in [16] works in almost the same way with
different conditions as soon as the Connecting Lemma is provided. We will state two
inequalities first that we will need for the probabilistic method.

Lemma 4.1 (Chernoff, see for instance Cor. 2.3 in [9]). Let X1, X2, . . . , Xm be a sequence
ofm independent random variables Xi :Ñ t0, 1u with P pXi “ 1q “ p and P pXi “ 0q “ 1´ p.
Then we have for δ P p0, 1q:

‚ P
´

ř

iPrmsXi ě p1` δq pm
¯

ď exp
´

´ δ2

3 pm
¯

‚ P
´

ř

iPrmsXi ď p1´ δq pm
¯

ď exp
´

´ δ2

2 pm
¯

Lemma 4.2 (Azuma-Hoeffding, McDiarmid, Cor. 2.27 in [9] and Thm. 1 in [13]). Sup-
pose that X1, . . . , Xm are independent random variables taking values in Λ1, . . . ,Λm and
let f : Λ1 ˆ ¨ ¨ ¨ ˆ Λm Ñ R be a measurable function. Moreover, suppose that for certain
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real numbers c1, . . . , cm ě 0, we have that if J, J 1 P
ś

Λi differ only in the k-th coordinate,
then |fpJq ´ f pJ 1q| ď ck. Then the random variable X :“ f pX1, . . . , Xmq satisfies

P p|X ´ EpXq| ě tq ď 2 exp
ˆ

´
2t2
ř

c2
i

˙

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. Let α, L, ϑ, n, and H be given as in the statement. We choose
a random subset R Ď rns, where we select each vertex independently with probability
p “

`

1´ 1
10L

˘

ϑ2. Since |R| is now binomially distributed, we can apply Chernoff’s
inequality (Lemma 4.1) and utilise the hierarchy to obtain

P
`

|R| ă ϑ2n{2
˘

ď P
ˆ

|R| ă 2
3E pRq

˙

ď exp
˜

´
p1{3q2

2 pn

¸

ă 1{3. (4.1)

We also have ϑ2n ě p1` cpLqqE p|R|q for some small cpLq P p0, 1q not depending on n and
therefore, again by Chernoff we get for large n:

P
`

|R| ą ϑ2n
˘

ď P p|R| ě p1` cpLqqE pRqq ď exp
ˆ

´
cpLq2

3 pn

˙

ă 1{3 (4.2)

By Lemma 2.1, we have that for all disjoint ordered pairs of distinct vertices px, yq
and pw, zq, the number of px, yq-pw, zq-paths of length L in H is at least ϑnL´2. Let X “

X ppx, yq, pw, zqq denote the random variable counting the number of those px, yq-pw, zq-
paths in H that are of length L and have all internal vertices in R. We then have EpXq ě
pL´2ϑnL´2.

Now we apply the Azuma-Hoeffding inequality (Lemma 4.2) (with X1, . . . , Xn being the
indicator variables for the events “1 P R”,. . . ,“n P R”) which gives us, since the presence
or absence of one particular vertex in R affects X by at most pL´ 2qnL´3, that

P
ˆ

X ď
2
3ϑppnq

L´2
˙

ďP
ˆ

X ď
2
3EpXq

˙

ď2 exp
˜

´
2
`

pL´2ϑnL´2˘2

9n ppL´ 2qnL´3q
2

¸

“ exp p´Ωpnqq .

By the union bound, also the probability that there is a pairs of pairs for which the
respective number of connecting paths with all internal vertices in R is less than 2

3ϑppnq
L´2

can be bounded from above by

exp p´Ωpnqq ˆ n4
ă 1{3 (4.3)
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for n large. Moreover, recalling our hierarchy we have

2
3ϑp

L´2nL´2
“

ˆ

1´ 1
10L

˙L´2 2
3ϑ

`

ϑ2n
˘L´2

ě
ϑ

2
`

ϑ2n
˘L´2

which together with (4.2) and (4.3) implies the following: With probability ą 1{3 the
chosen set R satisfies |R| ď ϑ2n and has the property that for all disjoint ordered pairs
of distinct vertices px, yq and pw, zq there exist at least ϑ

2 |R|
L´2 paths of length L in H

that connect those pairs and have all their internal vertices in R. Therefore, combining
this with (4.1) ensures that there indeed exists a version of R that has all the required
properties of our reservoir set. �

It is not hard now to show the preservation of the reservoir, Lemma 2.3.

Proof of Lemma 2.3. Let H,R,R1 be as in the statement of the Lemma. Consider any
two disjoint ordered pairs of distinct vertices px, yq and pw, zq. We have

|R1
| ď 2ϑ4n ď ϑ3{2ϑ

2

2 n ď ϑ3{2
|R|

by the lower bound we get from Lemma 2.2. Since every particular vertex in R1 is an
internal vertex of at most pL´ 2q|R|L´3 of the px, yq-pw, zq-paths of length L in H with
all internal vertices from R, the Reservoir Lemma tells us that there are at least

ϑ

2 |R|
L´2

´ |R1
| pL´ 2q|R|L´3

ě
ϑ

2 |R|
L´2

´ ϑ3{2
pL´ 2q|R|L´2

ą 0

such px, yq-pw, zq-paths with all internal vertices in R r R1. �

§5. Absorbing Path

In this section, we will construct a short (absorbing) path PA that can “absorb” every
small set of arbitrary vertices: For each small set X Ď V , we can build a path P 1A

with V pP 1Aq “ V pPAq Y X which has the the same end-pairs as PA. Later, it will then
suffice to find a cycle containing PA and almost all vertices, and subsequently absorb the
remaining vertices into PA. Since we already have a Connecting Lemma, actually the only
step left will be to find a long path.

In order to construct such an absorbing path, one first has to find many absorbers for
each vertex v: In our case, an absorber is a “cascade” of small paths that allows us to
build a new such cascade of paths with the same end-pairs, containing all vertices of the
first two paths and in addition the “absorbed” vertex v (see Definition 5.1). This makes
sure that we can maintain the path structure of PA when absorbing a vertex since the
linking pairs remain unchanged. Once we know that for every vertex v, there exist many
such v-absorbers in H, the probabilistic method provides a small set of disjoint paths with
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x

v1

w1

y1

z1

v2

w2

y2

z2

vs´1

ws´1

ys´1

zs´1

vs

ws

ys

zs

Figure 5.1. Structure of the absorbers with hyperedges used before ab-
sorption of v in dark red and hyperedges used after absorption of v in light
red.

the property that for every vertex v, this set contains many v-absorbers. Lastly, we will
simply connect all these paths via the Connecting Lemma and note that then we can
absorb a small set of vertices by greedily inserting each vertex into a different absorber.

To construct the absorbers, we again utilize that we can “climb up” the degree sequence.
More precisely, we define the following “absorbers”.

Definition 5.1. Let α ą 0, n P N, and H “ prns, Eq a 3-graph and set s “ spαq “ 2 ¨ 1
α
.1

For x P rns, a 4s-tuple

pv1, w1, y1, z1, . . . , vs, ws, ys, zsq P rns
4s

of distinct vertices is called px, αq-absorber (in H) if

(1) v1w1xy1z1 is a path in H,
(2) for i P rs´ 1s, we know that viwiyi`1zi`1 and vi`1wi`1xiyi are paths in H, and
(3) vswsyszs is a path in H.

When α is not important, we omit it in the notation, then simply speaking of x-absorbers.
Note that we can absorb x into an x-absorber pv1, w1, y1, z1, . . . , vs, ws, ys, zsq as follows,
see also Figure 5.1. Before absorption, we consider the paths viwiyi`1zi`1 and vi`1wi`1yizi,
for all odd i P rss. After absorption, we consider the path v1w1xy1z1, the paths viwiyi`1zi`1

and vi`1wi`1yizi for all even i P rs ´ 2s, and the path vswsyszs. Note that the (ordered)
end-pairs of the considered paths are the same before and after absorption.

1Recall that in our convention 1
α is an integer and, hence, s is an even integer.
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Lemma 5.2 (Many Absorbers). Let 1{n ! ϑ ! α ! 1. If H “ prns, Eq is a 3-
graph with dpi, jq ě min

`

i, j, n2
˘

` αn for all ij P rnsp2q and R is a reservoir set given
by Lemma 2.2, then for every x P rns, the number of px, αq-absorbers in prnsr Rq4spαq is
at least pαn3 q

4spαq.

Proof of Lemma 5.2. Let 1{n ! ϑ ! α ! 1, let H be as in the statement, and let x P rns.
There are at least n

3 possibilities to choose a vertex w1 P rns r pR Y txuq with w1 ě

minpx` αn
2 ,

n
2 q. Then, there are at least

αn
3 choices for a vertex v1 P Npw1, xqrR with v1 ě

minpx` αn
2 ,

n
2 q since |Npw1, xq| ě minpw1, x,

n
2 q ` αn and w1 ě minpx` αn

2 ,
n
2 q. Similarly,

there are at least αn
3 choices for a vertex y1 P Npw1, xqrpRYtv1uq with y1 ě minpx` αn

2 ,
n
2 q

and at least αn
3 choices for a vertex z1 P Npx, y1qr pRYtv1, w1uq with z1 ě minpx` αn

2 ,
n
2 q.

Now assume that for some i P rs ´ 2s, vertices vj, wj, yj, and zj have already been
selected, for all j P ris, in such a way that all edges required by Definition 5.1 are
present and vj, wj, yj, zj ě minpx ` j αn2 ,

n
2 q for all j P ris, and denote the set containing

all these vertices, all vertices from R, and x by Ai. Note that for all i P rs ´ 2s, we
have |Ai| ď αn

7 . Therefore, there are at least αn
3 choices for a vertex wi`1 P Npyi, ziqr Ai

with wi`1 ě minpx`pi` 1qαn2 ,
n
2 q. Further, there are at least αn

3 choices for a vertex vi`1 P

Npwi`1, yiqrAi with vi`1 ě minpx`pi`1qαn2 ,
n
2 q. Similarly, there are at least αn

3 choices for
a vertex yi`1 P Npvi, wiqrpAiYtvi`1, wi`1uq with yi`1 ě minpx`pi`1qαn2 ,

n
2 q and at least αn3

choices for a vertex zi`1 P Npwi, yi`1qrpAiYtvi`1, wi`1uq with zi`1 ě minpx`pi`1qαn2 ,
n
2 q.

Assume that vj, wj, yj, and zj have been selected for all j P rs´ 1s such that all edges
required by Definition 5.1 are present and vj, wj, yj, zj ě minpx` j αn2 ,

n
2 q, for all j P rs´ 1s,

and denote the set containing all these vertices, all vertices from R, and x by As´1. Then
there are at least αn

3 choices for a vertex ws P Npys´1, zs´1qrAs´1 with ws ě minpx`sαn2 ,
n
2 q

and at least αn
3 choices for a vertex ys P Npvs´1, ws´1qr pAs´1 Y twsuq with ys ě minpx`

sαn2 ,
n
2 q. Note that by the choice of s we have vs´1, ws´1, ys´1, zs´1, ws, ys ě minpps ´

1qαn2 ,
n
2 q “

n
2 . Thus, we know that

|Npws, ys´1q XNpws, ysq| ě
n

2 ` αn`
n

2 ` αn´ n ě 2αn

and so there are at least αn choices for vs P Npws, ys´1q XNpws, ysqrAs´1 and, similarly,
we know that there are at least αn choices for zs P Npws´1, ysqXNpws, ysqr pAs´1Ytvsuq.

Observe that if the vertices v1, w1, y1, z1, . . . , vs, ws, ys, zs are chosen in the respective
neighbourhoods as described above, they form an px, αq-absorber. Hence, the number
of px, αq-absorbers is indeed at least pα3nq

4spαq. �

We are now ready to prove Lemma 2.4.
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Proof of Lemma 2.4. The proof proceeds in two steps. First, we will use the probabilistic
method, showing that with positive probability a randomly chosen set of 4s-tuples contains
many absorbers for every vertex while being not too large. In the second, part we connect
all those paths using the Connecting Lemma.

Let 1{n ! ϑ ! α, let L P N be given by the Connecting Lemma, let s “ spαq, and
let H,R be given as in the statement.

Let X Ď prnsr Rq4s be a random selection in which each 4s-tuple in prnsr Rq4s is
included independently with probability p :“ ϑ234s`2

α4sn4s´1 . Then E r|X |s ď pn4s “ ϑ234s`2

α4s n and
by Markov’s inequality we get

P
ˆ

|X | ą 2ϑ
234s`2

α4s n

˙

ď
1
2 . (5.1)

Calling two distinct 4s-tuples overlapping if they contain a common vertex, we observe
that there are at most p4sq2n8s´1 ordered pairs of overlapping 4s-tuples. Let us denote
the number of overlapping pairs with both of their tuples occurring in X by D. We then
get ErDs ď p4sq2n8s´1p2 “ p4sq2

`

ϑ234s`2

α4s

˘2
n and Markov yields

P
“

D ą ϑ2n
‰

ď P

«

D ą 64s2
ˆ

ϑ234s`2

α4s

˙2

n

ff

ď
1
4 (5.2)

since 1{n ! ϑ ! α.
Next, we focus on the number of absorbers contained in X . For x P rns, let Ax denote

the set of all px, αq-absorbers. Lemma 5.2 gives that for every x P rns,

E r|Ax X X |s ě
´αn

3

¯4s
p “ 9ϑ2n.

Since |Ax X X | is binomially distributed, we may apply Chernoff’s inequality to get for
every x P rns,

P
`

|Ax X X | ď 3ϑ2n
˘

ď exp
˜

´

`2
3

˘2

2 9ϑ2n

¸

ă
1

5n . (5.3)

Hence, by the union bound and (5.1), (5.2) and (5.3), there exists a selection F˚ Ď
prnsr Rq4s with:

‚ |F˚| ď 2ϑ234s`2

α4s n

‚ F˚ contains at most ϑ2n overlapping pairs
‚ F˚ contains at least 3ϑ2n x-absorbers, for every x P rns

For each overlapping pair, we delete one of its 4s-tuples and thus, for every x P rns, we lose
at most ϑ2n x-absorbers. Furthermore, we delete every 4s-tuple A P F˚ for which there
does not exist an x P rns such that A is an x-absorber. Note that now every remaining
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tuple has all edges present as in Definition 5.1 and all its vertices are distinct. This deletion
process gives rise to an F Ď prnsr Rq4s satisfying:

‚ |F | ď 2ϑ234s`2

α4s n,
‚ for every 4s-tuple A P F there is an x P rns such that A is an x-absorber, in
particular, all the vertices in A are distinct and there are edges present as in
Definition 5.1, and

‚ for every x P rns, there are at least 2ϑ2n x-absorbers in F .

Next, we want to connect the elements in F to a path utilising the Connecting Lemma.
Let G be the set consisting of all the paths viwiyi`1zi`1 and vi`1wi`1yizi for odd i and for
each pv1, w1, y1, z1, . . . , vs, ws, ys, zsq P F :

G “
ď

pv1,w1,y1,z1,...,vs,ws,ys,zsqPF

 

vi`jwi`jyi`1´jzi`1´j : i P rss odd, j P t0, 1u
(

We then have |G| “ 2|F | ď 4ϑ234s`2

α4s n. Let G˚ Ď G be a maximal subset such that there
exists a path P ˚ Ď H ´R with:

‚ P ˚ contains all paths in G˚ as subpaths
‚ V pP ˚q X

Ť

PPGrG˚ V pP q “ ∅
‚ P ˚ satisfies v pP ˚q “ pL` 2q p|G˚| ´ 1q ` 4.

First assume G˚ ( G, and let Q˚ P G r G˚. Notice that recalling 1{n ! ϑ ! α, 1{L ! 1,
we have

v pP ˚q `
ˇ

ˇ

ˇ

ď

PPGrG˚
V pP q

ˇ

ˇ

ˇ
` |R| ď pL` 2q 4ϑ234s`2

α4s n` ϑ2n ď
ϑn

2 pL´ 2q . (5.4)

Now Lemma 2.1 tells us that there are at least ϑnL´2 paths of length L connecting the
ending-pair pa, bq of P ˚ with the starting-pair pb, cq of Q˚ (which are disjoint by the choice
of P ˚). By (5.4), at least half of those are disjoint to RY

Ť

PPGrpG˚YtQ˚uq V pP q and (apart
from the end-pairs) disjoint to V pP ˚q and V pQ˚q. Hence, there exists a path P ˚˚ starting
with P ˚ and ending with Q˚ whose vertex set is disjoint to RY

Ť

PPGrpG˚YtQ˚uq V pP q and
for which we further have

v pP ˚˚q “ v pP ˚q ` L´ 2` v pQ˚q “ 4` pL` 2q p|G˚ Y tQ˚u| ´ 1q .

Therefore, G˚ Y tQ˚u contradicts the maximality of G˚ and thus, G˚ “ G. Further,
for PA :“ P ˚, the hierarchy 1{n ! ϑ ! α, 1{L ! 1 gives us the required bound on v pPAq:

v pPAq ď 4` pL` 2q4ϑ
234s`2

α4s n ď ϑn.
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Lastly, the structure and the number of the absorbers in PA ensure the absorbing
property: Let X Ď rns with |X| ď 2ϑ2n. For each x P X, we can choose one x-
absorber pv1, w1, y1, z1, . . . , vs, ws, ys, zsq from F such that all chosen absorbers are distinct,
since for every x P V , the number of x-absorbers in F is at least 2ϑ2n. For every x P X,
we then “open” PA at the paths vi`jwi`jyi`1´jzi`1´j for i P rss odd and j P t0, 1u and
reconnect it to a path containing x by instead considering the paths vi`jwi`jyi`1´jzi`1´j,
for all even i P rss and j P t0, 1u, and the paths v1w1xy1z1 and vswsyszs. That leaves us
with a path P 1 which satisfies V pP 1q “ V pPAq YX and has the same end-pairs as PA. �

§6. Long Path

In this section, we will prove the existence of a path that contains almost all vertices.
To do so, we will need a weak form of the hypergraph regularity method which we will
therefore introduce briefly.

Let H “ pV,Eq be a 3-graph and V1, V2, V3 Ď V ; we write

E pV1, V2, V3q “ tpv1, v2, v3q P V1 ˆ V2 ˆ V3 : v1v2v3 P Eu

and e pV1, V2, V3q “ |EpV1, V2, V3q|. Further, we write

HpV1, V2, V3q “ pV1 9YV2 9YV3, E pV1, V2, V3qq.

For δ ą 0, d ě 0 and V1, V2, V3 Ď V , we say thatHpV1, V2, V3q is weakly pδ, dq-quasirandom
if for all U1 Ď V1, U2 Ď V2, U3 Ď V3, we have that

|e pU1, U2, U3q ´ d |U1| |U2| |U3|| ď δ |V1| |V2| |V3| .

We say that HpV1, V2, V3q is weakly δ-quasirandom if it is weakly pδ, dq-quasirandom for
some d ě 0. For brevity, we might also say that V1, V2, V3 are weakly pδ, dq-quasirandom
(or δ-quasirandom) (in H). Lastly, since we only look at weak quasirandomness in this
section, we may omit the prefix “weakly”.

The regularity lemma is a strong tool in extremal combinatorics. While the full generali-
sation to hypergraphs is more involved than the version for graphs, there is also a light
version for hypergraphs that can already be useful and indeed it is for us:

Lemma 6.1 (Weak Hypergraph Regularity Lemma). For δ ą 0, t0 P N, there exists
a T0 P N such that for every 3-graph H “ prns, Eq with n ě t0, there exist an integer t
with t0 ď t ď T0 and a partition rns “ V0 9YV1 9Y . . . 9YVt such that:

‚ |V0| ď δn and |V1| “ ¨ ¨ ¨ “ |Vt|

‚ for i ě 1, we have max pViq ď max pVi`1q and max pViq ´min pViq ď n
t0
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‚ there are at most δt3 sets ijk P rtsp3q such that the “triplet” Vi, Vj, Vk, also written
as V ijk, is not δ-quasirandom in H.

For a proof of Lemma 6.1 see for instance [3, 7, 21]. One can get the slight extra
requirement on the ordering of the vertices by dividing the vertex set in intervals of
length n

t0
and afterwards going on with the proof refining those sets. This has been

remarked before, e.g., by Reiher, Rödl, and Schacht in [17].
We will regularise H and then observe that a quasirandom triplet V ijk with positive

density can almost be covered with not too short disjoint paths. Thus, we can think of the
situation as a reduced hypergraph with the partition classes as vertices and edges encoding
those “good triplets” that in H we can almost cover with paths. At that point we will
notice that the degree condition can almost be transferred to the reduced hypergraph. In
Lemma 6.3, we prove that this degree condition will ensure an almost perfect matching in
the reduced hypergraph. But that means that in H almost all vertices can be covered with
paths, which we can then connect through the reservoir to a long path in H.

Lemma 6.2 (Good Triplets). For ξ ą 0, d ą 0, δ ą 0, n P N with dξ3´δ
2 n ě 1, the following

holds. Let H “ pU 9YV 9YW,Eq with |U |, |V |, |W | “ n be a 3-graph and suppose that U, V,W
are pδ, dq-quasirandom in H. Then at least p1 ´ ξq3n vertices of H can be covered by
vertex-disjoint paths of length at least dξ3´δ

2 n´ 2.

Proof of Lemma 6.2. For convenience set c “ dξ3´δ
6 n. Let P be a maximal set of vertex-

disjoint paths of length 3c´ 2 in H, where each path takes alternatingly vertices from each
partition class, i.e., each path is of the form

u1v1w1u2v2w2 . . . ucvcwc

with ui P U, vi P V,wi P W .
Assume that |V | ´ |

Ť

PPP V pP q| ą 3ξn. Then the sets

U 1 :“ U r
ď

PPP
V pP q, V 1 :“ V r

ď

PPP
V pP q,W 1 :“ W r

ď

PPP
V pP q

satisfy |U 1| , |V 1| , |W 1| ą ξn.
Next, we will delete all the edges that contain vertex pairs of small pair degree. With

the edges that still remain after this process we can build a path of the required length.
We start with F1 “ H rU 1, V 1,W 1s and set Fi`1, for i ě 1, as the hypergraph ob-

tained from Fi by deleting all edges containing a vertex pair xy with dˆFipx, yq ď c,
where dˆFipx, yq “ |te P E pFiq : x, y P e, |eX U 1| “ |eX V 1| “ |eXW 1| “ 1u|. This process
stops with a hypergraph Fj in which for all x, y P V pFjq, we either have dˆFjpx, yq “ 0
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or dˆFjpx, yq ě c. The deletion condition guarantees

eˆpF1q ´ e
ˆ
pFjq ď 3cn2 ,

with eˆ pFiq “ |te P E pFiq : |eX U 1| “ |eX V 1| “ |eXW 1| “ 1u|, and the quasirandomness
of U, V,W gives that eˆpF1q “ e pU 1, V 1,W 1q ě pdξ3 ´ δqn3. Thus, there still exists an
edge u1v1w1 in Fj with u1 P U

1, v1 P V
1 and w1 P W

1. But this means that there is
a path of length 3c ´ 2 in Fj: Let P ˚ “ u1v1w1 . . . ukvkwk be a maximal path in Fj

with ui P U
1, vi P V

1 and wi P W
1, for all i P rks (note that k ě 1). Assuming k ă c for

a contradiction, less than c vertices of U 1 appear in P ˚. But since vkwk is contained
in the edge ukvkwk P Eˆ pFjq, we actually have that dˆFj pvk, wkq ě c, whence there is
a uk`1 P U

1 r V pP ˚q such that P ˚uk`1 is a path in Fj.
The same argument applied to wkuk`1 gives a vk`1 P V

1 such that P ˚uk`1vk`1 is a
path in Fj and finally applying the argument to uk`1vk`1 gives rise to a wk`1 P W

1 such
that the path P ˚uk`1vk`1wk`1 exists in Fj and thus contradicts the maximality of P ˚,
telling us that P ˚ actually contains an alternating path of length 3c ´ 2. That, on the
other hand, gives us another alternating path of length at least 3c ´ 2 that is vertex-
disjoint to all paths in P and, therefore, contradicts the maximality of P. So we indeed
have |V | ´ |

Ť

PPP V pP q| ď 3ξn. �

As mentioned before, we later want to find an almost perfect matching in a reduced
hypergraph whose edges represent “good” triplets as in Lemma 6.2. Then “translating back”
those edges in the matching will give us a set of (not too many) paths in H which almost
covers all vertices. To find an almost perfect matching in a hypergraph satisfying the pair
degree condition in Theorem 1.4 for almost all pairs, we look at a maximal matching in
which the sum of the vertices not contained in it is also maximal. This should give us
the best chance to enlarge the matching if too many vertices would be left over, deriving
a contradiction. A similar maximisation idea has also been used in [22] when a degree
sequence condition was given for a graph. The following Lemma will later guarantee the
existence of an almost perfect matching in the reduced hypergraph.

Lemma 6.3 (Matching). Let 1{n ! α, β. If H “ prns, Eq is a 3-graph, GH a graph on
vertex set rns with maximum degree ∆ pGHq ď βn and H satisfies dpi, jq ě min

`

i, j, n2
˘

`αn,
for all ij P rnsp2q with ij R E pGHq, then H has a matching M with vpMq ě p1´ 3βqn.

Proof of Lemma 6.3. Without restriction let α ! 1 and β ă 1{3 and let H,GH be given
as in the statement. For matchings M1,M2 Ď H of maximal size, we write M1 ă M2

if rns r V pM1q ďlex rns r V pM2q, where ďlex is the usual lexicographic order on Pprnsq,
i.e., A ď B if minA4B P A. Now, let M Ď H be a matching of maximal size which is
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(subject to being of maximal size) maximal with respect to ă. Assuming the statement is
false, gives an A Ď rnsr V pMq with |A| ě 3βn. Let us call a pair true if it is not an edge
in GH . Since ∆ pGHq ď βn, we can find 2βn distinct vertices v1, . . . , vβn, w1, . . . , wβn P A

such that all the pairs viwi are true. Without restriction assume that vi ă wi. Notice that
all the neighbours of each such pair lie inside V pMq, otherwise adding the respective edge
to M would lead to a larger matching. In the following, we will show two properties and
afterwards deduce the statement from them.

Firstly, we have that for each viwi, there are at least αn
3 edges in M in which viwi

has at least two neighbours: Let us first consider a pair viwi with vi ď
n
2 . For any

edge abc of the matching with a P N pvi, wiq, we have that mintb, cu ď vi as other-
wise EpMqr tabcu Y taviwiu would be the edge set of a matching M 1 with the same size
as M but with M ă M 1, contradicting our choice of M . This means that in each edge
of M which contains only one neighbour of viwi there is one vertex ď vi. Thus, (and since
all those edges are disjoint), at most vi neighbours of viwi can lie in edges that contain
no further neighbour of viwi. Hence, recalling d pvi, wiq ě vi ` αn, at least αn

3 edges in M
contain at least two neighbours of viwi.

For a pair viwi with vi ě n{2, there exist at least αn
3 edges in M containing more than

one neighbour of viwi as well since d pvi, wiq ě n
2 ` αn but epMq ď n{3.

Secondly, note that any edge of M that contains at least two neighbours of one true
pair viwi cannot contain a neighbour of any other true pair vjwj : Assume for contradiction
there were true pairs viwi and vjwj together with an edge abc P EpMq such that a P
N pvi, wiq and |tabcu XN pvj, wjq| ě 2. Then b or c, without restriction b, is a neighbour
of vjwj and EpMqr tabcuYtaviwi, bvjwju is the edge set of a matching in H contradicting
the maximal size of M .

Summarised, for each of the βn true pairs viwi in rnsrV pMq, we get a set of at least αn
3

edges in M that contain more than one neighbour of the respective pair and thus all those
sets of edges are pairwise disjoint. Therefore, we have αn

3 ˆβn distinct edges inM which is a
contradiction to 1{n ! α, β. SoM was indeed a matching satisfying vpMq ě p1´ 3βqn. �

We are now ready to prove Proposition 2.5. For that we will apply the Weak Regularity
Lemma to H (actually to a slightly smaller subgraph), obtain a pair degree condition for
the reduced hypergraph and hence find a matching in it by the previous Lemma. Lastly,
we will “unfold” the edges of that matching to paths in H by Lemma 6.2 and connect these
to a long path by the Connecting Lemma.

Proof of Proposition 2.5. Let α, ϑ be given as in the Proposition and set α1 “ α ´ ϑ´ ϑ2.
Next choose ξ, δ, t0 such that we have 1{t0 ! δ ! ξ ! ϑ ! α1. Applying the Weak
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Regularity Lemma 6.1 to δ and t0 gives us a T0 and by the hierarchy in the Proposition,
we may assume 1{n ! 1{T0. Now let H, R, and PA be given as in the statement. Notice
that H 1 “ H

“

rns r pRY V pPAqq
‰

after a renaming of the vertices can be seen as a 3-
graph H 1 “ prn1s, E 1q with n1 ě p1´ ϑ2 ´ ϑqn and satisfying the usual degree condition:
dpi, jq ě min

`

i, j, n
1

2

˘

` α1n1 for all ij P rn1sp2q.
For H 1, the statement of the Weak Regularity Lemma provides an integer t P rt0, T0s

and a partition V “ V0 9YV1 9YV2 9Y . . . 9YVt satisfying all three points of Lemma 6.1. Set-
ting m “ |V1| “ ¨ ¨ ¨ “ |Vt|, we have that n1

t
ě m ě 1´δ

t
n1 and recall that |V0| ď δn1. Note

that for vi P Vi, we have vi ě i ¨m´ n1

t0
. Summarised, we have the following hierarchy:

1
n1
!

1
T0
,
1
t
,

1
t0
! δ ! ξ ! ϑ ! α1 ! 1 (6.1)

Let us write eˆ
`

V ijk
˘

“ |te P E 1 : |eX Vi| “ |eX Vj| “ |eX Vk| “ 1u| for the number of
crossing edges in V ijk and we call a triplet V ijk dense, if eˆ

`

V ijk
˘

ě α1m3

2 .
Now we will show that we can almost “transfer” the pair degree condition to a reduced

hypergraph. We will do this in two steps: First, we show that every pair ViVj belongs to
many dense triplets V ijk, and second, we show that we can almost keep that up when
restricting ourselves to quasirandom triplets.

Claim 6.4. For every ij P rtsp2q, there are at least min
`

i, j, t2
˘

` α1t
3 many k P rts ´ ti, ju

such that V ijk is a dense triplet.

Proof. Suppose there is a pair ViVj, ij P rtsp2q, belonging to less than min
`

i, j, t2
˘

` α1t
3

dense triplets V ijk. Let S be the set of hyperedges in H 1 that contain one vertex in Vi, one
in Vj and a third vertex outside of Vi 9YVj . By invoking the pair degree condition of H 1 and
with the hierarchy (6.1), we get that

|S| ěm2
„

min
ˆ

i ¨m´
n1

t0
, j ¨m´

n1

t0
,
n1

2

˙

` α1n1 ´ 2m


ą
n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
6
7α

1

˙

We will derive a contradiction by finding a smaller upper bound on |S|. To this aim,
we split S into two parts. By S1 let us denote the set of those edges in S that lie in
a dense triplet V ijk, for some k P rts r ti, ju, (we say an edge e lies or is in V ijk if we
have |e X Vi| “ |e X Vj| “ |e X Vk| “ 1). Since in one triplet there are at most m3 edges
and by assumption ViVj does not belong to many dense triplets, we get

|S1| ă

ˆ

min
ˆ

i, j,
t

2

˙

`
α1t

3

˙

m3
ď
n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
α1

3

˙
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Let S2 “ S r S1 be the set of edges in S lying in triplets that are not dense. There are less
than α1

2 m
3 crossing edges in each triplet that is not dense and ViVj belongs to at most t

triplets. Hence

|S2| ă
α1

2 m
3
ˆ t ď

n13

t2
α1

2 .

Summarised, we have

n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
6
7α

1

˙

ă |S| “ |S1| ` |S2| ă
n13

t2

ˆ

min
ˆ

i

t
,
j

t
,
1
2

˙

`
5α1

6

˙

,

which is a contradiction. �

From the Weak Regularity Lemma we also get that in total at most δt3 triplets V ijk are
not δ-quasirandom.

Let us now complete the “reduction” of the hypergraph and notice that we can find
an almost perfect matching in the reduced hypergraph. Denote by D the hypergraph on
the vertex set rts with ijk being an edge if and only if the triplet V ijk is dense. Let, on
the other hand, IR be the hypergraph on the vertex set rts with ijk being an edge if and
only if V ijk is not weakly δ-quasirandom in H 1. In the following, we will remove a few
vertices in such a way that D ´ IR induced on the remaining vertices satisfies our pair
degree condition for almost all pairs.

We call a pair ij P rts2 malicious pair if it belongs to more than
?
δt edges of IR.

Since epIRq ď δt3, there are at most 3
?
δt2 malicious pairs. Let B be the graph on vertex

set rts in which the edges are given by the malicious pairs. We call a vertex i malicious
vertex if dBpiq ą δ1{4t, i.e., if it belongs to many malicious pairs. The upper bound on
the number of malicious pairs implies that there are at most 6δ1{4t malicious vertices.
Now we remove these malicious vertices and set D1 :“ D

“

rtsr tv P rts : v maliciousu
‰

and B1 “ B
“

rtsr tv P rts : v maliciousu
‰

.
The reduced hypergraph we looked for is now K “ D1 ´ IR, in which edges encode

dense, δ-quasirandom triplets. In K, every pair ij P V pKqp2q with ij R E rB1s satisfies

dKpi, jq ě min
ˆ

i, j,
t

2

˙

`

ˆ

α1

3 ´ 6δ1{4
´
?
δ

˙

t ě min
ˆ

i, j,
t

2

˙

`
α1

4 t.

Thus, we have that the graph GK on vertex set V pKq with ij being an edge if and only
if ij does not satisfy the degree condition dKpi, jq ě min

´

i, j, vpKq2

¯

` α1

4 vpKq is a subgraph
of B1. Therefore, and since vpKq ě p1´ 6δ1{4qt, we have

∆ pGKq ď ∆ pB1q ď δ1{4t ď 2δ1{4
|V pKq|

and we can apply Lemma 6.3 to K with α1

4 in place of α and 2δ1{4 instead of β and obtain
a matching M in K covering all but at most 6δ1{4t vertices of K.
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Finally, notice that each triplet V ijk with ijk being an edge in K is pδ, dijkq-quasirandom
with dijk ě α1

2 ´ δ ě
α1

3 . Hence, we may apply Lemma 6.2 (with ξ as in (6.1), dijk ě α1

3 in
place of d and δ as δ) to each of the triplets V ijk that corresponds to an edge in M . Doing
so and recalling the definition of H 1, we notice that in H we can cover at least

n´
``

δ ` 6δ1{4
` 6δ1{4

` ξ
˘

n1 ` |R| ` v pPAq
˘

ě n´
`

2ϑ2n` v pPAq
˘

vertices with paths of length at least
α1

3 ξ
3´δ

2 m ´ 2 that are all disjoint to R and V pPAq.
We can connect all those at most 3t

α1

3 ξ
3´δ

paths in H through R to a path Q by Lemma 2.3
since until we connect the last one we have still only used at most

pL´ 2q ¨ 3t
α1

3 ξ
3 ´ δ

ă ϑ4n

vertices from R (recall the hierarchy (6.1)). In fact, we have that Q has at most
a small intersection with R, that is, |V pQq XR| ď ϑ4n and it covers many vertices,
i.e., vpQq ě p1´ 2ϑ2qn´ v pPAq. Hence, Q is a path satisfying the claims in the state-
ment. �

§7. Concluding Remarks

We would like to finish by pointing to some related problems. Firstly, as mentioned in the
introduction, our result can be seen as a stepping stone towards a complete characterisation
of those pair degree matrices that force a 3-graph to contain a Hamiltonian cycle.

Further, it seems possible to generalise our proof without too much effort for k-uniform
hypergraphs H “ prns, Eq with n large satisfying the pk ´ 1q-degree condition

dk´1pi1, . . . , ik´1q ě min
´

i1, . . . , ik´1,
n

2

¯

` αn ,

where dk´1pi1, . . . , ik´1q “ |t e P E : ti1, . . . , ik´1u Ď e u|.
Another very interesting problem is to get a similar result for the vertex degree, strength-

ening the result by Reiher, Rödl, Ruciński, Schacht, and Szemerédi in [16]: Does every 3-
graph H “ prns, Eq with dpiq ě min

`

max pi, γnq , 5
9n
˘

` αn for some γ ă 5{9 contain a
Hamiltonian cycle if n is large? The proof of Theorem 1.3 in [16] depends on the existence
of robust subgraphs for every vertex, for which one needs the factor 5{9.

Lastly, one could try to improve Theorem 1.4 by weakening the pair degree condition
to dpi, jq ě min

`

i, j, n2
˘

, i.e., without the additional αn term, as Rödl, Ruciński, and
Szemerédi did for the minimum pair degree condition in [19].
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